The Study of Structure Design for Dividing Wall Distillation Column

Similar documents
Temperature Control in Autothermal Reforming Reactor

Design and Analysis of Divided Wall Column

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

Approximate Design of Fully Thermally Coupled Distillation Columns

Dynamic Behaviour of Thermally Coupled Distillation Arrangements: Effect of the Interconnection Flowrate

Experimental evaluation of a modified fully thermally coupled distillation column

SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN

Design and Optimization of Thermally Coupled Distillation Schemes for the Separation of Multicomponent Mixtures

Control of Thermally Coupled Distillation Arrangements with Dynamic Estimation of Load Disturbances

Effect of Precipitation on Operation Range of the CO 2

CONTROL PROPERTIES ANALYSIS OF ALTERNATE SCHEMES TO THERMALLY COUPLED DISTILLATION SCHEMES

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi

History and Status of the Chum Salmon Enhancement Program in Korea

Seed Production from Pond Cultured Cherry Salmon, e ll, Oncorhynchus masou (Brevoort) ll ll

MULTI-LOOP CONTROL STRUCTURE FOR DIVIDING-WALL DISTILLATION COLUMNS. Abstract. Introduction

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

Novel Procedure for Assessment of Feasible Design Parameters of Dividing-Wall Columns: Application to Non-azeotropic Mixtures

A Short Note on Steady State Behaviour of a Petlyuk Distillation Column by Using a Non-Equilibrium Stage Model

Multiple Steady States in Thermally Coupled Distillation Sequences: Revisiting the Design, Energy Optimization, and Control

Surface Reaction Modeling for Plasma Etching of SiO 2

Design and Control Properties of Arrangements for Distillation of Four Component Mixtures Using Less Than N-1 Columns

A SHORT Note ABOUT ENERGY-EFFICIENCY PERFORMANCE OF THERMALLY Coupled DISTILLATION SEQUENCES

Dividing wall columns for heterogeneous azeotropic distillation

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case

Eldridge Research Group

BOUNDARY VALUE DESIGN METHOD FOR COMPLEX DEMETHANIZER COLUMNS

Computers and Chemical Engineering

Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia

PRACTICAL CONTROL OF DIVIDING-WALL COLUMNS

The most important nomenclature used in this report can be summarized in:

EXTENDED SMOKER S EQUATION FOR CALCULATING NUMBER OF STAGES IN DISTILLATION

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

Thermodynamic Analysis and Hydrodynamic Behavior of a Reactive Dividing Wall Distillation Column 1. Introduction

Control properties of thermally coupled distillation sequences for different operating conditions

Chemical Engineering and Processing: Process Intensification

Study of arrangements for distillation of quaternary mixtures using less than n-1 columns

Active vapor split control for dividing-wall columns

Economic and Controllability Analysis of Energy- Integrated Distillation Schemes THESIS. (Summary of the Ph.D. dissertation)

Distillation. Sep-tek. Ch.11 (continued) Distillation (Multistage with reflux) Sigurd Skogestad. Separation of liquid mixtures by repeated evaporation

[Thirumalesh*, 4.(8): August, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

Modeling for the Recovery of Organic Acid by Bipolar Membrane Electrodialysis

Minimum Energy Operation of Petlyuk Distillation Columns - Nonsharp Product Specifications

Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation

n

THERMAL INTEGRATION OF A DISTILLATION COLUMN THROUGH SIDE-EXCHANGERS

Optimizing Control of Petlyuk Distillation: Understanding the Steady-State Behavior

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

Rate-based design of integrated distillation sequences

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

Stabilization of HRP Using Hsp90 in Water-miscible Organic Solvent

Optimal Hydrogen Recycling Network Design of Petrochemical Complex

r*tt7v Progress, Ibe Ur)ft>ersal LaWof J^atare; Th>oagbt, fbe 3olA>er)t of Jier Problems. CHICAGO, SEPTEMBER MRS. ADA FOYE.

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

Energy-efficient complex distillation sequences: control properties

Optimal Designs of Multiple Dividing Wall Columns

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Open Archive Toulouse Archive Ouverte

Simplified Methodology for the Design and Optimization of Thermally Coupled Reactive Distillation Systems

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

Hybrid Systems for the Separation of Light Hydrocarbon Mixtures


Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process


Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

Mass Transfer Operations I Prof. BishnupadaMandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Maryam Ghadrdan. Optimal Operation of Kaibel Columns. Doctoral thesis for the degree of philosophiae doctor. Trondheim, October 2014


Heterogeneous Azeotropic Distillation Operational Policies and Control

Shortcut Design Method for Columns Separating Azeotropic Mixtures

A Pareto Front Approach to Bi-objective of Distillation Column Operation Using Genetic Algorithm

Minimum Energy Consumption in Multicomponent Distillation: III: Generalized Petlyuk Arrangements with more than Three Products

Purification of Fructooligosaccharides Using Simulated Moving Bed Chromatography

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

Colby College Catalogue

Implementation and Operation of a Dividing-Wall Distillation Column

COMBINATIONS OF MEASUREMENTS AS CONTROLLED VARIABLES: APPLICATION TO A PETLYUK DISTILLATION COLUMN.

An Efficient Design of Multi Component Distillation Column by Approximate & Rigorous Method

A Generalized Ease Of Separation Index for Selection of Optimal Configuration of Ternary Distillation

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

IV Distillation Sequencing

IMPROVED CONTROL STRATEGIES FOR DIVIDING-WALL COLUMNS

Make distillation boundaries work for you!

Optimal Design of Generalized Process-storage Network Applicable To Polymer Processes

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation

ENERGY IMPROVEMENT FOR NGLS DIRECT INDIRECT SEQUENCE FRACTIONATION UNIT

Aggregate Models based on Improved Group Methods for Simulation and Optimization of Distillation Systems

Complex Distillation Arrangements : Extending the Petlyuk Ideas

See, Sketch, Shoot. A Study Abroad program offered by Coastline Community College and ACCENT International Consortium for Academic Programs Abroad

Transcription:

Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 39-45 r m o Š i m Çm k m d p 712-749 e 214-1 (2006 11o 18p r, 2006 12o 14p }ˆ) The Study of Structure Design for Dividing Wall Distillation Column Seung Hyun Lee and Moon Yong Lee School of Chem. Eng. & Tech, Yeungnam University, 214-1, Dae-dong, Kyungsan, Kyungpook 712-749, Korea (Received 18 November 2006; accepted 14 December 2006) k v ˆp s o shortcut p sp Fenske-Underwood ep 3 p v ˆ ll q rn p rk m. rk p l v ˆp o,, t r p o rp r p p p m. rk l p l s p lv v ˆ sp l 2 v r p pp o HYSYS n l k o s l l r e p m. rk v ˆp s l 2 v r 16Íl 65Í v l v rk ppp p m. v ˆl p r t r vp s l ps t r s p n o p p m, r l v ml p o p ESI l p l r p k pl. h Abstract This paper proposed a shortcut method for the structure design of dividing wall column based on the Fenske-Underwood equation by applying it on three conventional simple column configuration. It is shown that the proposed shortcut method can design the column structure including the feed tray, dividing wall section, and side-stream tray in a simple and efficient way in the initial design stage. Simulation study using HYSYS to compare the energy saving performance between the conventional sequential two column system and the dividing wall column designed by the proposed method shows that the proposed dividing wall column system saves from 16Í to 65Í more over the conventional one. It is also illustrated that the degree of energy saving improvement by the divided wall column mainly depends on the composition of intermediate component while the optimal energy consumption pattern to internal flow distribution on the dividing wall section is characterized by the ESI factor of the feed mixture. Key words: Dividing Wall Column, Internal Flow, Structure Design, Energy Saving, Thermally Coupled Distillation 1. v l ql 3 o rp l 2 v ˆ s n p. p rp r p s p d rl p, ~ w v ˆ l t r vp q rp pl. p v ˆl p ll r pp l tn npp l l v n rm. p rrp o l n v sl p l v l mp [1-4] l sl p l pp eˆ q rp m Fig. 1 p Petlyuk v ˆ s p [5-9]. Petlyuk v ˆp To whom correspondence should be addressed. E-mail: mynlee@yu.ac.kr m m t lrp s l p f r r v r vp 1 rp m l p, m p ˆr ˆr p t p p op l t l r r, t r, r vp. p s Petlyuk v ˆ p v p v o l l v pp. v rp nrp np v k ˆ p k p l rrp sq. p Petlyuk v ˆp v r rp o l v ˆ(DWC: dividing wall column)p rk l [10-12]. v ˆp Petlyuk v ˆ ll r rl o srp rl ˆ l p p f Petlyuk v ˆp m t l eˆ ˆp. p s Petlyuk v ˆp m m 39

40 pd Ëp n Fig. 2. A schematic diagram of a dividing wall column. Fig. 1. A schematic diagram of Petlyuk column. t p k p l n p p nr p l n p qld tp f nrp np, 2 p v ˆp l Œq n r p qrp v. p qrl er l ql v ˆ p kv p l pv erp. pl tn po tp Petlyuk v ˆ v ˆp r v p sr l sr p p l nr s l ol p lv p o l r m s rp n r p. q v ˆp s rll l p l p lv pv kv v ˆl p o m r t r vp o p sl rp o rr p n r l p p. rp p o v ˆp rnl p l v p r m v ˆp err l p n p m m t p o Ž tn pq p l l tn. l l v ˆp s o l shortcut p p o d r p p rk p s l v ˆp p l m. 2. r o v ˆp s Fig. 2m p ˆ p. v rp p rp l 2 v r l v r n po sr p p. v ˆl o45 o1 2007 2k m l r v r r vp p k ~ s p v p p q (remixing) lr l o ll r pp skv. p v ˆl m p p p k l rp p m m t mp k~ s l v p p r l p p p l pv l l Fenske-Underwood ep pn l p p p re m. Fig. 2l p v ˆp s 4 p p. o p op m, t p, t p t p p p. m op 3 p r r r vp tp m p ˆr p r r v t r v, ˆr p t r v r vp. p p l p e l r r v t r vp e l t r v r vp s l p. p v ˆp sl p v ˆ lp rp Fig. 3 p ˆ p. p ll 1st columnp v ˆp m l 2nd column 3rd columnl p ˆr ˆr pp p v ˆl p t p Rectifying Stripping l. p v ˆl o p o m p o, t r v p o Fig. 3 p s l vp p p k p. v ˆl Fig. 2m p l p k p sq p Fig. 3l 1st columnp rl p 3 plk. shortcut l p s l m op k

v ˆp s l 41 Fig. 4. Process flow diagram for shortcut application in HYSYS. Fig. 3. A simple column configuration equivalent to DWC. p 1st columnp p p m op p 1st columnp q. Fig. 3p 1st columnp sl m op k l p 1st columnp rp p rk p rn p. Fig. 3p v ˆ l s Fig. 2p v ˆ l l p rn v kp ˆp r~rp l v l p p p o Œp,, o p sr rl o p p. p o ˆp v ˆp s tn p Fenske-Underwood ep pn l p. l l s o l k Fenske-Underwood ep pn HYSYS p shortcut p n m. e p o p alkane l t n-pentane, n-hexane, n-heptanep n mp o p s p p 1atm, 45 kmol/h o p m. 3 v ˆ kl nr m p r p 99 molí, 94 molí, 99 molí r l m. s o HYSYSp shortcut e p Fig. 4p m. n-pentane(40 molí), n-hexane(20 molí), n-heptane (40 molí) nl e m Table 1l ˆ l. Fig. 4l p v ˆ lp p r A-C v ˆ(1st column)l ˆrl sq light key component(n- Pentane)m ˆrl sq heavy key component(n-heptane)p pp 0.01 r m. p r r Am r C l p mr q sp l v pp l p p el. A-B v ˆ(2nd column) B-C v ˆ(3rd column)p light heavy key component s p l r m. Table 1. Main structure of equivalent simple column configuration 1st column 2nd column 3rd column No. of tray 7 15 16 Feed stage 4 6 10 *The actual reflux ratio is set as double as the minimum reflux ratio. Table 1p ˆp v ˆp m p m t p 1st columnp 7, 2nd column 3rd columnp p 31 p r. p o p p t 4 p op t l p o 2nd columnp p 6 p p o 2nd columnp m 3rd columnp o p p 25 p. t r vp p o 2nd columnp p 15 l. v pn l HYSYS v ˆp Fig. 5l ˆ l. HYSYS m t ˆ l s r v k l ll r l p Petlyuk v ˆ pn l e p m. Fig. 5. Process flow diagram of DWC in HYSYS. Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007

42 pd Ëp n p v ˆl p lr p l r m Fig. 2p k t m op k p Fig. 5p Pre-Liq_Flow, Pre-Vap_Flow m. 3. y v ˆl k, v m m t op r~ edšp l v l q m p k ˆp np p rv tn p. l l m l op k p r r o l case-study e mp Fig. 6. Fig. 6l m p n l v t r p k p sq l r~ l v n p m p ep k p. m m op p 24 kmol/h, k p 51 kmol/h p l v p 1.613 10 kj/h q k ˆ ol q 6 k l v p 2.184 10 kj/h l r~ l v n 6 l p n. p l rp l v mlp ˆ po p p p. m l p k p v m l p p rm l tlv p o t p p eˆ m. p m l p p v v vl p l v rrp t p v o pp p q o ož Ž v rm. p v qrp pl l p v, l s v v l n s p l t p v eˆ n v p l rrp ˆ. Table 2l l 2 v ˆp n mp n l vk r s l p v ˆp l v p p m. e o l l 2 v ˆp p kl re v ˆp shortcut p Fenske-Underwood ep pn l mp r p o p s r p s ˆp nr k p p r m. Table 2l m p v ˆp l 2 v r l 34Í r p l v r p p k p. p l 2 v ˆl p rp ˆ q p r m m p v p ˆ p v o l r ˆl nr p l p. rk shortcut p v ˆl p s Fig. 7l ˆ l. Fig. 7(a) r r v r vp t r vp q lp q p lr p p p p. o45 o1 2007 2k Fig. 6. The energy consumption by internal flow distribution. Table 2. Structure and energy consumption of conventional sequential column process and DWC Pri-column Sec-column DWC No. of tray 14 13 Feed stage 7 7 Reflux ratio 2.732 1.120 Reboiler Duty(kJ/h) 1.463e006 0.9964e006 1.613e006 Fig. 7(b)l t r vp s side-stream l p p p p. p rk shortcut p v ˆp s l r p lt. v ˆp p o p r

v ˆp s l 43 Table 3. Feed condition of ternary mixture for case study M 1 ESI = 1.04 M 2 ESI = 1.86 A: n-pentane B: n-hexane C: n-heptane A: n-butane B: i-pentane C: n-pentane A: i-pentane M 3 B: n-pentane ESI = 0.47 C: n-hexane *ESI (ease of separability index) F1 F2 F3 A : 0.4 B : 0.2 C : 0.4 A : 0.33 B : 0.33 C : 0.33 A : 0.2 B : 0.6 C : 0.2 Fig. 7. (a) Composition profile in prefractionator (b) Composition profile in Mainfractionator. pp p r v ˆp l n on. v ˆp o p Žk o l k alkane lp p p o s np p tp Table 3 p 9 v nl l l 2 v ˆ v ˆp p m. l o l p s p 1 atm, 45 kmol/h p r m p 99 molí, 94 molí, 99 molí r m. l 2 v ˆ v ˆp s rk shortcut p p s l m. Table 3 l ESI v α AB /α BC rp A-B B-C p np p p. m l, ESI < 1 p A-B p B-C l np. Table 4l p p p v ˆp n nl l pr p l v p p pp p r o p l 16Í, 65Í r p p p k p. tp r, t r, r r vp s s l v ˆp p p t r v Bp s p ƒv v ˆ rnl s l v r v p k p. p p v ˆl p l v p p t t r vp q p lr p f llv e. o p ESIl m p, ESI v p 1 l n l v r ƒvp p p. p p m l op r r v r vp tp k l t r vp tp r r v r vp α AB m α BC l 1 l ok v ˆp sl r s p p. nk, p t r vp o p ESI p 1l n v ˆ rn e p l v r p pp lp ppp k p., v ˆ p np rl, m m t l k m 1l n q p rp p F2-M1 case pl p. p n rp k m p v p nl F2-M1 case q rr p l v. p rp lk nl 1l ok rk s p p. k l p Table 4. Comparison of energy consumption in conventional sequential column process and DWC F1 F2 F3 2-TOP(10 6 kj/h) DWC(10 6 kj/h) Energy Saving( ) Liquid Split(Pre/Main) Vapor Split(Pre/Main) M1 2.46 1.61 35 1.6 0.9 M2 5.36 4.49 16 0.3 0.1 M3 5.29 3.60 32 0.4 0.2 M1 2.64 1.27 52 1.3 0.9 M2 6.02 4.38 27 0.3 0.1 M3 5.77 3.71 36 0.3 0.2 M1 3.28 1.14 65 0.7 0.4 M2 5.87 3.65 38 0.3 0.1 M3 5.47 3.11 43 0.5 0.3 Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007

44 pd Ëp n Fig. 8. Energy consumption pattern to internal flow distribution (X-axis: Pre-Liq_Flow, Y-axis: Pre-Vap_Flow, Z-axis: Reboiler Duty). l l r ol sr p. p n F1-M1 F2-M1 case rr p. nl m p k l n l v Fig. 8l m. l p ESI p v o l o n l v p pp k p. ESI p 1l n o p n(v M1) r k l p l v r p qp, ESI < 1(v M3)p n n l v p p. p M2p n v ˆp l p m l l ov o v np qr p v, M3p n m l r e p rn p rrp v ppp p. 4. v ˆp l p s rp o l v ˆp sl r 3 p p v ˆ l sl l Fenske-Underwood p rn shortcut p rk m. rk p v ˆp ˆ s p s p r p p pl. o o45 o1 2007 2k s np p tp o l l v ˆp s l 2 v rl 65Í r p l v r lp ppp p m. v ˆp rnl t r vp s p ESI p 1l n ƒvp k pl. r l v p p s ESI l r p r p k pl. p r l v p 2006 l vqo rl p l vo ld. y 1U Salvador, H. and Arturo J., Controllability Analysis of Thermally Coupled Distillation Systems, Ind. Eng. Chem. Res., 38(10), 3957-3963(1999). 2. Agrawal, R., A Method to Draw Fully Thermally Coupled Distillation Column Configurations for Multicomponent Distillation, Ins. Chem. Eng. Trans IChemE., 78(3), (2000).

v ˆp s l 45 3. Juan, L. B., Maria, N. B., Salvador, H., Vicente, R. and Jimenez, Energy-Efficient Designs of Thermally Coupled Distillation Sequences for Four-Component Mixtures, Ind. Eng. Chem. Res., 42(21), 5157-5164(2003). 4. Ben-Guang, R., Andrzej, K. and Ilkka, T., Synthesis of Heat- Integrated Thermally Coupled Distillation Systems for Multicomponent Separations, Ind. Eng. Chem. Res., 42(19), 4329-4339 (2003). 5. Ivar, J. H. and Sigurd, S., Minimum Energy Consumption in Multicomponent Distilltation.2. Three-Product Petlyuk Arrangements, Ind. Eng. Chem. Res., 42(3), 605-615(2003). 6. Ivar, J. H. and Sigurd, S., Optimal operation of Petlyuk Distillation: Steady-state Behavior, J. Process Control., 9(5), 407-424 (1999). 7. Jimenez, A., Ramirez, N., Castro, A. and Hernandez, S., Design and Energy Performance of Alternative Schemes to the Petlyuk Distillation System, Ins. Chem. Eng. Trans IChemE., 81(5), 518-524(2003). 8. Erik, A. W. and Sigurd, S., Operation of Integrated Three-Product (Petlyuk) Distillation, Ind. Eng. Chem. Res., 34(6), 2094-2103(1995). 9. Ivar, J. H. and Sigurd, S., Shortcut Analysis of Optimal Operation of Petlyuk Distillation, Ind. Eng. Chem. Res., 43(14), 3994-3999(2004). 10. Frigyes, L., David, E., Hiroshi, Y. and Colin, H., Kellogg Divided Wall Column Technology for Ternary Separation, The 5th International Symp. Tech.- Korea and Japan Seoul, Korea, 19-21 (1999). 11. Abdul Mutalib, M. I. and Smith, R., Operation and Control of Dividing Wall Distillation Column, Part1: Degrees of Freedom and Dynamic Simulation, Trans IChemE., 76(3), 308-318(1998). 12. Michael, A. S., Douglas, G. S., James, M. H., Steven, P. R., Mohammed, S. S. and Dennis, E. O., Reduce Costs with Dividing-Wall Columns, CEP., 98(5), 64-71(2002). Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007