Velocity Measurements of Pore Fluids at Pressure and Temperature: Application to bitumen

Similar documents
Laboratory experiments and numerical simulation on Bitumen Saturated Carbonates: A Rock Physics Study for 4D Seismology

Seismic behaviour of CO 2 saturated Fontainebleau sandstone under in situ conditions

P- and S-Wave Velocity Measurements and Pressure Sensitivity Analysis of AVA Response

Investigations of Seismic Signatures of CO 2 Saturation as Part of a Geological Storage Project

SUMMARY INTRODUCTION EXPERIMENTAL PROCEDURE

A look into Gassmann s Equation

The Hangingstone steam-assisted gravity drainage

CO 2 Rock Physics: A Laboratory Study

Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study

Time-lapse seismic monitoring and inversion in a heavy oilfield. By: Naimeh Riazi PhD Student, Geophysics

The Weyburn Field in southeastern Saskatchewan,

Shear Wave Velocity Estimation Utilizing Wireline Logs for a Carbonate Reservoir, South-West Iran

Hydrogeophysics - Seismics

Heriot-Watt University

An empirical method for estimation of anisotropic parameters in clastic rocks

Four-D seismic monitoring: Blackfoot reservoir feasibility

Seismic methods in heavy-oil reservoir monitoring

Temperature Dependence of Acoustic Velocities in Gas-Saturated Sandstones

SEG/New Orleans 2006 Annual Meeting

Time-lapse seismic modelling for Pikes Peak field

RESEARCH PROPOSAL. Effects of scales and extracting methods on quantifying quality factor Q. Yi Shen

Monitoring CO 2 Injection at Weyburn Reservoir Using 3-D/3-C Seismic Datasets

ScienceDirect. Model-based assessment of seismic monitoring of CO 2 in a CCS project in Alberta, Canada, including a poroelastic approach

Reservoir Characteristics of a Quaternary Channel: Incorporating Rock Physics in Seismic and DC Resistivity Surveys

Feasibility study of time-lapse seismic monitoring of CO 2 sequestration

Predicting oil sands viscosity from well logs, NMR logs, and calculated seismic properties

Uncertainties in rock pore compressibility and effects on time lapse seismic modeling An application to Norne field

AFI (AVO Fluid Inversion)

Sensitivity Analysis of Pre stack Seismic Inversion on Facies Classification using Statistical Rock Physics

Seismic Rock Physics of Steam Injection in Bituminous-oil Reservoirs

RP 2.6. SEG/Houston 2005 Annual Meeting 1521

Cold production footprints of heavy oil on time-lapse seismology: Lloydminster field, Alberta

SPE These in turn can be used to estimate mechanical properties.

RC 1.3. SEG/Houston 2005 Annual Meeting 1307

Rock Physics Modeling in Montney Tight Gas Play

Toward an Integrated and Realistic Interpretation of Continuous 4D Seismic Data for a CO 2 EOR and Sequestration Project

Seismic Velocity Dispersion and the Petrophysical Properties of Porous Media

Crosswell tomography imaging of the permeability structure within a sandstone oil field.

ROCK PHYSICS DIAGNOSTICS OF NORTH SEA SANDS: LINK BETWEEN MICROSTRUCTURE AND SEISMIC PROPERTIES ABSTRACT

Main Menu. Summary (1)

Velocity-effective stress response of CO 2

ERTH2020 Introduction to Geophysics The Seismic Method. 1. Basic Concepts in Seismology. 1.1 Seismic Wave Types

Updating the low-frequency model in time-lapse seismic inversion: A case study from a heavy-oil steam-injection project

Estimating Permeability from Acoustic Velocity and Formation Resistivity Factor

GEOPHYSICAL PROSPECTING: DYNAMIC RESERVOIR CHARACTERIZATION AND TIME-LAPSE MULTICOMPONENT SEISMOLOGY FOR RESERVOIR MONITORING UNESCO EOLSS

Bandlimited impedance inversion: using well logs to fill low frequency information in a non-homogenous model

Modeling seismic wave propagation during fluid injection in a fractured network: Effects of pore fluid pressure on time-lapse seismic signatures

Modelling of 4D Seismic Data for the Monitoring of the Steam Chamber Growth during the SAGD Process

Sections Rock Physics Seminar Alejandra Rojas

ATTENUATION CHARACTERISTICS OF SAUDI ARABIAN RESERVOIR SANDSTONE AND LIMESTONE CORES

The role of seismic modeling in Reservoir characterization: A case study from Crestal part of South Mumbai High field

Th LHR2 08 Towards an Effective Petroelastic Model for Simulator to Seismic Studies

Seismic applications in coalbed methane exploration and development

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad*

Reservoir properties inversion from AVO attributes

SENSITIVITY ANALYSIS OF THE PETROPHYSICAL PROPERTIES VARIATIONS ON THE SEISMIC RESPONSE OF A CO2 STORAGE SITE. Juan E. Santos

Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing , China

THE ROCK PHYSICS HANDBOOK

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

A New AVO Attribute for Hydrocarbon Prediction and Application to the Marmousi II Dataset*

Reservoir Characterization of Plover Lake Heavy-Oil Field

Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains

Elements of 3D Seismology Second Edition

We apply a rock physics analysis to well log data from the North-East Gulf of Mexico

Use of Seismic and EM Data for Exploration, Appraisal and Reservoir Characterization

Integration of Rock Physics Models in a Geostatistical Seismic Inversion for Reservoir Rock Properties

Summary. Simple model for kerogen maturity (Carcione, 2000)

The Attribute for Hydrocarbon Prediction Based on Attenuation

Workflows for Sweet Spots Identification in Shale Plays Using Seismic Inversion and Well Logs

Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions

SRC software. Rock physics modelling tools for analyzing and predicting geophysical reservoir properties

Rock Physics and Quantitative Wavelet Estimation. for Seismic Interpretation: Tertiary North Sea. R.W.Simm 1, S.Xu 2 and R.E.

A Study of Permeability and Velocity Anisotropy in Carbonates

Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston

4D stress sensitivity of dry rock frame moduli: constraints from geomechanical integration

LINK BETWEEN ATTENUATION AND VELOCITY DISPERSION

Integration of seismic methods with reservoir simulation, Pikes Peak heavy-oil field, Saskatchewan

Coupled seismoelectric wave propagation in porous media. Mehran Gharibi Robert R. Stewart Laurence R. Bentley

Measurement of elastic properties of kerogen Fuyong Yan, De-hua Han*, Rock Physics Lab, University of Houston

SUMMARY NUMERICAL SIMULATION OF BRINE-CO 2 FLOW AND WAVE PROPAGATION

FREQUENCY DEPENDENT ELASTIC AND ANELASTIC PROPERTIES OF CLASTIC ROCKS

P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties

Modeling elastic wave velocities and attenuation in rocks saturated with heavy oil

The use of seismic attenuation to indicate saturation in hydrocarbon reservoirs: Theoretical study and modelling approach

Towards Modelling Elastic and Viscoelastic Seismic Wave Propagation in Boreholes

Interpretation of baseline surface seismic data at the Violet Grove CO 2 injection site, Alberta

Heavy Oil Field, Saskatchewan

Estimation of fractured weaknesses and attenuation factors from azimuthal seismic data

IDENTIFYING PATCHY SATURATION FROM WELL LOGS Short Note. / K s. + K f., G Dry. = G / ρ, (2)

Time-lapse seismic modeling of CO 2 sequestration at Quest CCS project

42. POROSITY AND VELOCITY VS. DEPTH AND EFFECTIVE STRESS IN CARBONATE SEDIMENTS 1

AVO responses for varying Gas saturation sands A Possible Pathway in Reducing Exploration Risk

P125 AVO for Pre-Resonant and Resonant Frequency Ranges of a Periodical Thin-Layered Stack

Investigation of Devonian Unconformity Surface Using Legacy Seismic Profiles, NE Alberta

Proceedings, International Snow Science Workshop, Banff, 2014

Rock physics of a gas hydrate reservoir. Gas hydrates are solids composed of a hydrogen-bonded ROUND TABLE

Techniques for determining the structure and properties of permafrost

DOWN-HOLE SEISMIC SURVEY AND VERTICAL ELECTRIC SOUNDINGS RABASKA PROJECT, LÉVIS, QUÉBEC. Presented to :

Time lapse view of the Blackfoot AVO anomaly

Rock physics and AVO applications in gas hydrate exploration

Transcription:

Velocity Measurements of Pore Fluids at Pressure and Temperature: Application to bitumen Arif Rabbani 1*, Douglas R Schmitt 1, Jason Nycz 2, and Ken Gray 3 1 Institute for Geophysical Research, Department of Physics, University of Alberta 2 Laricina Energy Ltd.; 3 Osum Oil Sands Corp.; * rabbani@ualberta.ca Summary Time lapse geophysical imaging (e.g. 4D survey) of reservoirs require proper understanding of the saturating fluid s behavior at in situ conditions during hydrocarbon production. An adapted version of a pulse transmission technique for fluid is used to measure the ultrasonic velocity of highly viscous fluids. P- wave velocities in bitumen decrease 28% as the temperature rises from 10ºC (near virgin reservoir) to 130ºC. We apply these observed wave speeds and estimated fluid bulk moduli through Gassmann substitution in a porous dolomite to predict the changes in seismic reflectivity that would be observed with variations in temperature over a hypothetical bitumen saturated reservoir. Introduction Recovery of viscous hydrocarbons using methods such as SAGD or CSS from oil sands and/or carbonates necessitate that the reservoirs are heated to more than 100ºC in order to lower the viscosity of bitumen so that it can flow for production. Many workers (e.g., Eastwood (1993), Spencer (2013)) have observed significant drops in the P-wave velocities in bitumen saturated sands with increasing temperature at both high and low frequencies, respectively. In contrast, the S-wave velocity changes vary slightly. They both emphasize that drop in P-velocity is mostly due to the change in fluid bulk modulus with temperature. Recent ultrasonic measurements with bitumen saturated carbonate from the Grosmont formation of northern Alberta show that its P- and S-wave velocities decrease with temperature, and changes in the bitumen s properties are expected to be the dominating factor (Rabbani et al. 2015). However, to our knowledge, there are no publicly available reports in the literature on the seismic properties of highly viscous bitumen itself from the Grosmont formation under varying in situ conditions. This knowledge gap has motivated the development a laboratory protocol to provide appropriate measures of waves speeds and attenuation in bitumen over the temperature range from 10ºC to 130ºC and pressure up to 10 MPa. These developments were also necessitated because the standard pulse echo method does not provide satisfactory data through the highly attenuating fluid. Pore fluids in a geological formation are a combination of different compounds, therefore, a technique to measure the properties of saturated fluids with great accuracy is a valuable addition to understand the reservoirs overall seismic behavior. These measured properties can assist to the seismic monitoring of a geological formation (e.g. CO 2 sequestration site) (Njiekak et al. 2013). In this contribution, we describe the experimental technique and provide some of our initial measurements through bitumen. We apply these measurements in a simple hypothetical synthetic seismic model that illustrates the changes in reflectivity associated solely with a temperature change in the fluid. Theory and Method The experimental configuration was constructed to measure the sound speed in fluids. With highly attenuating bitumen, a direct pulse transmission method is used with two independent receiver PZTs placed on both opposite sides of the middle transmitting PZT (Fig. 1). The receivers are glued with metal pieces and spaced at unequal distance in order to calculate attenuation using the spectral ratio method GeoConvention 2015: New Horizons 1

(Molyneux and Schmitt, 2000). Bitumen is too attenuative to allow a pulse passing through the material twice as we have previously described in higher Q brines (Rabbani et al. 2014) and such a direct approach is necessary. Figure 1: Pulse-transmission approach for highly attenuating fluids consisting of a central single transmitter and far and near receivers. Left - the schematic of the cell and right picture shows the actuall cell made with stainless steel. Examples Pressure and temperature effects In Fig. 2, a set of ultrasonic waveforms in bitumen at 1 MPa pressure illustrates the effects of temperature on amplitude for near reciever. Here we have first computed RMS value of amplitude of a moving gate along a trace at each temperature. It is then plotted as background of the actual traces. Figure 2: Amplitude variations in the signals in bitumen with increasing temperature at 1 MPa of pressure - for near reciever. The measurements with bitumen at various pressure and temperature allow us to see the effects of attenuation on the waveforms. As the temperature increases bitumen s viscosity decreases significantly compared to the drop in density and velocity to eventually lower the attenuation. Therefore, in Fig 2, the amplitudes get stronger with the increase in temperature. Larger RMS value of amplitude at higher GeoConvention 2015: New Horizons 2

temperature also indicate that highly viscous bitumen turns into liquid from it s quasi solid phase at low temperature. However, the traces undergo a change in their shape and amplitude at around 100ºC. Although not shown in here, the waveforms at all the other pressures with temperature indicate that bitumen phase starts changing (becoming liquid) from 40ºC and onward. At around 70ºC the amplitude is pretty much strongest for almost all the cases, which may tell that bitumen is completely liquid at that temperature. Unfortunately, we don't have data yet at high enough temperature for all the pressures except at 1 MPa to really explain the behavior at 90ºC and onwards. Fig. 3 shows that P-wave velocities of bitumen drop significantly (~28%) with increase of temperature and maintain the expected trend of possessing larger value at higher pressure. The estimated three different slopes may indicate the possible phases of quasi solid, mostly liquid and liquid in bitumen (Han et al. 2008). Data shown here are only for the near receiver. Figure 3: P-wave velocities of bitumen drop significantly as temperature increases. Velocities are also larger at higher pressure, as expected. Implementation for time lapse (4-D) seismic survey 4-D seismology involves predicting the changes in repeating 3-D seismic surveys with time, where the changes in subsurface are produced due to the variations in the physical properties of fluid saturated rocks. The overall seismic responses can depend on various factors but are heavily influenced by the state of the fluid saturation within the rock. Time lapse (or 4-D) seismic monitoring can successfully assist imaging the changes in bitumen saturated oil sand reservoirs, due to the combined effects of increased temperature, pore pressure and effective stress changes, and the substitution of bitumen with water and steam during SAGD or CSS (Schmitt 1999; Zadeh et al. 2010). The ultrasonic measurements in this study show both the direct effects of pressure, and, more importantly temperature on bitumen. The measured P-wave velocities with temperature and pressure can be implemented to demonstrate time lapse seismology for a simple layered 1-D world, where a pulse through a dolomite layer is reflected back from the underlying bitumen saturated layer (Fig. 4). GeoConvention 2015: New Horizons 3

In this simplified model, we estimated the density of bitumen at pressure and temperature from the well using known empirical relations from Batzle and Wang, 1992. Unfortunately, the current design does not provide us the bitumen density. Initial density for bitumen at ambient condition was 1020 kg/m 3 in the empirical relation. The saturated rock density is then calculated by combining the matrix (dolomite) density (2795 kg/m 3 ) and rock s porosity (20%) with the estimated fluid density. The saturated bulk modulus is derived with Gassmann s model, ignoring here for purpose of illustration issues that may arise from substitution with a highly viscous liquid. In Gassmann relation, the frame and mineral moduli are set at 18 GPa and 94.9 GPa, respectively. The bulk modulus of the fluid is calculated from the measured P-wave velocities (e.g. Fig. 3) and the estimated density at pressure and temperature. The standard equation of compressional velocity with bulk and shear moduli (similar to dry shear modulus, 7.0 GPa), and density then yields saturated P-wave velocity of the saturated carbonate. Finally, the reflection coefficent from the interface between the dolmite and bitumen saturated carbonate is calculated from the corresponding impedances, seen in Fig. 5-a. (a) (b) Figure 5: a) P-wave reflection coefficient at 1 MPa pressure as a function of temperature and b) corresponding synthetic seismograms calculated by the convolutional model with normalized amplitude as a function of temperature. We have seen in Fig. 3 that temperature substantially affects the bitumen s velocities. Thererefore we try to carry out the reflection coefficient analysis with temperature variation. Fig 5-a shows that P-wave reflection coefficient at 1 MPa pressure strongly depends on the temperature, as it decreases with increase of temperature. Moreover, in a convolutional model in Fig. 5-b, where a ricker wavelet with 100 Hz central frequency is convolved with the reflection coefficients, shows that absolute value of the amplitude increases with temperature, where the amplitude peak is centered at zero time. The reflection coefficients were normalized with largest value in order to see the amplitude variation by -1 to 1 in the colorbar around the, Fig. 5-b. The sign in colorbar indicates the negative polarity of amplitude from the negative polarity signal. This result demonstrates that studying the physical properties of bitumen at various conditions is necessary in order to properly interpret observed 4-D seismic responses. Conclusions Changes in seismic reflectivity due to thermal recovery processes from a bitumen saturated reservoir can be substantial due to the combined effects of increased temperature, pore pressure and effective stress changes, and the substitution of bitumen with water and steam. Therefore, these studies of bitumen s properties, which, in preliminary state showed a 28% decrease in the P-wave velocity with temperature would greatly contribute to the interpretation of 4D seismic surveys. Moreover rock-physics model for rocks saturated with highly viscous bitumen could be improved with the known properties of the pore fluid. Ongoing work seeks to better understand the role of attenuation, which we have ignored for now, and to look at additional laboratory techniques that could allow us to obtain additional physical properties of the bitumen under in situ conditions during our experiments. GeoConvention 2015: New Horizons 4

Acknowledgements These measurements were conducted as part of a NSERC collaborative research and development (CRD) grant with support of Laricina Energy Ltd. and OSUM Oil Sands Corp. References Batzle, M. L., Zhijing Wang. 1992. Seismic properties of pore fluids (in Geophysics 57 (11): 1396-1408. Eastwood, J. 1993. Temperature-Dependent Propagation of P-Waves and S-Waves in Cold Lake Oil Sands -Comparison of Theory and Experiment Geophysics 58 (6): 863-872. Han, De-hua, Jiajin Liu, Michael Baztle. 2008. Seismic properties of heavy oils measured data The Leading Edge 27 (9): 1108-1115. Molyneux, J. and D.R. Schmitt. 2000. Compressional-wave velocities in attenuating media: A laboratory physical modeling study, Geophysics, 65, 1162-1167 Njiekak, Gautier, Douglas R. Schmitt, Helen Yam et al. 2013. CO2 rock physics as part of the Weyburn-Midale geological storage project (in International Journal of Greenhouse Gas Control 16, Supplement 1 (0): S118-S133. Rabbani A., Douglas R. Schmitt, and Randolf Kofman. 2014. A laboratory procedure of measuring ultrasonic properties of CO2 saturated fluids, GeoConvention:FOCUS, Calgary, AB (extended abstract) Rabbani, A., D.R. Schmitt, R. Kofman, and J. Nycz, A laboratory procedure for the measurement of compressional and shear wave velocities in bitumen saturated carbonates from 10 C to 100 C, submitted to J. Can. Petr. Tech., ms. 30 pp., Jan, 2015. Schmitt, D. R. 1999. Seismic attributes for monitoring of a shallow heated heavy oil reservoir: A case study (in English). Geophysics 64 (2): 368-377. Spencer, J. W. 2013. Viscoelasticity of Ells River bitumen sand and 4D monitoring of thermal enhanced oil recovery processes (in English). Geophysics 78 (6): D419-D428. Toksoz, M. N., D. H. Johnston, A. Timur. 1979. Attenuation of seismic waves in dry and saturated rocks; I, Laboratory measurements (in Geophysics 44 (4): 681-690. Zadeh, H. M., R. P. Srivastava, N. Vedanti et al. 2010. Seismic monitoring of in situ combustion process in a heavy oil field (in English). Journal of Geophysics and Engineering 7 (1): 16-29. GeoConvention 2015: New Horizons 5