Chapter 15 Power And Harmonics in Nonsinusoidal Systems

Similar documents
Power Factor Improvement

12. Introduction and Chapter Objectives

The Eects of Harmonics in Power Systems and Methods to Reduce or Eliminate Them

Sinusoidal Steady State Analysis (AC Analysis) Part II

Three Phase Circuits

Lecture 11 - AC Power

Power and Energy Measurement

Work, Energy and Power

Electronic Power Conversion

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Lecture 05 Power in AC circuit

Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas

6.334 Power Electronics Spring 2007

VTU E-LEARNING NOTES ON:

LO 1: Three Phase Circuits

Work, Energy and Power

Review of Basic Electrical and Magnetic Circuit Concepts EE

BASIC NETWORK ANALYSIS

AC Power Analysis. Chapter Objectives:

ECE 421/521 Electric Energy Systems Power Systems Analysis I 2 Basic Principles. Instructor: Kai Sun Fall 2013

11. AC Circuit Power Analysis

Revised October 6, EEL , Henry Zmuda. 2. Three-Phase Circuits 1

Power and Energy Measurement

Tab 18 - Apparent Power, Active Power, Reactive Power Distribution Systems Engineering - Course , Siemens Industry Inc., all rights reserved

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale.

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU

Pre-Lab. Introduction

True Power vs. Apparent Power: Understanding the Difference Nicholas Piotrowski, Associated Power Technologies

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Module 4. Single-phase AC Circuits

Sinusoidal Response of RLC Circuits

BASIC PRINCIPLES. Power In Single-Phase AC Circuit

04-Electric Power. ECEGR 452 Renewable Energy Systems

Power Systems - Basic Concepts and Applications - Part I

REACTANCE. By: Enzo Paterno Date: 03/2013

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA.

Power Electronics

Chapter 33. Alternating Current Circuits

THREE-PHASE CIRCUITS. Historical Profiles

15-884/484 Electric Power Systems 1: DC and AC Circuits

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

Alternating Current Circuits

Power Systems - Basic Concepts and Applications - Part I

MCE603: Interfacing and Control of Mechatronic Systems. Chapter 1: Impedance Analysis for Electromechanical Interfacing

SSC-JE EE POWER SYSTEMS: GENERATION, TRANSMISSION & DISTRIBUTION SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL

Driven RLC Circuits Challenge Problem Solutions

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

POWER FACTOR IN THE DIGITAL AGE A N E N V I R O N M E N T A L P O T E N T I A L S W H I T E P A P E R. Power Quality For The Digital Age

Exercise Dr.-Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme

Basics of Electric Circuits

PARALLEL A.C. CIRCUITS

Fault Calculation Methods

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

8. Electric Currents

Resistivity and Temperature Coefficients (at 20 C)

Handout 11: AC circuit. AC generator

EE 212 PASSIVE AC CIRCUITS

Sinusoidal Steady-State Analysis

Elevated Neutral to Earth Voltages Due to Harmonics A T&D Update

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

Analysis of AC Power RMS and Phasors Power Factor. Power Factor. Eduardo Campero Littlewood

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

THREE-PHASE CIRCUITS

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

AC Electric Machines. Objectives. Introduction. 1. To understand what the meant by the term ac circuit. 2. To understand how to analyze ac circuits.

TSTE25 Power Electronics. Lecture 3 Tomas Jonsson ICS/ISY

Brief Steady of Power Factor Improvement

Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system.

Laboratory I: Impedance

Induction_P1. 1. [1 mark]

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

10.1 COMPLEX POWER IN CIRCUITS WITH AC SIGNALS

Physics 1502: Lecture 25 Today s Agenda

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS

Pretest ELEA1831 Module 11 Units 1& 2 Inductance & Capacitance

Effects of Capacitor Bank Installation in a Medium Voltage (MV) Substation

Figure 5.2 Instantaneous Power, Voltage & Current in a Resistor

Electric Circuits II Power Measurement. Dr. Firas Obeidat

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1

Chapter 10: Sinusoidal Steady-State Analysis

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

Chapter 5 Steady-State Sinusoidal Analysis

Basic Electricity Video Exam

Announcements: Today: more AC circuits

Toolbox: Electrical Systems Dynamics

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Sinusoidal Steady State Analysis

Three Phase Systems 295

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.

Revision of Basic A.C. Theory

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.

Electricity Test Review

(Refer Slide Time: 01:30)

Transcription:

Chapter 15 Power And Harmonics in Nonsinusoidal Systems 15.1. Average power in terms of Fourier series 15.2. RMS value of a waveform 15.3. Power factor THD Distortion and Displacement factors 15.4. Power phasors in sinusoidal systems 15.5. Harmonic currents in three-phase systems 15.6. AC line current harmonic standards Fundamentals of Power Electronics 2 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.1. Average power Observe transmission of energy through surface S i(t) + Source + v(t) Load Surface S Express voltage and current as Fourier series: v(t) = V 0 + i(t) = I 0 + Σ n = 1 Σ n = 1 V n cos nωt ϕ n I n cos nωt θ n relate energy transmission to harmonics Fundamentals of Power Electronics 3 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Energy transmittted to load, per cycle W cycle = 0 T v(t)i(t)dt This is related to average power as follows: P av = W cycle T = 1 T 0 T v(t)i(t)dt Investigate influence of harmonics on average power: substitute Fourier series P av = 1 T 0 T V 0 + Σ n = 1 V n cos nωt ϕ n I 0 + Σ n = 1 I n cos nωt θ n dt Fundamentals of Power Electronics 4 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Evaluation of integral Orthogonality of harmonics: Integrals of cross-product terms are zero 0 T V n cos nωt ϕ n I m cos mωt θ m dt = 0 if n m V n I n 2 cos ϕ n θ n if n = m Expression for average power becomes P av = V 0 I 0 + Σ n = 1 V n I n 2 cos ϕ n θ n So net energy is transmitted to the load only when the Fourier series of v(t) and i(t) contain terms at the same frequency. For example, if the voltage and current both contain third harmonic, then they lead to the average power V 3 I 3 2 cos ϕ 3 θ 3 Fundamentals of Power Electronics 5 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Example 1 Voltage: fundamental only Current: third harmonic only 1 0.5 0 v(t) i(t) -0.5 Power: zero average -1 1 0.5 0 p(t) = v(t) i(t) P av = 0-0.5-1 Fundamentals of Power Electronics 6 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Example 2 1 v(t), i(t) Voltage: third harmonic only 0.5 Current: third harmonic only, in phase with voltage 0-0.5 Power: nonzero average -1 1 0.5 p(t) = v(t) i(t) P av = 0.5 0-0.5-1 Fundamentals of Power Electronics 7 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Example 3 Fourier series: v(t) = 1.2 cos (ωt) + 0.33 cos (3ωt) + 0.2 cos (5ωt) i(t) = 0.6 cos (ωt + 30 ) + 0.1 cos (5ωt + 45 ) + 0.1 cos (7ωt + 60 ) Average power calculation: P av = (1.2)(0.6) 2 cos (30 ) + (0.2)(0.1) 2 cos (45 ) = 0.32 Fundamentals of Power Electronics 8 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Example 3 Voltage: 1st, 3rd, 5th 1.0 v(t) Current: 1st, 5th, 7th 0.5 i(t) 0.0-0.5 Power: net energy is transmitted at fundamental and fifth harmonic frequencies -1.0 0.6 0.4 0.2 0.0 p(t) = v(t) i(t) P av = 0.32 Fundamentals of Power Electronics 9-0.2 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.2. Root-mean-square (RMS) value of a waveform, in terms of Fourier series T (rms value) = 1 v T 2 (t)dt 0 Insert Fourier series. Again, cross-multiplication terms have zero average. Result is (rms value) = V 0 2 + Σ n = 1 V n 2 2 Similar expression for current Harmonics always increase rms value Harmonics do not necessarily increase average power Increased rms values mean increased losses Fundamentals of Power Electronics 10 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.3. Power factor For efficient transmission of energy from a source to a load, it is desired to maximize average power, while minimizing rms current and voltage (and hence minimizing losses). Power factor is a figure of merit that measures how efficiently energy is transmitted. It is defined as power factor = (average power) (rms voltage) (rms current) Power factor always lies between zero and one. Fundamentals of Power Electronics 11 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.3.1. Linear resistive load, nonsinusoidal voltage Then current harmonics are in phase with, and proportional to, voltage harmonics. All harmonics result in transmission of energy to load, and unity power factor occurs. I n = V n R (rms voltage) = V 0 2 + (rms current) = I 0 2 + P av = V 0 I 0 + = 1 R Σ n = 1 θ n = ϕ n so cos (θ n ϕ n ) = 1 Σ n = 1 Σ n = 1 Fundamentals of Power Electronics 12 Chapter 15: Power and Harmonics in Nonsinusoidal Systems I n 2 2 V n 2 2 = (rms voltage) V n I n 2 cos (ϕ n θ n ) V 0 2 R 2 + Σ n = 1 2 V n 2R 2

15.3.2. Nonlinear dynamical load, sinusoidal voltage With a sinusoidal voltage, current harmonics do not lead to average power. However, current harmonics do increase the rms current, and hence they decrease the power factor. P av = V 1I 1 2 cos (ϕ 1 θ 1 ) (rms current) = I 0 2 + Σ n = 1 I n 2 2 (power factor) = I 1 2 I cos (ϕ θ ) 2 I 2 0 + 1 1 n n = 1 2 = (distortion factor) (displacement factor) Fundamentals of Power Electronics 13 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Distortion factor Defined only for sinusoidal voltage. (distortion factor) = I 1 2 I 0 2 + I n 2 2 n = 1 = (rms fundamental current) (rms current) Related to Total Harmonic Distortion (THD): 2 Σ I n n = 2 (THD) = I 1 (distortion factor) = 1 1 + (THD) 2 Fundamentals of Power Electronics 14 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Distortion factor vs. THD 100% Distortion factor 90% 80% 70% 0% 20% 40% THD 60% 80% 100% Fundamentals of Power Electronics 15 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Peak detection rectifier example Conventional singlephase peak detection rectifier Typical ac line current spectrum Harmonic amplitude, percent of fundamental 100% 80% 60% 40% 20% 100% 91% 73% 52% THD = 136% Distortion factor = 59% 32% 19% 15% 15% 13% 9% 0% 1 3 5 7 9 11 13 15 17 19 Harmonic number Fundamentals of Power Electronics 16 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Maximum power obtainable from 120V 15A wall outlet with peak detection rectifier (ac voltage) (derated breaker current) (power factor) (rectifier efficiency) = (120 V) (80% of 15 A) (0.55) (0.98) = 776 W at unity power factor (ac voltage) (derated breaker current) (power factor) (rectifier efficiency) = (120 V) (80% of 15 A) (0.99) (0.93) = 1325 W Fundamentals of Power Electronics 17 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.4. Power phasors in sinusoidal systems Apparent power is the product of the rms voltage and rms current It is easily measured simply the product of voltmeter and ammeter readings Unit of apparent power is the volt-ampere, or VA Many elements, such as transformers, are rated according to the VA that they can supply So power factor is the ratio of average power to apparent power With sinusoidal waveforms (no harmonics), we can also define the real power P reactive power Q complex power S If the voltage and current are represented by phasors V and I, then S = VI * = P + jq with I* = complex conjugate of I, j = square root of 1. The magnitude of S is the apparent power (VA). The real part of S is the average power P (watts). The imaginary part of S is the reactive power Q (reactive volt-amperes, or VARs). Fundamentals of Power Electronics 18 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Example: power phasor diagram The phase angle between the voltage and current, or (ϕ 1 θ 1 ), coincides with the angle of S. The power factor is Imaginary axis Q S = V rms I rms S = VI * power factor = P S = cos ϕ 1 θ 1 ϕ 1 θ 1 ϕ 1 θ 1 P Real axis In this purely sinusoidal case, the distortion factor is unity, and the power factor coincides with the displacement factor. ϕ 1 θ 1 I V Fundamentals of Power Electronics 19 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Reactive power Q The reactive power Q does not lead to net transmission of energy between the source and load. When Q 0, the rms current and apparent power are greater than the minimum amount necessary to transmit the average power P. Inductor: current lags voltage by 90, hence displacement factor is zero. The alternate storing and releasing of energy in an inductor leads to current flow and nonzero apparent power, but P = 0. Just as resistors consume real (average) power P, inductors can be viewed as consumers of reactive power Q. Capacitor: current leads voltage by 90, hence displacement factor is zero. Capacitors supply reactive power Q. They are often placed in the utility power distribution system near inductive loads. If Q supplied by capacitor is equal to Q consumed by inductor, then the net current (flowing from the source into the capacitorinductive-load combination) isin phase with the voltage, leading to unity power factor and minimum rms current magnitude. Fundamentals of Power Electronics 20 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Lagging fundamental current of phasecontrolled rectifiers It will be seen in the next chapter that phase-controlled rectifiers produce a nonsinusoidal current waveform whose fundamental component lags the voltage. This lagging current does not arise from energy storage, but it does nonetheless lead to a reduced displacement factor, and to rms current and apparent power that are greater than the minimum amount necessary to transmit the average power. At the fundamental frequency, phase-controlled rectifiers can be viewed as consumers of reactive power Q, similar to inductive loads. Fundamentals of Power Electronics 21 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.5. Harmonic currents in three phase systems The presence of harmonic currents can also lead to some special problems in three-phase systems: In a four-wire three-phase system, harmonic currents can lead to large currents in the neutral conductors, which may easily exceed the conductor rms current rating Power factor correction capacitors may experience significantly increased rms currents, causing them to fail In this section, these problems are examined, and the properties of harmonic current flow in three-phase systems are derived: Harmonic neutral currents in 3ø four-wire networks Harmonic neutral voltages in 3ø three-wire wye-connected loads Fundamentals of Power Electronics 22 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.5.1. Harmonic currents in three-phase four-wire networks a i a (t) ideal 3ø source v an (t) v bn (t) + + n v cn (t) + c i c (t) i n (t) neutral connection nonlinear loads Fourier series of line currents and voltages: b Σ k = 1 Σ k = 1 Σ Fundamentals of Power Electronics 23 Chapter 15: Power and Harmonics in Nonsinusoidal Systems i b (t) i a (t) = I a0 + I ak cos (kωt θ ak ) i b (t) = I b0 + I bk cos (k(ωt 120 ) θ bk ) i c (t) = I c0 + I ck cos (k(ωt + 120 ) θ ck ) k = 1 v an (t) = V m cos (ωt) v bn (t) = V m cos (ωt 120 ) v cn (t) = V m cos (ωt + 120 )

Neutral current i n (t) = I a0 + I b0 + I c0 + Σ k = 1 I ak cos (kωt θ ak ) + I bk cos (k(ωt 120 ) θ bk ) + I ck cos (k(ωt + 120 ) θ ck ) If the load is unbalanced, then there is nothing more to say. The neutral connection may contain currents having spectrum similar to the line currents. In the balanced case, I ak = I bk = I ck = I k and θ ak = θ bk = θ ck = θ k, for all k; i.e., the harmonics of the three phases all have equal amplitudes and phase shifts. The neutral current is then Σ i n (t) = 3I 0 + 3I k cos (kωt θ k ) k = 3,6,9, Fundamentals of Power Electronics 24 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Neutral currents Σ i n (t) = 3I 0 + 3I k cos (kωt θ k ) k = 3,6,9, Fundamental and most harmonics cancel out Triplen (triple-n, or 0, 3, 6, 9,...) harmonics do not cancel out, but add. Dc components also add. Rms neutral current is i n, rms = 3 I 0 2 + Σ k = 3,6,9, I k 2 2 Fundamentals of Power Electronics 25 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Example A balanced nonlinear load produces line currents containing fundamental and 20% third harmonic: i an (t) = I 1 cos(ωt θ 1 ) + 0.2 I 1 cos(3ωt θ 3 ). Find the rms neutral current, and compare its amplitude to the rms line current amplitude. Solution i n, rms = 3 i 1, rms = (0.2I 1 ) 2 = 0.6 I 1 2 2 I 2 1 + (0.2I 1 ) 2 = I 1 2 2 1 + 0.04 I 1 2 The neutral current magnitude is 60% of the line current magnitude! The triplen harmonics in the three phases add, such that 20% third harmonic leads to 60% third harmonic neutral current. Yet the presence of the third harmonic has very little effect on the rms value of the line current. Significant unexpected neutral current flows. Fundamentals of Power Electronics 26 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.5.2. Harmonic currents in three-phase three-wire networks Wye-connected nonlinear load, no neutral connection: a i a (t) ideal 3ø source v an (t) v bn (t) + + n v cn (t) + i n (t) = 0 c i c (t) + v n'n n' nonlinear loads i b (t) b Fundamentals of Power Electronics 27 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

No neutral connection If the load is balanced, then it is still true that i n (t) = 3I 0 + 3I k cos (kωt θ k ) Σ k = 3,6,9, But i n (t) = 0, since there is no neutral connection. So the ac line currents cannot contain dc or triplen harmonics. What happens: A voltage is induced at the load neutral point, that causes the line current dc and triplen harmonics to become zero. The load neutral point voltage contains dc and triplen harmonics. With an unbalanced load, the line currents can still contain dc and triplen harmonics. Fundamentals of Power Electronics 28 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Delta-connected load a i a (t) ideal 3ø source v an (t) v bn (t) + + n v cn (t) + i n (t) = 0 c i c (t) deltaconnected nonlinear loads i b (t) b There is again no neutral connection, so the ac line currents contain no dc or triplen harmonics The load currents may contain dc and triplen harmonics: with a balanced nonlinear load, these circulate around the delta. Fundamentals of Power Electronics 29 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Harmonic currents in power factor correction capacitors PFC capacitors are usually not intended to conduct significant harmonic currents. Heating in capacitors is a function of capacitor equivalent series resistance (esr) and rms current. The maximum allowable rms current then leads to the capacitor rating: esr C rated rms voltage V rms = I rms 2π fc rated reactive power = I 2 rms 2π fc Fundamentals of Power Electronics 30 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.6. AC line current harmonic standards 15.6.1. US MIL-STD-461B 15.6.2. International Electrotechnical Commission Standard 555 15.6.3. IEEE/ANSI Standard 519 Fundamentals of Power Electronics 31 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.6.1. US MIL-STD-461B For loads of 1kW or greater, no current harmonic magnitude may be greater than 3% of the fundamental magnitude. For the nth harmonic with n > 33, the harmonic magnitude may not exceed (1/n) times the fundamental magnitude. Harmonic limits are now employed by all of the US armed forces. The specific limits are often tailored to the specific application. The shipboard application is a good example of the problems faced in a relatively small stand-alone power system having a large fraction of electronic loads. Fundamentals of Power Electronics 32 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.6.2. International Electrotechnical Commission Standard 555 First draft of their IEC-555 standard:1982. It has since undergone a number of revisions. Enforcement of IEC-555 is the prerogative of each individual country, and hence it has been sometimes difficult to predict whether and where this standard will actually be given the force of law. Nonetheless, IEC-555 is now enforced in Europe, making it a de facto standard for commercial equipment intended to be sold worldwide. IEC-555 covers a number of different types of low power equipment, with differing harmonic limits. Harmonics for equipment having an input current of up to 16A, connected to 50 or 60 Hz, 220V to 240V single phase circuits (two or three wire), as well as 380V to 415V three phase (three or four wire) circuits, are limited. Fundamentals of Power Electronics 33 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Low-power harmonic limits In a city environment such as a large building, a large fraction of the total power system load can be nonlinear Example: a major portion of the electrical load in a building is comprised of fluorescent lights, which present a very nonlinear characteristic to the utility system. A modern office may also contain a large number of personal computers, printers, copiers, etc., each of which may employ peak detection rectifiers. Although each individual load is a negligible fraction of the total local load, these loads can collectively become significant. Fundamentals of Power Electronics 34 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

IEC-555: Class A and B Class A: Balanced three-phase equipment, and any equipment which does not fit into the other categories. This class includes low harmonic rectifiers for computer and other office equipment. These limits are given in Table 15.1, and are absolute ampere limits. Class B: Portable tools, and similar devices. The limits are equal to the Table 15.1 limits, multiplied by 1.5. Fundamentals of Power Electronics 35 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Class A limits Table 15.1. IEC-555 Harmonic current limits, Class A and certain Class C Odd harmonics Even harmonics Harmonic number Maximum current Harmonic number Maximum curre 3 2.30A 2 1.08A 5 1.14A 4 0.43A 7 0.77A 6 0.30A 9 0.40A 8 n 40 0.23A (8/n) 11 0.33A 13 0.21A 15 n 39 0.15A (15/n) Fundamentals of Power Electronics 36 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

IEC-555: Class C Class C: Lighting equipment, including dimmers and gas discharge lamps. The input current harmonics of ballasted lamps with an input power of more than 25W must meet the limits of Table 15.2, expressed as a percent of the fundamental current. If the input power is less than 25W, then Table 15.3 applies. Incandescent lamp fixtures containing phasecontrol dimmers, rated at greater than 600W, must meet the limits of Table 15.1. When testing for compliance, the dimmer must drive a rated-power lamp, with the phase control set to a firing angle of 90 ±5. Incandescent lamp dimmers rated at less than 600W are not covered by the standard. Discharge lamps containing dimmers must meet the limits of both Tables 15.2 and 15.3 at maximum load. Harmonic currents at any dimming position may not exceed the maximum load harmonic currents. Fundamentals of Power Electronics 37 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Class C limits Table 15.2. IEC-555 Harmonic current limits, certain Class C Harmonic number Maximum current, percent of fundamental 2 2% 3 (30%) (power factor) 5 10% 7 7% 9 5% 11 n 39 3% Fundamentals of Power Electronics 38 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

IEC-555: Class D Class D: Equipment not covered by Class B or C, which has a special waveshape as defined below. This class is directed at diode-capacitor peak-detection rectifiers. Equipment is placed in class D if the ac input current waveshape lies within the shaded area for at least 95% of the duration of each half-cycle. The center line of the shaded area is set to coincide with the peak of the current waveform. A I sinusoid, and a typical peak pk detection rectifier waveform, are shown for reference; the sinusoid is not Class D but the peak detection rectifier 0.35 I pk waveform is. The limits for Class D equipment are given in Table 15.3. 0 θ pk 30 θ pk + 30 180 ωt θ pk Fundamentals of Power Electronics 39 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

Class D limits Table 15.3. IEC-555 Harmonic current limits, Class D and certain Class C Odd harmonics Even harmonics Harmonic number Relative limit (ma/w) Absolute limit (A) Harmonic number Relative limit (ma/w) Absolute limit (A) 3 3.6 2.30A 2 1.0 0.3A 5 2.0 1.14A 4 0.5 0.15A 7 1.5 0.77A 9 1.0 0.40A 11 n 39 0.6 (11/n) 0.33A Fundamentals of Power Electronics 40 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

15.6.3. IEEE/ANSI Standard 519 In 1993, the IEEE published a revised draft standard limiting the amplitudes of current harmonics, IEEE Guide for Harmonic Control and Reactive Compensation of Static Power Converters. Harmonic limits are based on the ratio of the fundamental component of the load current IL to the short circuit current at the point of common (PCC) coupling at the utility I sc. Stricter limits are imposed on large loads than on small loads. The limits are similar in magnitude to IEC-555, and cover high voltage loads (of much higher power) not addressed by IEC-555. Enforcement of this standard is presently up to the local utility company. The odd harmonic limits are listed in Tables 15.4 and 15.5. The limits for even harmonics are 25% of the odd harmonic limits. Dc current components and half-wave rectifiers are not allowed. Fundamentals of Power Electronics 41 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

IEEE-519 current limits, low voltage systems Table 15.4. IEEE-519 Maximum odd harmonic current limits for general distribution systems, 120V through 69kV Isc/I L n < 11 11 n<17 17 n<23 23 n<35 35 n THD <20 4.0% 2.0% 1.5% 0.6% 0.3% 5.0% 20 50 7.0% 3.5% 2.5% 1.0% 0.5% 8.0% 50 100 10.0% 4.5% 4.0% 1.5% 0.7% 12.0% 100 1000 12.0% 5.5% 5.0% 2.0% 1.0% 15.0% >1000 15.0% 7.0% 6.0% 2.5% 1.4% 20.0% Fundamentals of Power Electronics 42 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

IEEE-519 current limits, high voltage systems Table 15.5. IEEE-519 Maximum odd harmonic current limits for general distribution systems, 69.001kV through 161kV Isc/IL n < 11 11 n<17 17 n<23 23 n<35 35 n THD <20 2.0% 1.0% 0.75% 0.3% 0.15% 2.5% 20 50 3.5% 1.75% 1.25% 0.5% 0.25% 4.0% 50 100 5.0% 2.25% 2.0% 0.75% 0.35% 6.0% 100 1000 6.0% 2.75% 2.5% 1.0% 0.5% 7.5% >1000 7.5% 3.5% 3.0% 1.25% 0.7% 10.0% Fundamentals of Power Electronics 43 Chapter 15: Power and Harmonics in Nonsinusoidal Systems

IEEE-519 voltage limits Table 15.6. IEEE-519 voltage distortion limits Bus voltage at PCC Individual harmonics THD 69kV and below 3.0% 5.0% 69.001kV 161kV 1.5% 2.5% above 161kV 1.0% 1.5% It is the responsibility of the utility to meet these limits. Fundamentals of Power Electronics 44 Chapter 15: Power and Harmonics in Nonsinusoidal Systems