arxiv: v3 [math.ra] 17 May 2017

Similar documents
MATH 247/Winter Notes on the adjoint and on normal operators.

Maps on Triangular Matrix Algebras

Chapter 9 Jordan Block Matrices

18.413: Error Correcting Codes Lab March 2, Lecture 8

Involution Codimensions of Finite Dimensional Algebras and Exponential Growth

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

The Mathematical Appendix

Ideal multigrades with trigonometric coefficients

The Lie Algebra of Smooth Sections of a T-bundle

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

Non-uniform Turán-type problems

Entropy ISSN by MDPI

On the Primitive Classes of K * KHALED S. FELALI Department of Mathematical Sciences, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia

AN UPPER BOUND FOR THE PERMANENT VERSUS DETERMINANT PROBLEM BRUNO GRENET

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

Galois and Post Algebras of Compositions (Superpositions)

PROJECTION PROBLEM FOR REGULAR POLYGONS

CHAPTER 4 RADICAL EXPRESSIONS

Lecture 3 Probability review (cont d)

1 Onto functions and bijections Applications to Counting

13. Dedekind Domains. 13. Dedekind Domains 117

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

4 Inner Product Spaces

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES

Q-analogue of a Linear Transformation Preserving Log-concavity

Investigating Cellular Automata

Unit 9. The Tangent Bundle

A Remark on the Uniform Convergence of Some Sequences of Functions

Some properties of symmetry classes of tensors

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

h-analogue of Fibonacci Numbers

Chapter 4 Multiple Random Variables

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

On the construction of symmetric nonnegative matrix with prescribed Ritz values

MA 524 Homework 6 Solutions

Assignment 7/MATH 247/Winter, 2010 Due: Friday, March 19. Powers of a square matrix

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

Journal of Mathematical Analysis and Applications

The Role of Root System in Classification of Symmetric Spaces

Exercises for Square-Congruence Modulo n ver 11

Algorithms Theory, Solution for Assignment 2

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

TESTS BASED ON MAXIMUM LIKELIHOOD

arxiv: v2 [math.ag] 9 Jun 2015

ρ < 1 be five real numbers. The

TOPOLOGICALLY IRREDUCIBLE REPRESENTATIONS AND RADICALS IN BANACH ALGEBRAS

Chapter 5 Properties of a Random Sample

Lecture 07: Poles and Zeros

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje.

DIFFERENTIAL GEOMETRIC APPROACH TO HAMILTONIAN MECHANICS

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

PERRON FROBENIUS THEOREM FOR NONNEGATIVE TENSORS K.C. CHANG, KELLY PEARSON, AND TAN ZHANG

The Primitive Idempotents in

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Decomposition of Hadamard Matrices

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Summary of the lecture in Biostatistics

Extreme Value Theory: An Introduction

Factorization of Finite Abelian Groups

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

Transforms that are commonly used are separable

Lebesgue Measure of Generalized Cantor Set

A tighter lower bound on the circuit size of the hardest Boolean functions

Packing of graphs with small product of sizes

Chapter 14 Logistic Regression Models

Mu Sequences/Series Solutions National Convention 2014

On the convergence of derivatives of Bernstein approximation

The internal structure of natural numbers, one method for the definition of large prime numbers, and a factorization test

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

Lattices. Mathematical background

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

Multivariate Transformation of Variables and Maximum Likelihood Estimation

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

Irreducible Representations of Braid Groups via Quantized Enveloping Algebras

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

arxiv: v1 [math.qa] 19 Mar 2010

1 Lyapunov Stability Theory

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

Department of Agricultural Economics. PhD Qualifier Examination. August 2011

Point Estimation: definition of estimators

ON THE STRUCTURE OF THE SPREADING MODELS OF A BANACH SPACE

X ε ) = 0, or equivalently, lim

Econometric Methods. Review of Estimation

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501

ON THE ELEMENTARY SYMMETRIC FUNCTIONS OF A SUM OF MATRICES

ON THE DEFINITION OF KAC-MOODY 2-CATEGORY

CHAPTER VI Statistical Analysis of Experimental Data

arxiv:math/ v1 [math.gm] 8 Dec 2005

Fibonacci Identities as Binomial Sums

1 Mixed Quantum State. 2 Density Matrix. CS Density Matrices, von Neumann Entropy 3/7/07 Spring 2007 Lecture 13. ψ = α x x. ρ = p i ψ i ψ i.

ON THE LOGARITHMIC INTEGRAL

Rademacher Complexity. Examples

Application of Generating Functions to the Theory of Success Runs

Lecture 9: Tolerant Testing

CS5620 Intro to Computer Graphics

arxiv:math/ v2 [math.gr] 26 Feb 2001

Transcription:

ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS A. S. GORDIENKO arxv:508.03764v3 [math.ra] 7 May 207 Abstract. At frst glace the oto of a algebra wth a geeralzed H-acto may appear too geeral, however t eables to work wth algebras edowed wth varous kds of addtoal structures e.g. Hopf comodule algebras, graded algebras, algebras wth a acto of a semgroup by atedomorphsms. Ths approach proves to be especally frutful the theory of polyomal dettes. We show that f A s a fte dmesoal ot ecessarly assocatve algebra smple wth respect to a geeralzed H-acto over a feld of characterstc 0, the there exsts lm c H A R + where c H A s the sequece of = codmesos of polyomal H-dettes of A. I partcular, f A s a fte dmesoal ot ecessarly group graded graded-smple algebra, the there exsts lm c gr A R + where c gr A = s the sequece of codmesos of graded polyomal dettes of A. I addto, we study the free-forgetful adjuctos correspodg to ot ecessarly group gradgs ad geeralzed H-actos.. Itroducto Study of polyomal dettes algebras s a mportat aspect of study of algebras themselves. It turs out that the asymptotc behavour of umerc characterstcs of polyomal dettes of a algebra s tghtly related to the structure of the algebra [6, 28]. I 980s, S. A. Amtsur cojectured that f a assocatve algebra A over a feld of characterstc 0 satsfes a otrval polyomal detty, the there exsts a teger PI-expoet lm c A where c A s the codmeso sequece of ordary polyomal dettes of A. See the defto of c A Remark 3. below. The orgal Amtsur cojecture was proved by A. Gambruo ad M. V. Zacev [5] 999. Its aalog for fte dmesoal Le algebras was proved by M. V. Zacev [28] 2002. I 20 A. Gambruo, I. P. Shestakov ad M. V. Zacev proved the aalog of the cojecture for fte dmesoal Jorda ad alteratve algebras [4]. I geeral, the aalog of Amtsur s cojecture for arbtrary o-assocatve algebras ad eve for fte dmesoal Le algebras s wrog. rst, the codmeso growth ca be overexpoetal [27]. Secod, the expoet of the codmeso growth ca be o-teger [2, 24, 25]. Thrd, 204 M. V. Zacev costructed a example of a fte dmesoal oassocatve algebra A for whch lm c A = ad lm c A > [29]. Algebras edowed wth a addtoal structure, e.g. a gradg, a acto of a group, a Le algebra or a Hopf algebra, fd ther applcatos may areas of mathematcs ad physcs. Gradgs o smple Le ad assocatve algebras have bee studed extesvely [3, 4, 5, 9]. or algebras wth a addtoal structure, t s atural to cosder the correspodg polyomal dettes. E. Aljadeff, A. Gambruo, ad D. La Matta [, 2, ] proved that f a assocatve PIalgebra s graded by a fte group, the the graded PI-expoet exsts ad t s a teger. The same s true for fte dmesoal assocatve ad Le algebras graded by arbtrary 200 Mathematcs Subject Classfcato. Prmary 7A30; Secodary 6R0, 6R50, 6T05, 7A36, 7A50, 8A40, 20C30. Key words ad phrases. Polyomal detty, H-module algebra, geeralzed H-acto, codmeso, PIexpoet, o-assocatve algebra, gradg, semgroup, free-forgetful adjucto. Supported by ods Weteschappeljk Oderzoek Vlaadere post doctoral fellowshp Belgum.

2 A. S. GORDIENKO groups [2, Theorem 3], [20, Theorem ],.e. the graded aalog of Amtsur s cojecture holds for group graded algebras. If H s a fte dmesoal semsmple Hopf algebra, the the codmesos of polyomal H-dettes of ay fte dmesoal H-module assocatve or Le algebra satsfy the aalog of Amtsur s cojecture too [9, Theorem 3], [20, Theorem 7]. If a algebra s graded by a semgroup, the ts graded PI-expoet ca be o-teger eve f the algebra tself s fte dmesoal ad assocatve [22, Theorem 5] see also [23]. I order to embrace the cases whe a algebra s graded by a semgroup or a fte group, or a group s actg o a algebra ot oly by automorphsms, but by at-automorphsms too, t s useful to cosder so-called geeralzed H-actos where H s a arbtrary assocatve algebra wth. See the defto of a geeralzed H-acto Secto 2. The example costructed [22, Theorem 5] shows that for geeralzed H-actos the expoet of the H-codmeso growth ca be o-teger eve for fte dmesoal H-smple assocatve algebras. Therefore, the atural questo arses as to whether H-PI-expoet exsts at least the case whe the algebra s H-smple. I 202 A. Gambruo ad M. V. Zacev proved the exstece of the ordary PI-expoet for ay smple algebra ot ecessarly assocatve [7, Theorem 3]. Recetly D. Repovš ad M. V. Zacev proved the exstece of the graded PI-expoet for fte dmesoal gradedsmple algebras graded by commutatve semgroups [26, Theorem 2]. I the preset artcle we combe A. Gambruo ad M. V. Zacev s techques wth the techques of geeralzed H-actos ad show that for ay fte dmesoal H-smple algebra wth a geeralzed H-acto there exsts a H-PI-expoet Theorem 6.. Ths eables to prove see Corollary 6.2 the exstece of the graded PI-expoet for ay fte dmesoal graded-smple algebra graded a very geeral sese ot ecessary by a semgroup, see the precse defto of such a gradg Example 2.3. Note that the oto of a H-smple algebra s much wder tha the oto of a smple algebra sce, e.g., a H-smple assocatve or Le algebra s ot eve ecessarly semsmple. Oe of the mportat steps the proof of Theorem 6. s Theorem 5.5 where we show that H-colegths of a fte dmesoal algebra wth a geeralzed H-acto are polyomally bouded see Corollary 5.6 for the aalog the graded case. Polyomal H-dettes ad graded polyomal dettes are elemets of the algebras {X H} ad {X T -gr } defed Sectos 3 ad 4, respectvely. I fact, f H s a arbtrary utal assocatve algebra ad T s a arbtrary set, the ether {X H} s a algebra wth a geeralzed H-acto, or {X T -gr } s a T -graded algebra whch, however, does ot prevet studyg polyomal H-dettes algebras wth geeralzed H-actos ad graded polyomal dettes T -graded algebras at all. I Secto 7 we show that f we elarge the categores of algebras a proper way, the both {X H} ad {X T -gr } wll correspod to free-forgetful adjuctos. 2. Algebras wth a geeralzed H-acto Let H be a arbtrary assocatve algebra wth over a feld. We say that a ot ecessarly assocatve algebra A s a algebra wth a geeralzed H-acto f A s a left H- module ad for every h H there exst some k N ad some h, h, h, h H, k, such that k hab = h ah b + h bh a for all a, b A. 2. = Equvaletly, there exst lear maps, Θ: H H H ot ecessarly coassocatve such that hab = h ah 2 b + h [] bh [2] a for all a, b A. Here we use the otato h = h h 2 ad Θh = h [] h [2].

ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS 3 Example 2.. A algebra A over a feld s a left H-module algebra for some Hopf algebra H f A s edowed wth a structure of a left H-module such that hab = h ah 2 b for all h H, a, b A. Here we use Sweedler s otato h = h h 2 where s the comultplcato H ad the sg of the sum s omtted. If A s a H-module algebra, the A s a algebra wth a geeralzed H-acto. Example 2.2. Recall that f T s a semgroup, the the semgroup algebra T over a feld s the vector space wth the formal bass t t T ad the multplcato duced by the oe T. Let A be a assocatve algebra wth a acto of a semgroup T by edomorphsms ad at-edomorphsms. The A s a algebra wth a geeralzed T -acto. Example 2.3. Let A = t T At be a graded algebra for some set of dces T,.e. for every s, t T there exsts r T such that A s A t A r. Deote ths gradg by Γ. Note that Γ defes o T a partal operato wth the doma T 0 := {s, t A s A t 0} by s t = r. Cosder the algebra T of fuctos from T to. The T acts o A aturally: ha = hta for all a A t. Let h t s := { f s=t, 0 f s t. If the support of Γ s fte, T 0 s fte too ad we have supp Γ := {t T A t 0} h r ab = s,t T 0, r=s t h s ah t b. 2.2 Sce the expresso s lear a ad b, t s suffcet to check t oly for homogeeous a, b. Note that h t t T s a bass T. Aga by the learty we get 2. for every h T, ad A s a algebra wth a geeralzed T -acto. Let A be a algebra wth a geeralzed H-acto for some assocatve algebra H wth over a feld. We say that a subspace V A s varat uder the H-acto f HV = V,.e. V s a H-submodule. If A 2 0 ad A has o o-trval two-sded H-varat deals, we say that A s H-smple. 3. Polyomal H-dettes Let be a feld ad let Y be a set. Deote by {Y } the absolutely free o-assocatve algebra o the set Y,.e. the algebra of all o-assocatve polyomals varables from Y ad coeffcets from the feld. The {Y } = = {Y } where {Y } s the lear spa of all moomals of total degree. Let H be a assocatve algebra over wth. Cosder the algebra {Y H} := H {Y } = wth the multplcato u w u 2 w 2 := u u 2 w w 2 for all u H j, u 2 H k, w {Y } j, w 2 {Y } k. We use the otato y h y h 2 2 y h := h h 2 h y y 2 y the arragemets of brackets o y j ad o y h j j are the same. Here h h 2 h H, y, y 2,..., y Y. I addto, we detfy Y wth the subset {y H y Y } {Y H}. Note that f γ β β Λ s a bass H, the {Y H} s somorphc to the absolutely free o-assocatve algebra over wth free formal geerators y γ β, β Λ, y Y. We call {Y H} the absolutely free o-assocatve algebra o Y wth symbols from H. Below we cosder {X H} where X := {x, x 2, x 3,... }. The elemets of {X H} are called H-polyomals.

4 A. S. GORDIENKO Let A be a algebra over wth a geeralzed H-acto. Ay map ψ : X A has the uque homomorphc exteso ψ : {X H} A such that ψx h = hψx for all N ad h H. A H-polyomal f {X H} s a polyomal H-detty of A f ψf = 0 for all maps ψ : X A. I other words, fx, x 2,..., x s a H-detty of A f ad oly f fa, a 2,..., a = 0 for ay a A. I ths case we wrte f 0. The set Id H A of all polyomal H-dettes of A s a deal of {X H}. We deote by W H the space of all multlear o-assocatve H-polyomals x,..., x, N,.e. W H = x h σ xh 2 σ2 xh σ h H, σ S {X H}. We cosder all possble arragemets of brackets. The the umber c H A := dm W H W H Id H A s called the th codmeso of polyomal H-dettes or the th H- codmeso of A. If f W H, the ts mage W H W H IdH A s deoted by f. The lmt PIexp H A := lm c H A, f t exsts, s called the H-PI-expoet of A. Remark 3.. Every algebra A s a H-module algebra for H =. I ths case the H-acto s trval ad we get ordary polyomal dettes ad ther codmesos c A. Oe of the ma tools the vestgato of polyomal dettes s provded by the represetato theory of symmetrc groups. The symmetrc group S acts o the space W H by permutg the varables. If the characterstc of the base feld s zero, W H IdH A the rreducble S -modules are descrbed by parttos λ = λ,..., λ s ad ther Youg dagrams D λ. The character χ H W A of the S -module H s called the th W H IdH A cocharacter of polyomal H-dettes of A. We ca rewrte t as a sum χ H A = λ ma, H, λχλ of rreducble characters χλ. The umber l H A := λ ma, H, λ s called the th colegth of polyomal H-dettes of A. Let e Tλ = a Tλ b Tλ ad e T λ = b Tλ a Tλ where a Tλ = π R Tλ π ad b Tλ = σ C Tλ sg σσ, be the Youg symmetrzers correspodg to a Youg tableau T λ. The Mλ = S e Tλ = S e T λ s a rreducble S -module correspodg to a partto λ. We refer the reader to [6, 8, 6] for a accout of S -represetatos ad ther applcatos to polyomal dettes. Remark 3.2. Note that here we do ot cosder ay H-acto o {Y H} tself. However { H} ca be vewed as a free fuctor f we elarge the category of algebras wth a geeralzed H-actos properly see Secto 7.2. Remark 3.3. Suppose A s assocatve. Oe ca aalogously costruct the free assocatve algebra X H o X wth symbols from H see [9, Secto 3.] ad treat polyomal H-dettes as elemets of a deal Id H assoca of X H. However, the map x h x h, N, h H, duces a somorphsm {X H}/ Id H assoca = X H / Id H A of algebras W ad somorphsms H P W H IdH A = H of S P -modules where N ad P H H IdH assoc A s the S -module of assocatve H-polyomals multlear x, x 2,..., x. I partcular, the deftos of codmesos ad cocharacters do ot deped of whether we use {X H} or X H. Aalogous remarks ca be made the case whe A s a Le algebra see [20, Secto.3]. Let T be a set ad let be a feld. 4. Graded polyomal dettes

ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS 5 Cosder the absolutely free o-assocatve algebra {X T -gr } o the set X T -gr := t T X t, X t = {x t, x t 2,... } We say that f s a graded polyomal detty of a T -graded algebra A = t T At ad wrte f 0 f fa t,..., a ts s = 0 for all a t j j A tj, j s. The set Id T -gr A of graded polyomal dettes of A s a deal of {X T -gr }. Example 4.. Cosder the multplcatve semgroup T = Z 2 = { 0, } ad the T -gradg UT 2 = UT 2 0 UT 2 o the algebra UT 2 of upper tragular 2 2 matrces 0 0 over a feld defed by UT 2 0 = ad UT 0 2 =. We have 0 0 ad x y Id T -gr UT 2. [x 0, y 0 ] := x 0 y 0 y 0 x 0 Id T -gr UT 2 Let W T -gr := x t σ xt 2 σ2 xt σ t T, σ S {X T -gr } wth all possble arragemets of brackets, N. The umber c T -gr A := dm W T -gr W T -gr Id T -gr A s called the th codmeso of graded polyomal dettes or the th graded codmeso of A. W The symmetrc group S acts o the space T -gr by permutg the varables: W T -gr Id T -gr A σx t x t := x t σ xt σ for N, σ S, k, k. The character χ T -gr A of the S -module W T -gr s called the th cocharacter of graded polyomal dettes of A. If char = 0, W T -gr Id T -gr A we ca rewrte t as a sum χ T -gr A = λ ma, T -gr, λχλ of rreducble characters χλ. The umber l T -gr A := λ ma, T -gr, λ s called the th colegth of graded polyomal dettes of A. The proposto below provdes a relato betwee the ordary ad the graded codmesos. Proposto 4.2. Let A be a T -graded algebra over a feld for some set T ot ecessarly fte. The c A c T -gr A. If T s fte, the c T -gr A T c A for all N. Proof. Let t,..., t T. Deote by W t,...,t the vector space of multlear o-assocatve polyomals x t,..., x t. The W T -gr = t,...,t W T t,...,t. Let f,..., f ca be a W bass where f W IdA W. The for every moomal w = x σ x σ wth some arragemet of brackets, σ S, there exst α w, such that x σ x σ c A = α w, f x,..., x IdA.

6 A. S. GORDIENKO or every t,..., t T we have ad x t σ xt σ ca = α σ, f x t,..., x t Id T -gr A W T -gr W T -gr Id T -gr A = f x t,..., x t c A, t,..., t T. Ths mples the upper boud. I order to get the lower boud, for a gve -tuple t,..., t T we cosder the map W ϕ t,...,t : W T -gr where ϕ W T -gr Id T -gr A t,...,t f = f x t,..., x t for f = fx,..., x P. Note that fx,..., x 0 s a ordary polyomal detty f ad oly f f x t,..., x t 0 s a graded polyomal detty for every t,..., t T. I other words, W IdA = ker ϕ t,...,t. Sce W s a fte dmesoal vector space, there exsts a fte t,...,t T subset Λ T such that W IdA = ker ϕ t,...,t. Cosder the dagoal embeddg t,...,t Λ W W T -gr = t,...,t T W t,...,t where the mage of fx,..., x W equals t,...,t f Λ x t,..., x t. The our W choce of Λ mples that the duced map W IdA s a embeddg ad the W T -gr Id T -gr A lower boud follows. The lmt PIexp T -gr A := lm A f t exsts s called the graded PI-expoet of c T -gr A. I Example 2.3 we have show that each T -graded algebra A wth a fte support s a algebra wth a geeralzed T -acto. The lemma below shows that stead of studyg graded codmesos ad cocharacters of A we ca study codmesos ad cocharacters of ts polyomal T -dettes. Lemma 4.3. Let Γ: A = t T At be a gradg o a algebra A over a feld by a set T such that supp Γ s fte. The c T -gr A = c T A ad χ T -gr A = χ T A for all N. If, addto, char = 0, we have l T -gr A = l T A. Proof. Let ξ : {X T } {X T -gr } be the algebra homomorphsm defed by ξx h = htx t, N, h T. Suppose t supp Γ f Id T A. Cosder a arbtrary homomorphsm ψ : {X T -gr } A such that ψx t A t for all t T ad N. The the algebra homomorphsm ψξ : {X T } A satsfes the codto ψξx h = t supp Γ htψ x t = h t supp Γ W T -gr ψ x t = h ψξx.

ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS 7 Thus ψξf = 0 ad ξf Id T -gr A. Hece ξ Id T A ξ : {X T }/ Id T A {X T -gr }/ Id T -gr A the homomorphsm duced by ξ. Let η : {X T -gr } {X T } be the algebra homomorphsm defed by η x t = x ht Id T -gr A. Deote by for all N ad t T. Cosder a arbtrary graded polyomal detty f Id T -gr A. Let ψ : {X T } A be a homomorphsm satsfyg the codto ψx h = hψx for every N ad h T. The for ay N ad g, t T we have { 0 h g ψη x t f g t, = h g ψx ht = h g h t ψx = ψη x t f g = t. Thus ψη A t. Therefore, ψηf = 0 ad ηid T -gr A Id T A. Deote by x t η : {X T -gr }/ Id T -gr A {X T }/ Id T A the duced homomorphsm. Below we use the otato f = f + Id T A {X T }/ Id T A for f {X T } ad f = f + Id T -gr A {X T -gr }/ Id T -gr A for f {X T -gr }. Observe that x h for every h T ad N. Hece η ξ x h = η t supp Γ t supp Γ htx ht ht x t Id T A = t supp Γ ht x ht for every h T ad N. Thus η ξ = d {X T }/ Id T sce {X T }/ Id T A s A geerated by x h where h T ad N. Moreover ξ η x t ht t = ξ x = x for every t supp Γ ad N. Therefore, ξ η = d {X T -gr }/ Id T -gr A ad {XT -gr }/ Id T -gr A = {X T }/ Id T A as algebras. The restrcto of ξ provdes the somorphsm of the S -modules W T W T T -gr ad W. Hece Id T A W T -gr Id T -gr A c T A = dm W T W T = x h T -gr Id T A = dm W W T -gr Id T -gr A = ct -gr A ad χ T -gr A = χ T A for all N. If, addto, char = 0, we have l T -gr A = l T A. Remark 4.4. Aga, aalogously to Remark 3.3, the case whe A s a assocatve or Le algebra, oe ca use, respectvely, free assocatve or Le graded algebras, however the graded codmesos wll be the same. 5. Upper boud for H-colegths Throughout Sectos 5 ad 6 we assume that the characterstc of the base feld s 0. If A s a ordary algebra, the the ordary polyomal dettes ad cocharacters of A ca be defed as H-dettes ad H-cocharacters for H = : W := W, χ A := χ A, ma, λ := ma,, λ, IdA := Id A.

8 A. S. GORDIENKO I [3, Theorem ], A. Gambruo, S. P. Mshcheko, ad M. V. Zacev proved that l A = λ ma, λ dm A + dm A2 +dm A 5. for all N. It turs out that for H-codmesos of fte dmesoal algebras wth a geeralzed H-acto we have the same upper boud Theorem 5.5 below. Let A be a fte dmesoal algebra wth a geeralzed H-acto for some assocatve algebra H wth. Lemma 5.. Let C be a utal commutatve assocatve algebra over. Defe o A C the structure of a algebra wth a geeralzed H-acto by ha c := ha c for a A ad c C. The Id H A C = Id H A. Proof. Sce C s utal, A C cotas a H-varat subalgebra somorphc to A ad therefore Id H A C Id H A. The proof of the coverse cluso s completely aalogous to the case of assocatve algebras wthout a acto [6, Lemma.4.2]. Let a,..., a s be a bass A. x a umber k N. Deote by [ξ j s, j k] the utal algebra of commutatve assocatve polyomals the varables ξ j wth coeffcets from. The algebra A [ξ j s, j k] s aga a algebra wth a geeralzed H-acto va ha f := ha f for a A ad f [ξ j s, j k]. Deote by Ãk the tersecto of all H-varat subalgebras of A [ξ j s, j k] cotag the elemets ξ j := s = a ξ j where j k. Lemma 5.2. Let f = fx,..., x k {X H}. The f Id H A f ad oly f fξ,..., ξ k = 0 Ãk. Proof. Lemma 5. mples Id H A = Id H A [ξ j s, j k] Id H Ãk. I partcular, f Id H A mples fξ,..., ξ k = 0. Coversely, suppose fξ,..., ξ k = 0. We clam that fb,..., b k = 0 for all b j A. Ideed, b j = s = α ja for some α j. Cosder the homomorphsm ϕ: A [ξ j s, j k] A of algebras ad H-modules defed by a ξ j α j a for all a A. The ad f Id H A. fb,..., b k = fϕξ,..., ϕξ k = ϕfξ,..., ξ k = 0 Lemma 5.3. Deote by R k be the lear spa Ãk of all products h ξ h ξ where h j H ad j k for j. The dm R k dm A + k dm A for all N. Proof. The space R k A [ξ j s, j k] s a subspace of the lear spa of elemets a l ξ s j j where l s = dm A, s j Z +, s j =. The umber of s, j k s, j k such elemets does ot exceed dm A + k dm A, ad we get the upper boud. Now we show that all rreducble S -submodules, that occur the decomposto of W H wth ozero multplctes, correspod to Youg dagrams of heght less tha or W H Id H A equal to dm A. Lemma 5.4. Let λ, N. Suppose λ dm A+ > 0. The ma, H, λ = 0.

ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS 9 Proof. It s suffcet to prove that e T λ f Id H A for all f W H. x some bass of A. Sce polyomals are multlear, t s suffcet to substtute oly bass elemets. Note that e T λ = b Tλ a Tλ where b Tλ alterates the varables of each colum of T λ. Hece f we make a substtuto ad e T λ f does ot vash, ths mples that dfferet bass elemets are substtuted for the varables of each colum. But f λ dm A+ > 0, the the legth of the frst colum s greater tha dm A. Therefore, e T λ f Id H A. Now we ca prove the ma result of ths secto. Theorem 5.5. Let A be a fte dmesoal algebra wth a geeralzed H-acto for some assocatve algebra H wth over a feld of characterstc 0. The for all N. l H A dm A + dm A2 +dm A Proof. x for each partto { λ a Youg tableux T λ of the shape λ. The for λ, µ etλ f λ = µ, we have e Tλ S e Tµ = See e.g. [0, Lemma 4.23 ad Exercse 4.24]. 0 f λ µ. Hece the multplcty ma, H, λ of Mλ = S e Tλ equals dm e W H IdH A T. λ W H IdH A I other words, ma, H, λ equals the maxmal umber m of H-polyomals f,..., f m W H such that g = α e Tλ f +... α m e Tλ f m Id H A for some α l always mples α =... = α m = 0. Deote by k j s the umber the, jth box of T λ. The for a fxed each e Tλ f l s symmetrc the varables x k,..., x kλ. Applyg the learzato procedure see e.g. [6, Secto.3], we obta that g s a polyomal H-detty f ad oly f g s a polyomal H-detty, where g s obtaed from g by the substtuto x kj x for all ad j. Deote the umber of rows T λ by k. By Lemma 5.4, we may assume that k dm A. The H-polyomal g depeds o the varables x,..., x k ad Lemma 5.2 mples that g Id H A f ad oly f gξ,..., ξ k = 0 Ãk. Note that gξ,..., ξ k = α u + + α m u m where u l s the value of e Tλ f l uder the substtuto x kj ξ for k ad j λ. Hece all u R k ad f m > dm A + k dm A, the by Lemma 5.3 for ay choce of f the elemets u are learly depedat ad gξ,..., ξ k = α u + + α m u m = 0 for some otrval α. I partcular, α e Tλ f +... α m e Tλ f m Id H A ad ma, H, λ < m. Hece for ay λ we have ma, H, λ dm A + k dm A dm A + dm A2. Sce the umber of all parttos λ of heght ot greater tha dm A does ot exceed dm A, we get the upper boud. By Lemma 4.3 above, f a fte dmesoal algebra A s graded by a set T, the the colegths l T -gr A of graded polyomal dettes of A are equal to the T -colegths l T A. Thus we mmedately get the followg corollary of Theorem 5.5: Corollary 5.6. Let A be a fte dmesoal algebra over a feld of characterstc 0 graded by a set T. The l T -gr A dm A + dm A2 +dm A for all N. 6. Exstece of the H-PI-expoet for H-smple algebras I Theorem 6. below we prove that for every fte dmesoal H-smple algebra there exsts a H-PI-expoet. Let Φx,..., x s = x x for x,..., x s > 0. Sce lm x +0 x x =, we may assume that xxs s Φ s a cotuous fucto for x,..., x s 0. W H W H

0 A. S. GORDIENKO Theorem 6.. Let A be a fte dmesoal H-smple algebra for some assocatve algebra H wth over a feld of characterstc 0, dm A = s. Let λ da := lm Φ,..., λ s. The there exsts max λ, ma,h,λ 0 PIexp H A := lm c H A = da. Theorem 6. wll be proved below. Aga, combg Theorem 6. wth Lemma 4.3 we get: Corollary 6.2. Let A be a fte dmesoal algebra over a feld of characterstc 0 graded by a set T such that A does ot have o-trval graded deals. The there exsts PIexp T -gr A = lm A. c T -gr rst we prove that the H-codmeso sequece s o-decreasg for ay H-smple algebra. Lemma 6.3. Let A be a H-smple algebra for some assocatve algebra H wth over ay feld. The c H A c H +A for all N. Proof. x some N. Let f x,..., x,..., f c H Ax,..., x be such H- polyomals that ther mages form a bass W H. W H Id H A Suppose the H-polyomals f x,..., x x +,..., f c H Ax,..., x x + are learly depedet modulo Id H A. The there exst α,..., α c H A such that α f a,..., a a + + + α c H Af c H Aa,..., a a + = 0 for all a A. Sce A s H-smple, AA = A, ad α f a,..., a + + α c H Af c H Aa,..., a = 0 for all a A. However, f x,..., x,..., f c H Ax,..., x are learly depedet modulo Id H A. Hece α = = α c H A = 0, f x,..., x x +,..., f c H Ax,..., x x + are learly depedet modulo Id H A, ad c H A c H +A. Next we prove the upper boud. Theorem 6.4. Let A be a fte dmesoal algebra wth a geeralzed H-acto for some assocatve algebra H wth over a feld of characterstc 0, dm A = s. The there exst C > 0 ad r R such that c H A C r max λ, ma,h,λ 0 λ Φ,..., λ s for all N. Proof. Let λ such that ma, H, λ 0. By the hook formula, dm Mλ =!,j h j where h j s the legth of the hook wth the edge, j the Youg dagram D λ. Hece dm Mλ! λ! λ s!. By the Strlg formula, for all suffcetly large we have e dm Mλ C r λ e λ λs e λs = C r C r λ λ Φ λs λ s λ,..., λ s 6.

ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS for some C > 0 ad r R that do ot deped o λ. Together wth Theorem 5.5 ths yelds the theorem. Throughout the rest of the secto we work uder the assumptos of Theorem 6.. Suppose λ, µ m, S f = Mλ, ad Sm f2 = Mµ for some m, N, f W H ad f 2 Wm H. The the mage of the polyomal f x,..., x f 2 x +,..., x m+ geerates a S m+ -submodule of W H m+ W H m+ IdH A whch s a homomorphc mage of Mλ Mµ := Mλ Mµ S m+ := S m+ S S m Mλ Mµ. By the Lttlewood Rchardso rule, all rreducble compoets the decomposto of Mλ Mµ correspod to Youg dagrams D ν that are obtaed from D λ+µ by pushg some boxes dow. By our assumptos, the heght of D ν caot be greater tha s = dm A. Aother remark s that, the process of pushg boxes dow, the value of Φ s o-decreasg sce the fucto x x ξ x ξ x s creasg as x 0; ξ 2 for fxed 0 < ξ. Lemma 6.5. There exsts a costat N N such that for every ε > 0 there exst a umber ñ N, atural umbers < 2 < 3 <... such that + N + ñ, ad parttos λ, m A, H, λ 0 such that Φ λ,..., λ s da ε for all N. Proof. Note that sce A s H-smple, for every a, b A, a 0, b 0, there exst some a,..., a m, ã,..., ã m, b,..., b k, b,..., b k A, k, k, m, m Z +, h, h 2 H, such that a a m a hã ã m b b k b h 2 b b k 0 for some arragemets of brackets o the multplers. Sce A s fte dmesoal, we ca choose such elemets for each par a, b of bass elemets ad deote by N the maxmal k + k + m + m amog all pars of bass elemets. Thus we may assume that for arbtary a, b A, a 0, b 0, we have k + k + m + m N. µ Now we choose q N such that Φ,..., µs da ε/2 ad ma, H, µ 0 for some q q µ q. Recall that Φ s cotuous o [0; ] s ad therefore uformly cotuous o [0; ] s sce [0; ] s s a compact. Sce we ca take q arbtrarly large, we may assume also that µ + j= Φ d j q + µ 2, q + µ s,..., q + = µ q Φ + + j= d j q j= d j q j= d j, + µ 2 q j= d j q j= d j,..., + µ s q j= d j q j= d j da ε 6.2 for all N ad all 0 d N. Choose f Wq H \ Id H A such that S f = Mµ. Remarks made the begg of the proof mply that for some arragemets of brackets, some h, h 2 H, ad some k, k, m, m 0 such that d := k + k + m + m N, we have h f := y y k f h x,..., x q ỹ ỹ k z z m f 2 x,..., x q z z m / Id H A. Cosder the S q+k+ k-submodule M of W H q+k+ k W H q+k+ k IdH A y y k f h x,..., x q ỹ ỹ k. The M s a homomorphc mage of Mµ S k+ k := Mµ S k+ k S q+k+ k. geerated by the mage of

2 A. S. GORDIENKO Sce all parttos of k + k are obtaed from the row of legth k + k by pushg some boxes dow, by the Lttlewood Rchardso rule, all the parttos the decomposto of M are obtaed from µ +k + k, µ 2,..., µ s by pushg some boxes dow. The same argumets h ca be appled to z z m f 2 x,..., x q z z m. Let := 2q + d ad let λ be oe of the parttos correspodg to the rreducble compoets the decomposto of S f. remark before the lemma, we have Φ λ The by 6.2, the remarks above ad the,..., λ s s da ε. Aga, f 2 := y y k f h h x,..., x q ỹ ỹ k z z m f 2 x,..., x q z z m / Id H A for some arragemets of brackets, some h, h 2 H, ad some k, k, m, m 0, d 2 := k + k + m + m N maybe dfferet from those for f. Aga, we defe 2 := 3q + d + d 2. Deote by λ 2 oe of the parttos correspodg to the rreducble compoets the decomposto of S 2 f2. We cotue ths procedure ad prove the lemma. Proof of Theorem 6.. x some ε > 0. Cosder N ad λ from Lemma 6.5. We have c H A dm Mλ =!,j h j C r λ λ λ λ s!! + s! λ s + s! r s! C e λ λ λ s e λ ss λ! λ s = C r Φ λ s e λ,..., λ s for some C > 0 ad r 0 whch do ot deped o. Let. The < + for some N. Takg to accout Lemma 6.3 ad the fact that Φx, x 2,..., x s as 0 x,..., x s, we get c H A c H A C + N + ñ r Φ λ N ñ,..., λ s C + N + ñ r N ñ da ε Hece lm c H A da ε. Sce ε > 0 s arbtary, we get lm c H A da. Now Theorem 6.4 yelds lm c H A = da.. 7. ree-forgetful adjuctos correspodg to gradgs ad geeralzed H-actos I ths secto we aalyze the free costructos from Sectos 3 ad 4 from the categorcal pot of vew. Here we cosder the categores of ot ecessarly assocatve algebras, though the aalogous adjuctos, of course, exst the case of assocatve ad Le algebras too.

ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS 3 7.. Gradgs. Let T be a set ad let be a feld. Deote by Vect T -gr the category where the objects are all T -graded vector spaces over,.e. vector spaces V wth a fxed decomposto V = t T V t, ad the sets Vect T -gr V, W of morphsms betwee V = t T V t ad W = t T W t cosst of all lear maps ϕ: V W such that ϕ V t W t for all t T. Deote by NAAlg T -pgr ot ecessarly assocatve partally T -graded algebras the category where the objects are all ot ecessarly assocatve algebras A over wth fxed subspaces t T At A the cluso ca be proper graded by T ad f A t T At ad B t T Bt are two such objects the, by the defto, the set NAAlg T -pgr A, B of morphsms A B cossts of all algebra homomorphsms ϕ: A B such that ϕa t B t for every t T. Deote by U : NAAlg T -pgr Vect T -gr the forgetful fuctor that assgs to each object A t T At the T -graded vector space t T At ad restrcts homomorphsms to the fxed subspaces. Let V = t T V t be a T -graded space. Let Y t be bases V t. Deote by KV the absolutely free o-assocatve algebra {Y } o the bass Y = t T Y t. I the bass varat form, KV = = all possble arragemets of brackets V V }{{} ad the multplcato s defed by vw = v w the arragemet of brackets both sdes s the same. We detfy V wth the correspodg subspace KV ad treat KV V = t T V t as a object of NAAlg T -pgr. or each ϕ Vect T -gr V, W there exsts a uque algebra homomorphsm Kϕ: KV KW such that Kϕ V = ϕ. Proposto U : NAAlg T -pgr 7.. The fuctor K : Vect T -gr NAAlg T -pgr Vect T -gr. s the left adjot to Proof. If V Vect T -gr ad A NAAlg T -pgr, the each morphsm KV A s uquely determed by ts restrcto to V. Hece we obta a atural bjecto NAAlg T -pgr KV, A Vect T -gr V, UA. Suppose ow that V = t T V t where V t are the vector spaces wth the formal bases. The KV ca be detfed wth {X T -gr } from Secto 4. Every T -graded algebra x t N A ca be treated as a object of NAAlg T -pgr where the subspace t T At cocdes wth A. I ths case we have a bjecto NAAlg T -pgr KV, A Vect T -gr V, UA whch meas that every map ψ : X T -gr A, such that ψ X t A t for each t T, ca be uquely exteded to a algebra homomorphsm ψ : KV A such that ψ X t A t. 7.2. Geeralzed H-actos. Let H be a utal assocatve algebra over a feld. Deote by H M the category of left H-modules ad by H NAAlgSubMod ot ecessarly assocatve algebras wth subspaces that are H-modules the category where the objects are all ot ecessarly assocatve algebras A over wth fxed subspaces A 0 A the cluso ca be proper, whch are left H-modules, ad for objects A A 0 ad B B 0 the set HNAAlgSubModA, B of morphsms cossts of all algebra homomorphsms ϕ: A B where ϕa 0 B 0 ad ϕ A0 s a homomorphsm of H-modules. Here we aga have a obvous forgetful fuctor U : H NAAlgSubMod H M where UA := A 0 ad Uϕ := ϕ A0.

4 A. S. GORDIENKO Let K be a fuctor H M H NAAlgSubMod that assgs to each left H-module V the absolutely free assocatve algebra KV := {Y } where Y s a bass V. I other words, KV = V } {{ V } = all possble arragemets of brackets ad the multplcato s defed by vw = v w the arragemet of brackets both sdes s the same. We detfy V wth the correspodg subspace KV ad treat KV V as a object of H NAAlgSubMod. or each ϕ Vect T -gr V, W there exsts a uque algebra homomorphsm Kϕ: KV KW such that Kϕ V = ϕ. Proposto 7.2. The fuctor K : H M H NAAlgSubMod s the left adjot to U : H NAAlgSubMod H M. Proof. If V H M ad A H NAAlgSubMod, the each morphsm KV A s uquely determed by ts restrcto to V. Hece we obta a atural bjecto HNAAlgSubModKV, A H MV, UA. Suppose ow that V s the free left H-module wth a formal H-bass Y. The KV ca be detfed wth {Y H} from Secto 3. Every algebra A wth a geeralzed H-acto ca be treated as a object of H NAAlgSubMod where the H-module A 0 cocdes wth A. I ths case we have a bjecto H NAAlgSubModKV, A H MV, UA whch meas that every map ψ : Y A ca be uquely exteded to a algebra homomorphsm ψ : KV A such that ψ hy = h ψ y for every y Y. Refereces [] Aljadeff, E., Gambruo, A., Multalteratg graded polyomals ad growth of polyomal dettes, Proc. Amer. Math. Soc., 4:9 203, 3055 3065. [2] Aljadeff, E., Gambruo, A., La Matta, D., Graded polyomal dettes ad expoetal growth, J. ree agew. Math., 650 20, 83 00. [3] Bahtur, Yu. A., Zacev, M. V. Group gradgs o matrx algebras. Caad. Math. Bull., 45:4 2002, 499 508. [4] Bahtur, Yu. A., Sehgal, S. K., Zacev, M. V. Group gradgs o assocatve algebras. J. Algebra, 24 200, 677 698. [5] Bahtur, Yu. A., Zacev, M. V., Sehgal, S. K. te-dmesoal smple graded algebras. Sbork: Mathematcs, 99:7 2008, 965 983. [6] Bakhtur, Yu. A. Idetcal relatos Le algebras. VNU Scece Press, Utrecht, 987. [7] Berele, A. Cocharacter sequeces for algebras wth Hopf algebra actos. J. Algebra, 85 996, 869 885. [8] Dresky, V. S. ree algebras ad PI-algebras: graduate course algebra. Sgapore, Sprger-Verlag, 2000. [9] Elduque, A., Kochetov, M. V. Gradgs o smple Le algebras. AMS Mathematcal Surveys ad Moographs Vol. 89, Provdece, R.I., 203. [0] ulto, W., Harrs, J. Represetato theory: a frst course. New York, Sprger-Verlag, 99. [] Gambruo, A., La Matta, D., Graded polyomal dettes ad codmesos: computg the expoetal growth, Adv. Math., 225 200, 859 88. [2] Gambruo, A., Mshcheko, S. P., Zacev, M. V. Codmesos of algebras ad growth fuctos. Adv. Math., 27 2008, 027 052. [3] Gambruo, A., Mshcheko, S. P., Zacev, M. V. Algebras wth termedate growth of the codmesos. Adv. Appl. Math., 37 2006 360 377. [4] Gambruo, A., Shestakov, I.P., Zacev, M. V. te-dmesoal o-assocatve algebras ad codmeso growth. Adv. Appl. Math., 47 20, 25 39. [5] Gambruo, A., Zacev, M. V. Expoetal codmeso growth of P.I. algebras: a exact estmate, Adv. Math., 42 999, 22 243.

ON H-SIMPLE NOT NECESSARILY ASSOCIATIVE ALGEBRAS 5 [6] Gambruo, A., Zacev, M. V. Polyomal dettes ad asymptotc methods. AMS Mathematcal Surveys ad Moographs 22, Provdece, R.I., 2005. [7] Gambruo, A., Zacev, M. V. O codmeso growth of fte-dmesoal Le superalgebras. J. Lodo Math. Soc., 85:2 202, 534 548. [8] Gordeko, A. S. Graded polyomal dettes, group actos, ad expoetal growth of Le algebras. J. Algebra, 367 202, 26 53. [9] Gordeko, A. S. Amtsur s cojecture for assocatve algebras wth a geeralzed Hopf acto. J. Pure ad Appl. Alg., 27:8 203, 395 4. [20] Gordeko, A. S. Amtsur s cojecture for polyomal H-dettes of H-module Le algebras. Tra. Amer. Math. Soc., 367: 205, 33 354. [2] Gordeko, A. S. Co-stablty of radcals ad ts applcatos to PI-theory. Algebra Colloqum, 23:3 206, 48 492. [22] Gordeko, A. S. Semgroup graded algebras ad codmeso growth of graded polyomal dettes. J. Algebra, 438 205, 235 259. [23] Gordeko, A. S., Jasses, G., Jespers, E. Semgroup graded algebras ad graded PI-expoet. Israel J. Math. To appear. [24] Mshcheko, S. P., Zacev M. V. A example of a varety of Le algebras wth a fractoal expoet. J. Math. Sc. New York, 93:6 999, 977 982. [25] Mshcheko, S.P., Verevk, A.B., Zatsev, M.V. A suffcet codto for cocdece of lower ad upper expoets of the varety of lear algebras. Mosc. Uv. Math. Bull., 66:2 20, 86 89. [26] Repovš, D., Zacev, M. V. Idettes of graded smple algebras. Lear ad Multlear Algebra, 65: 207, 44 57. [27] Volcheko, I. B. Varetes of Le algebras wth detty [[X, X 2, X 3 ], [X 4, X 5, X 6 ]] = 0 over a feld of characterstc zero. Sbrsk. Mat. Zh., 25:3 984, 40 54. I Russa. [28] Zatsev, M. V. Itegralty of expoets of growth of dettes of fte-dmesoal Le algebras. Izv. Math., 66 2002, 463 487. [29] Zacev, M. V. O exstece of PI-expoets of codmeso growth. Electro. Res. Aouc. Math. Sc., 2 204, 3 9. Vrje Uverstet Brussel, Belgum E-mal address: alexey.gordeko@vub.ac.be