EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Similar documents
The Devices. Devices

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

MOSFET: Introduction

EE 560 MOS TRANSISTOR THEORY

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Device Models (PN Diode, MOSFET )

Lecture 4: CMOS Transistor Theory

MOS Transistor I-V Characteristics and Parasitics

N Channel MOSFET level 3

Device Models (PN Diode, MOSFET )

Lecture 3: CMOS Transistor Theory

VLSI Design and Simulation

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

The Devices: MOS Transistors

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

MOS Transistor Properties Review

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

EE105 - Fall 2006 Microelectronic Devices and Circuits

Chapter 4 Field-Effect Transistors

EE5311- Digital IC Design

Lecture 5: CMOS Transistor Theory

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

ESE 570 MOS TRANSISTOR THEORY Part 2

VLSI Design The MOS Transistor

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

MOS Transistor Theory

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE105 - Fall 2005 Microelectronic Devices and Circuits

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

MOS Transistor Theory

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

ECE321 Electronics I

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

MOSFET Capacitance Model

Practice 3: Semiconductors

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Integrated Circuits & Systems

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

The Devices. Jan M. Rabaey

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Microelectronics Part 1: Main CMOS circuits design rules

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture 12: MOS Capacitors, transistors. Context

ECE 497 JS Lecture - 12 Device Technologies

Lecture 11: MOS Transistor

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Lecture 12: MOSFET Devices

ELEC 3908, Physical Electronics, Lecture 27. MOSFET Scaling and Velocity Saturation

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

The Physical Structure (NMOS)

6.012 Electronic Devices and Circuits Spring 2005

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ENEE 359a Digital VLSI Design

FIELD-EFFECT TRANSISTORS

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE 342 Electronic Circuits. 3. MOS Transistors

CMOS Digital Integrated Circuits Analysis and Design

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

Introduction and Background

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

ECE 546 Lecture 10 MOS Transistors

Nanoscale CMOS Design Issues

Chapter 5 MOSFET Theory for Submicron Technology

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Class 05: Device Physics II

Section 12: Intro to Devices

ECE-305: Fall 2017 MOS Capacitors and Transistors

Non Ideal Transistor Behavior

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Conduction in Semiconductors -Review

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOSFET Physics: The Long Channel Approximation

Chapter 2 MOS Transistor theory

Topics to be Covered. capacitance inductance transmission lines

Microelectronics Main CMOS design rules & basic circuits

Chapter 13 Small-Signal Modeling and Linear Amplification

Integrated Circuits & Systems

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

EECS 141: FALL 05 MIDTERM 1

Transcription:

1 EE 560 MOS TRANSISTOR THEORY PART

nmos TRANSISTOR IN LINEAR REGION V S = 0 V G > V T0 channel SiO V D = small 4 C GC C BC substrate depletion region or bulk B p nmos TRANSISTOR AT EDGE OF SATURATION REGION V S = 0 channel V G > V T0 SiO V D = V DSAT C GC C BC substrate or bulk B p depletion region pinch-off point

5 nmos TRANSISTOR IN SATURATION REGION V S = 0 channel V G > V T0 SIO V D > V DSAT C GC substrate or bulk B p C BC depletion region pinch-off point

MOSFET CURRENT - VOLTAGE CHARACTERISTICS V S = V B = 0 V G > V T0 6 V DS C GC substrate or bulk B p x C BC y y = 0 y = L y = 0 y Channel length = L y = L Channel width = Source side inversion layer (channel) dy Drain side

MOSFET CURRENT - VOLTAGE CHARACTERISTICS V S = V B = 0 V G > V T0 7 V DS C GC substrate or bulk B Boundary conditions: V CS (y = 0) = V S = 0 V CS (y = L) = V DS p x y = 0 C BC y V CS (y) y = L Assumptions: V T0 (y) = V T0 > V T0 Mobile charge in channel: V GD = - V DS > V T0 Q I (y) = C ox [ V CS (y) V T 0 ] dr = dy 1 µ n Q I (y) µ n = electron mobility = cm /Vsec [µ > U0 in SPICE]

MOSFET CURRENT - VOLTAGE CHARACTERISTICS Boundary conditions: Q I (y) = C ox [ V CS (y) V T 0 ] V CS (y = 0) = V S = 0 V CS (y = L) = V DS dr = dy 1 µ n Q I (y) 8 dv CS = dr = L dy = µ n 0 µ n Q I (y) dy Integrating along the channel 0 < y < L and 0 < V CS < V DS : i.e. V DS Q I (y) 0 dv CS = µ n C ox [( V T 0 )V DS V DS / ] = µ C n ox L [(V V )V V GS T 0 DS DS]

MOSFET CURRENT - VOLTAGE CHARACTERISTICS 9 = µ C n ox = k' L [(V V )V V GS T 0 DS DS] L [( V T 0 )V DS V DS = k [(V V )V V GS T 0 DS DS] ] k' = µ n C ox [k' -> KP in SPICE] k = k' L

MOSFET CURRENT - VOLTAGE CHARACTERISTICS 30 EXAMPLE 3.4 For an n-mos transistor with µ n = 600 cm /Vsec, C ox = 7 x 10-8 F/cm = 0 µm, L = µm, V T0 = 1.0 V, plot the relationship between and V DS,. = k [(V V )V V GS T 0 DS DS] where k = µ n C ox L F = C/V k = µ n C ox L = (600 cm /Vsec)(7x10 8 F/cm ) 0µ m = 0.4 ma/v µ m = 0.1mA/V [( 1.0) V DS V DS ] 4.0.0 0 LINEAR OR TRIODE REGION (ma) V DS = - V T0 VDS V T0 = 5V Assumptions: = 4V > V T0 V = 3V GD = V DS > V T0 V DS (V) 1.0 3.0 5.0

MOSFET CURRENT - VOLTAGE CHARACTERISTICS V DS - V T0 = V DSAT SATURATION REGION 31 = µ n C ox = µ n C ox L [(V V )V V GS T 0 DS DS] @VDS = V = V - V DSAT GS T0 L [( V T 0 )( V T 0 ) ( V T 0 ) ] (sat) = µ n C ox L ( V T 0 ) 4.0 V (ma) DS = - V T0 LINEAR SAT.0 = 5V = 4V 0 = 3V V DS (V) 1.0 3.0 5.0 (sat) V T0

MOSFET CURRENT - VOLTAGE CHARACTERISTICS CHANNEL LENGTH MODULATION Boundary conditions: V CS (y = 0) = V S = 0 V CS (y = L) = V DS Q I (y) = C ox [ V CS (y) V T 0 ] Q I (y = 0) = C ox [ V T 0 ] Q 1 (y = L) = C ox [ V DS V T 0 ] 3 V S = 0 V G > V T0 = 0 @ V DS = V DSAT V D > V DSAT substrate or bulk B p C GC C BC L' L L L' = L L effective channel length V CS (y = L') = V DSAT

MOSFET CURRENT - VOLTAGE CHARACTERISTICS V S = 0 V G > V T0 V D > V DSAT 33 substrate or bulk B p C GC C BC L' L L (sat) = µ n C ox where L L' (V T 0 ) = µ C n ox V DS V DSAT L(1 L (V V ) L ) GS T 0 emperical relation: 1 1 L = 1 + λv DS [λ -> LAMBDA in SPICE] L λ = channel length modulation coefficent (V -1 )

MOSFET CURRENT - VOLTAGE CHARACTERISTICS L' (V T 0 ) = µ C n ox (sat) = µ n C ox 1 1 L L = 1 + λ V DS (sat) = µ n C ox L(1 L (V V ) L ) GS T 0 L ( V T 0 ) (1 + λ V DS ) 34 4.0.0 0 V (ma) DS = - V T0 λ 0 λ 0 λ 0 1.0 3.0 5.0 = 5V = 4V = 3V V DS (V)

MOSFET CURRENT - VOLTAGE CHARACTERISTICS 35 SUBSTRATE BIAS EFFECT = f(, V DS, V SB )

MOSFET CURRENT - VOLTAGE CHARACTERISTICS n-mos G + n-mos = 0 D + V DS - + S for V T S - + - + - B G - - B V SB p-mos + D V SB V DS 36 > V T, V DS < - V T > V T, V DS > - V T p-mos = 0 for V T < V T, V DS > - V T < V T, V DS < - V T

MOSFET CURRENT - VOLTAGE CHARACTERISTICS MEASUREMENT OF PARAMETERS (V T0, γ, λ, k n, k p ) k n = µ n C ox k L p = µ p C ox L 37 D G S B + V SB + V DS = (sat) = k n ( V T 0 ) k n (sat) = (V V ) GS T 0 V SB = 0 V SB > 0 Gamma V T0 V T1

MOSFET CURRENT - VOLTAGE CHARACTERISTICS 38 Lambda = V T0 + 1+ G D S B + V DS > - V T0 1 V BS = 0 = V T0 + 1 (sat) = k n ( V T 0 ) (1+ λ V DS ) = V T0 + 1 V DS1 V DS V DS 1 = 1+ λv DS 1 + λ V DS1

EFFECTIVE CHANNEL LENGTH AND IDTH B S C GC C GC G D 39 substrate or pbulk B n + C BC BC n + n + n + p LD LD L L eff L M SPICE Parameters L eff = L M - LD - DL LD -> under diffusion DL -> error in photolith and etch eff = M - D SPICE Parameters D -> error in photolith and etch

MOSFET - SCALING SCALING -> refers to ordered reduction in dimensions of the MOSFET and other VLSI features Reduce Size of VLSI chips. Change operational charateristics of MOSFETs and parasitics. Phyiscal limits restrict degree of scaling that can be achieved. SCALING FACTOR = α > 1 --> S First-order "constant field" MOS scaling theory: The electric field E is kept constant, and the scaled device is obtained by applying a dimensionless scale-factor α to (such that E is unchanged): a. All dimensions, including those vertical to the surface (1/α) b. device voltages (1/α) c. the concentration densities (α). (1/α)/(1/α) = 1 <=> α(1/α) = 1 40

MOSFET - SCALING Alternative Scaling Rules: Constant Voltage Scaling, i.e. V DD is kept constant, while the process is scaled. a. All dimensions, including those vertical to the surface (1/α) b. device voltages (1) c. the concentration densities (α ). 1/(1/α) = α <=> α (1/α) = α 41 Lateral Scaling: only the gate length is scaled L = 1/α (gate-shrink). Year 1980 1983 1985 1987 1989 1991 1993 1995 Feature Size(µm) 5.0 3.5.5 1.75 1.5 1.0 0.8 0.6 Historical reduction in min feature size for typical CMOS Process

Influence of Scaling on MOS Device Performance PARAMETER SCALING MODEL Constant Field Constant Voltage Lateral 4 Length (L) 1/α 1/α 1/α idth () 1/α 1/α 1 Supply Voltage (V) 1/α 1 1 Gate Oxide thickness (t ox ) 1/α 1/α 1 Junction depth (X j ) 1/α 1/α 1 Substrate Doping (N A ) α α 1 Current (I) - (/L) (1/t ox )V 1/α α α Power Dissipation (P) - IV 1/α α α Electric Field Across Gate Oxide - V/t ox 1 α 1 Load Capacitance (C) - L (1/t ox ) 1/α 1/α 1/α Gate Delay (T) - VC/I 1/α 1/α 1/α

p B MOSFET CAPACITANCES S n + C GC C GC C BC BC n + n + G D n + 43 substrate or p bulk B LD LD L eff substrate or bulk B p L M L D L D n + n + Y

MOSFET CAPACITANCES 44 C gb D C gd C db G MOSFET (DC MODEL) B C gs C sb S C gd, C gs, C gb -> Oxide Capacitances C db, C sb -> Junction Capacitances

MOSFET CAPACITANCES 45 OXIDE Capacitances a. Overlap Caps C ox = ε ox t ox C GS (overlap) = C ox L D C GD (overlap) = C ox L D b. Gate - Channel MOSFET - Cut-off Region ALL MOSFET OPERATION REGIONS C gb = C ox L C gs = C gd = 0 p

MOSFET CAPACITANCES b. Gate - Channel MOSFET - Linear Region 46 C gb = 0 p C gs = (1/) C ox L C gd = (1/) C ox L p C gb = 0 C gs = (/3) C ox L C gd = 0

Capacitance Cut-off Linear Saturation 47 1 /3 1/ C gb (total) C gd (total) C gs (total) (C/C ox L) Cut-off C gb C ox L 0 0 0 + C ox L D 0 +C ox L D Saturation C gs 0.5C ox L + C ox L D 0.5C ox L + C ox L D Linear C gd 0 + C ox L D (/3)C L ox + C ox L D Gate -to Channel/Bulk Cap Contribution V T V T + V DS

JUNCTION Capacitances -> C db, C sb 48 x j p x d Y x j 1 5 3 n + Channel n + 4 Source Drain

JUNCTION Capacitances -> C db, C sb Y 49 1 n + Channel n + 4 [x j -> XJ in SPICE] Source Drain Junction Area Type 1 3 4 5 x j Y x j x j Y x j Y n + /p n + /p + n + /p + n + /p + n + /p 5 3 x j p - Substrate -> N A p + - Channel-stop -> 10N A

JUNCTION Capacitances -> C db, C sb 50 n +, p junctions p N A x d N D x j x d = ε Si 1 + 1 q N A N D (φ V) V = Ext bias --> V DB, V SB 0 φ 0 = kt q ln N N built-in junction A D n i potential [φ Depletion-region charge 0 -> PB in SPICE] Q j = Aq N N A D N A + N D x = A ε q N A N D d Si N A + N D (φ V) 0 C j = dq j dv = A ε Si q N A N D N A + N D 1 φ 0 V = AC j 0 1 V φ 0 1/ A = junction area [AS, AD -> Source, Drain Areas in SPICE]

C j = dq j dv = A ε q 51 Si N A N D 1 N A + N D φ 0 V = AC j 0 1 V 1/ (F) φ 0 m = grading coefficent C (F/cm j0 = ε q Si N A N D ) N m = 1/ for abrubt junction A + N 1 D φ 0 [m = MJ in SPICE] C j = C j0 when V = 0 [C j0 -> CJ in SPICE] [φ 0 -> PB in SPICE] EQUIVALENT LARGE SIGNAL CAPACTIANCE = AC j 0 φ 0 ( 1) 1 V (V V 1 )(1 m) φ 0 1 m 1 V 1 φ 0 1 m m = 1/ C eq = AC j0 K eq 0 < K eq < 1 --> Voltage Equiv Factor

n +, p + junctions (Sidewalls) 5 C j0sw = ε Si q N A (sw)n D N A (sw) + N D 1 φ 0sw (F/cm ) Since all sidewalls have depth = x j : [x j -> XJ in SPICE] C jsw = C j0sw x j (F/cm) [C jsw -> CJS in SPICE] EQUIVALENT LARGE SIGNAL CAPACTIANCE C eq (sw) = P C jsw K eq (sw) P = sidewall perimeter [PS, PD -> Source, Drain Perimeters in SPICE] K eq (sw) = φ 0sw (V V 1 ) 1 V φ 0sw 1/ 1 V 1 φ 0sw [m(sw) -> MJS in SPICE] 1/ m(sw) = 1/

EXAMPLE 3-8 Determine the total junction capacitance at the drain, i.e. C db, for the n-channel enhancement MOSFET in Fig. 1. The process parameters are Substrate doping N A = x 10 15 cm -3 Source/drain (n+) doping N D = 10 0 cm -3 Sidewall (p+) doping N A (sw) = 4 x 10 16 cm -3 Gate oxide thickness t ox = 45 nm Junction depth x j = 1.0 µm 10 µm G 53 5 µm D S n + n + Figure 1 µm Source, Drain are surrounded by p + channel-stop. The substrate is biased at 0V. Assume the drain voltage range is 0.5 V to 5.0 V.

54 where C j0 = ε Si q N A N D N A + N 1 D φ 0 C j0sw = ε Si q N A (sw)n D N A (sw) + N D 1 φ 0sw

5 µm 10 µm D S n + n + Figure 1 µm φ 0, φ 0sw φ 0 = kt q ln N N A D n i = 0.06Vln ( x1015 )10 0.1x10 0 G N A = x 10 15 cm -3 N D = 10 0 cm -3 N A (sw) = 4 x 10 16 cm -3 t ox = 45 nm x j = 1.0 µm = 0.896V φ 0sw = kt q ln N (sw)n A D n i = 0.06Vln (4x1016 )10 0.1x10 0 = 0.975V 55 C j0, C j0sw C j0 = ε Si q N A N D N A + N D 1 φ 0 = (1.04 x10 1 F/cm)(1.6x10 19 C) = 1.35x10 8 F/cm ( x10 15 )10 0 x10 15 +10 0 1 0.896V

C j0sw = ε Si q N A (sw)n D N A (sw) + N D 1 φ 0sw 56 = (1.04 x10 1 F/cm)(1.6x10 19 C) = 5.83x10 8 F/cm (4x10 16 )10 0 4x10 16 + 10 0 1 0.975V C jsw C jsw = C j0sw x j = (5.83x10 8 F/cm )(10 4 cm) = 5.83pF/cm K eq, K eq (sw) V BD1 = V B - V D1 = 0-0.5V = -0.5V V BD = V B - V D = 0-5V = -5V

57 Area, Perimeter Y n + Channel P D n + 4 Source Drain A D : n + /p junctions: 5 µm A D = (5 x 1) µm + (10 x 5) µm = 55 µm P D : n + /p + + junctions: P D = Y + = 0 µm + 5 µm = 5 µm 1 5 3 x j Figure 1 10 µm C db = A D C j 0 K eq + P D C j0sw K eq (sw) = 11.6fF G D S n + n + µm

Mobility Degradation due to Longitudinal Electric Field: VELOSITY SATURATION (very small channel lengths + high supply voltages) v Dsat velosity(v D ) slope = µ 0 E crit slope µ s µ 0 = v sat /E crit E Note µ s < µ 0 [SPICE Parameters: U0 -> µ 0, UCRIT -> E crit, VMAX -> v sat ] (sat) = v DSAT Q I = v DSAT C ox V DSAT = v DSAT C ox ( - V T ) Note: (sat) = linear f( - V T ), independent of L E y 58

Mobility Degradation due to Tranverse Electric Field: (due to gate voltage across very thin oxide-depletion layer) 59 µ n (eff) = µ n 0 1+ Θ E x µ n0 1+η( V T ) E x Short Channel Effect - V T0 (short channel) = V T0 - V T0 L eff --> x j L L S L D x j V T 0 = 1 x ds qε Si N A φ F x j L C ox x dd gate induced 1 + x ds 1 x j + 1+ x dd x j 1

60 Narrow Channel Effect - V T0 (narrow channel) = V T0 + V T0 --> x dm Thick Ox L Q NC Drain Poly Gate x dm Source Q NC Thin Ox V T 0 = 1 C ox qε Si N A φ F κ x dm

SPICE MODELING OF MOS CAPACITANCES 61 M1 4 3 5 0 NFET =4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U. m. m m. U = 10.MODEL NFET NMOS -6 cm + TOX=00E-8 F/m P = 10-1 + CGBO=00P CGSO=300P CGDO=300P + CJ=00U CJS=400P MJ=0.5 MJS=0.3 PB=0.7 V F/m F/m M1 4 3 5 0 NFET =4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U D G S B C gb = L C ox = 4 1 17 10-4 pf = 0.0068 pf

M1 4 3 5 0 NFET =4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U..MODEL NFET NMOS + TOX=00E-8 + CGBO=00P CGSO=300P CGDO=300P + CJ=00U CJS=400P MJ=0.5 MJS=0.3 PB=0.7 6 C j = Area CJ 1 + V -MJ j V - + Periphery CJS 1 + - j PB PB CJ = zero-bias junction capacitance per junction area -MJS (00 10-6 F/m = 10-4 pf/µm ) CJS = zero-bias junction capacitance per junction periphery (400 10-1 F/m = 4 10-10 pf/µm) MJ = grading coefficient of junction bottom (0.5) MJS = grading coefficient of junction side-wall (0.3) VJ = the junction potential (V sb, V db for n-channel, V bs, V bd for p-channel) PB = the built-in voltage (+0.7 V) Area = AS or AD, the area of source or drain (15 10-1 m = 15 µm ) Periphery = PS or PD, the periphery of source or drain (11.5 10-6 m = 11.5 µm)