Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves

Similar documents
Contents. Preface...VII. Introduction... 1

arxiv: v1 [math-ph] 28 Aug 2008

Monopoles, Periods and Problems

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

arxiv:math/ v2 [math.qa] 1 Jun 2006

The Dirac-Ramond operator and vertex algebras

Список публикаций Зотов Андрей Владимирович

Topological reduction of supersymmetric gauge theories and S-duality

Spacetime Quantum Geometry

Topological Solitons from Geometry

Periods of meromorphic quadratic differentials and Goldman bracket

arxiv: v1 [math-ph] 13 Feb 2016

arxiv:math-ph/ v1 10 Oct 2005

Elements of Topological M-Theory

Gravitating vortices, cosmic strings, and algebraic geometry

Noncommutative extensions of elliptic integrable Euler-Arnold tops and Painleve VI equation

Poisson modules and generalized geometry

HYPERKÄHLER MANIFOLDS

QUADRATIC EQUATIONS AND MONODROMY EVOLVING DEFORMATIONS

DONAGI-MARKMAN CUBIC FOR HITCHIN SYSTEMS arxiv:math/ v2 [math.ag] 24 Oct 2006

Mirror Symmetry: Introduction to the B Model

Tutorial on Differential Galois Theory III

Langlands duality from modular duality

Ruijsenaars type deformation of hyperbolic BC n Sutherland m

Period Domains. Carlson. June 24, 2010

Abelian and non-abelian Hopfions in all odd dimensions

Morse theory and stable pairs

GREEN FUNCTION, PAINLEVÉ VI EQUATION, AND EISENSTEIN SERIES OF WEIGHT ONE

LECTURE 8: THE MOMENT MAP

Geometry of moduli spaces

B-FIELDS, GERBES AND GENERALIZED GEOMETRY

Fourth Aegean Summer School: Black Holes Mytilene, Island of Lesvos September 18, 2007

Classical Geometry of Quantum Integrability and Gauge Theory. Nikita Nekrasov IHES

Non-associative Deformations of Geometry in Double Field Theory

L. Fehér, KFKI RMKI Budapest and University of Szeged Spin Calogero models and dynamical r-matrices

t Hooft loop path integral in N = 2 gauge theories

DIFFERENTIAL GEOMETRY AND THE QUATERNIONS. Nigel Hitchin (Oxford) The Chern Lectures Berkeley April 9th-18th 2013

Instanton calculus for quiver gauge theories

Spectral curves and the mass of hyperbolic monopoles. Nuno M. Romão. Massachusetts Institute of Technology Cambridge MA, USA

Part II. Riemann Surfaces. Year

Transparent connections

8 8 THE RIEMANN MAPPING THEOREM. 8.1 Simply Connected Surfaces

The Higgs bundle moduli space

An Invitation to Geometric Quantization

Complete integrability of geodesic motion in Sasaki-Einstein toric spaces

SOLUTIONS TO THE GINZBURG LANDAU EQUATIONS FOR PLANAR TEXTURES IN SUPERFLUID 3 He

Hyperbolic volumes and zeta values An introduction

Integrable spin systems and four-dimensional gauge theory

Mirror symmetry, Langlands duality and the Hitchin system I

arxiv: v1 [math.sg] 20 Jul 2015

Algebraic structures related to integrable differential equations

Semiclassical Framed BPS States

Brief course of lectures at 18th APCTP Winter School on Fundamental Physics

Liouville integrability of Hamiltonian systems and spacetime symmetry

12 Geometric quantization

arxiv:hep-th/ v1 23 Mar 1995

Feynman integrals as Periods

Dirac Cohomology, Orbit Method and Unipotent Representations

S.Novikov. Singular Solitons and Spectral Theory

Local and global finite branching of solutions of ODEs in the complex plane

What is F-theory? David R. Morrison. University of California, Santa Barbara

[#1] R 3 bracket for the spherical pendulum

Konstantin E. Osetrin. Tomsk State Pedagogical University

Problem Set 1 Classical Worldsheet Dynamics

Virasoro hair on locally AdS 3 geometries

Interaction of lumps with a line soliton for the DSII equation

Elliptic Functions and Modular Forms

t Hooft Loops and S-Duality

Quantization of the open string on exact plane waves and non-commutative wave fronts

INTEGRATION WORKSHOP 2003 COMPLEX ANALYSIS EXERCISES

20 The modular equation

Computing modular polynomials in dimension 2 ECC 2015, Bordeaux

Nigel Hitchin (Oxford) Poisson 2012 Utrecht. August 2nd 2012

1: Lie groups Matix groups, Lie algebras

The Spectral Geometry of the Standard Model

20 The modular equation

Supersymmetric gauge theory, representation schemes and random matrices

Anomalies, Gauss laws, and Page charges in M-theory. Gregory Moore. Strings 2004, Paris. Related works: Witten , , ,

232A Lecture Notes Representation Theory of Lorentz Group

arxiv: v2 [math-ph] 13 Feb 2013

DIFFERENTIAL GEOMETRY OF TODA SYSTEMS ALEXANDER V. RAZUMOV AND MIKHAIL V. SAVELIEV

Applications of AdS/CFT correspondence to cold atom physics

Monodromy of the Dwork family, following Shepherd-Barron X n+1. P 1 λ. ζ i = 1}/ (µ n+1 ) H.

Scattering theory for the Aharonov-Bohm effect

THE NONCOMMUTATIVE TORUS

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

Deformations of logarithmic connections and apparent singularities

Classical AdS String Dynamics. In collaboration with Ines Aniceto, Kewang Jin

Eva Miranda. UPC-Barcelona and BGSMath. XXV International Fall Workshop on Geometry and Physics Madrid

Elliptic Curves and Elliptic Functions

Abelian Varieties and Complex Tori: A Tale of Correspondence

Hyperkähler geometry lecture 3

Lecture 24 Seiberg Witten Theory III

Traces and Determinants of

Fiber Bundles, The Hopf Map and Magnetic Monopoles

Stability data, irregular connections and tropical curves

A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding

1 Structures 2. 2 Framework of Riemann surfaces Basic configuration Holomorphic functions... 3

Linear connections on Lie groups

The twistor theory of the Ernst equations

Transcription:

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 1/23 Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves Andrei Zotov, Conformal Field Theory, Integrable Models and Liouville gravity, Chernogolovka, 2009 Imperial College, London 2009 (in collaboration with M.Olshanetsky, A.Levin, A.Smirnov) Institute of Theoretical and Experimental Physics, Moscow

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 2/23 Integrable system Integrable systems related to elliptic curve. Hitchin type systems: Elliptic Calogero-Moser systems, Elliptic Gaudin systems, Elliptic tops, Painleve VI, XYZ-model, Landau-Lifshitz equation, Calogero-Moser field theory; Their trigonometric, Whittaker-Inozemtsev and rational degenerations - XXZ, XXX-models, sin-gordon equation, Toda models,...

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 3/23 PLAN 1. Integrable systems 2. Modifications of Bundles: Relations between Integrable systems 3. Characteristic classes and new systems 4. Modifications of Bundles: Bogomolny equations and Monopoles

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 4/23 Integrable system LAX EQUATION L = [L,M] L - Lax operator L = L(v,u,S;z) (v,u,s) - dynamical variables (with Poisson brackets), z - spectral parameter z Σ τ - elliptic curve (Σ τ = C/(τZ + Z)). L takes values in g=lie(g), where G is a gauge group. Commuting integrals: {trl k (z), trl n (w)} = 0 tr(l k (z)) - generating function of integrals of motion.

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 5/23 Integrable system V - holomorphic bundle over Σ τ. For s Γ(V ): s(z + 1) = Q(z)s(z), s(z + τ) = Λ(z)s(z), Q(z + τ) Λ(z) = Λ(z + 1)Q(z) L(z) is a section of End(V ) with simple poles. Typical example: Gaudin model. Rational case: L = n a=1 S a z x a ; Elliptic case ({T α } - is a basis in g=lie(g)): L = n S a αϕ α (z x a,ω α )T α a=1 α

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 6/23 Lax operator 1. L(z) is a meromorphic map L(z) : (Σ τ = C/(τZ+Z)) g a simple complex Lie algebra 2.ResL(z) z=xa = S a O a coadjoint orbits of G 3.L(z + 1) = Q(z)L(z)Q 1 (z), L(z + τ) = Λ(z)L(z)Λ 1 (z). τ Q(z + τ) Λ(z) = Λ(z + 1)Q(z) 0 Λ x 1 x 2 x 3 Q x 4 1

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 7/23 Examples 1. Q = Id, Λ = exp2πidiag(u 1,...,u N ) QΛQ 1 Λ 1 = Id L(z) - Lax operator of the Elliptic Calogero-Moser System. L ij (z) = δ ij v i + 1νΦ(z,u i u j ), Φ(z,u) = ϑ (o)ϑ(z + u) ϑ(z)ϑ(u) Canonical Poisson brackets {v i,u j } = δ ij Hamiltonian: H = N vi 2 + ν 2 (u i u j ) i j i=1

Examples 2.Q = diag(1,ω,...,ω N 1 ) ω = exp(2πi 1 ), detq = 1 N 0 1 0... 0 0 0 1... 0 Λ =..........., detλ = 1 0 0 0 1 1 0... 0 0 L(z) - Lax operator of Elliptic Top. L(z) = S α1 α 2 exp( 2πi α 2z N )Φ( α 1 + α 2 τ,z)t α1 α N 2 α=(α 1,α 2 ) Z N Z N but for Λ = exp( 2πi z+ τ 2 N )Λ: QΛQ 1 Λ 1 = ωid Q Λ(z) = Λ(z + 1)Q. Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 8/23

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 9/23 Relations between systems Modification Symplectic Hecke Correspondence L(z) ΞL(z)Ξ 1 Ξ is a singular gauge transformation. Example: L top = ΞL Cal Ξ 1, ( Ξ(z) = Ξ(z) diag ( 1) l j<k;j,k l ) 1 ϑ(u k u j,τ), where Ξ ij (z,u 1,...,u N,τ) = θ i N 1 2 N 2 (z Nu j,nτ), det Ξ ϑ(z) i>j ϑ(u i u j )

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 10/23 Example g = A 1 SL(2, C) - Calogero-Moser system for two particles: SL(2, C)-Euler top: H SL(2,C) = 1 2 v2 + ν 2 (2u), {v,u} = 1 H SL(2,C) = 1 2 (S2 1 (τ/2) + S 2 2 ( 1 + τ 2 ) + S2 3 ( 1 2 )), {S j,s k } = ǫ ijk S i Ξ = ( θ00 (z 2u, 2τ) θ 00 (z + 2u, 2τ) θ 10 (z 2u, 2τ) θ 10 (z + 2u, 2τ) )

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 11/23 Example S 1 = v θ 10(0) θ 11(0) θ 10 (2u) θ 11 (2u) ν θ 2 10(0) θ 00 (0)θ 01 (0) θ 00 (2u)θ 01 (2u) θ 2 11(2u), S 2 = v θ 00(0) iθ 11(0) θ 00 (2u) θ 11 (2u) ν θ00(0) 2 iθ 10 (0)θ 01 (0) θ 10 (2u)θ 01 (2u) θ 2 11(2u), S 3 = v θ 01(0) θ 11(0) θ 01 (2u) θ 11 (2u) ν θ 2 01(0) θ 00 (0)θ 10 (0) θ 00 (2u)θ 10 (2u) θ 2 11(2u). θ ab - theta functions with characteristics. Ξ : (v,u,ν) (S 1,S 2,S 3 ), ν 2 = S 2 1 + S 2 2 + S 2 3

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 12/23 Local description Ξ GL(N,C) (z) = z 0 0... 0 0 1 0... 0........... 0 0 1 0 0 0... 0 1, det Ξ GL(N,C) (z) = z is a modification of GL(N, C)-bundle at point z = 0 in direction (1, 0,...,0) T SL(N, C) case: Ξ SL(N,C) (z) = z 1 N ΞGL(N,C) (z), det Ξ SL(N,C) (z) = 1

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 13/23 Relations between systems Dimension of moduli space (in GL(N, C) case) equals g.c.d.(degree, rank) deg = 0 deg = 1... deg = k... deg = N deg = 0 CM Top... Backlund CM [Λ,Q] G = 1 [Λ,Q] G = ω [Λ,Q] G = ω k [Λ,Q] G = ω N = 1 N = pl - Interacting elliptic tops Z N - is a center of SL(N, C). The models are classified by solutions of [Λ,Q] G = ζ, ζ Z(G)

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 14/23 Monodromies Ḡ - a simply connected simple complex Lie group. Z(Ḡ) - its center. G ad = Ḡ/Z(Ḡ). Examples: 1. Ḡ = SL(N, C), Z(SL(N, C)) = diag(ω,...,ω), ω N = 1, G ad = PSL(N, C). ζ generator of Z(Ḡ) ΛQΛ 1 Q 1 = ζ Λ and Q are not monodromies of Ḡ-bundle, but transition operators for G ad -bundle. ζ is an obstruction to lift G ad -bundle to Ḡ-bundle. ζ H 2 (Σ τ, Z(Ḡ)) Z(Ḡ) ζ is the characteristic class of the bundle

Centers of universal covering groups Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 15/23 Ḡ Lie (Ḡ) Z(Ḡ) G ad SL(n, C) A n 1 Z n SL(n, C)/Z n Spin 2n+1 (C) B n Z 2 SO(2n + 1) Sp n (C) C n Z 2 Sp n (C)/Z 2 Spin 4n (C) D 2n Z 2 Z 2 SO(2n)/Z 2 Spin 4n+2 (C) D 2n+1 Z 4 SO(2n)/Z 2 E 6 (C) E 6 Z 3 E 6 (C)/Z 3 E 7 (C) E 7 Z 2 E 7 (C)/Z 2

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 16/23 Bogomolny equation Dirac String S 2 y Σ τ Σ + τ A + z = Ξ 1 z Ξ + Ξ 1 A z Ξ A ± z L± (z)

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 17/23 Bogomolny equation Σ τ elliptic curve, (z, z) - complex coordinates. W(y,z, z) = R Σ g Fields: 1)A = (A z,a z,a y ) - connections in the adjoint representation of simple Lie algebra g. F = (F z, z,f z,y,f z,y ). 2)φ- scalar field in the adjoint representation of simple Lie algebra g - (the Higgs field). The Bogomolny equation on W F = Dφ ( the Hodge operator on W)

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 18/23 Bogomolny equation x = (z, z,y), x 0 = (0, 0, 0) D Dφ = Mδ( x x 0 ) For metrics ds 2 = g dz 2 + dy 2 and gauge fixation A z = 0, A y = iφ: z A z = ig 2 yφ, y A z 2i z φ + 2i[A z,φ] = 0, In scalar case: yφ 2 + 4 g z z φ = cδ( x x 0 )

Bogomolny equation Abelian rational case φ im 2 1 y2 + z z A + z (z, z,y) im 2 A z (z, z,y) im 2 ( ( 1 z 1 z ) y 1 y2 +z z z ) y + 1 y2 +z z z + const, + const, A + z = A z + i z log z m, Ξ = z m Σ + τ F = Σ τ F + m, Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 19/23

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 20/23 Bogomolny equation Abelian elliptic case c γ Γ χ(γ, x) ((παy) 2 + z + γ 2 ) 1 2 = φ(x,z,y) φ(x,z,y) = c 4π Consider a generalization γ Γ 1 γ + x e 2π γ+x y χ(γ + x,z). I(s,x,z,y) = 2cπ s y s 1 2 γ Γ K s 1(2π y γ + x ) 2 χ(γ + x,z). γ + x s 1 2 Here K ν is the Bessel-Macdonald function

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 21/23 Bogomolny equation K ν (2πyz) = Γ(ν + 1 2 )(z)ν 2(πy) ν Γ( 1 2 ) + e 2πipy dp (p 2 + z 2 ) ν+1 2. The function I(s,x,z,y) is the Green function for the pseudo-differential operator ( 2 y + 4α 2 π 2 z z ) s on R Σ τ with the boundary conditions The series is a three-dimensional generalization of the Kronecker series K(x,x 0,s) = γ χ(γ,x 0 ) x + γ 2s

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 22/23 Bogomolny equation Using the Poisson summation formula Kronecker proved that Γ(s)K(x,x 0,s) = α 1 2s Γ(1 s)k(x 0,x, 1 s)χ(x,x 0 ). Our purpose is to generalize this functional equation for the 3-dimensional case Σ τ R. It takes the following form. The function I(s,x,z,y) satisfies the functional equation: I(s,x,z,y) = χ(x,z)π 1 2 α 2s+1 + dk I( 3 2 s,z,x, k πα )e 2πiky

where E 1 (z) = ln ϑ(z) is the so-called first Eisenstein series. Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 23/23 Bogomolny equation Gauge fixation condition: A z = 0. Solution: A z (z, z,y,x) = ic 4π 1 π 2 α 2 sgn(y) γ Γ 1 γ + x e 2π γ+x y χ(γ+x,z), Notice that the jump of A (while coming through y = 0, z = 0) is obviously defined by the jump of sgn(y). In order to compare elliptic configuration with the rational case we take x = 0. Then on the line y = 0 the connection is proportional to A z γ 0 1 γ χ(γ,z) = E 1(z) α 1 (z z),