The total luminosity of a disk with the viscous dissipation rate D(R) is

Similar documents
High Energy Astrophysics

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion disks. AGN-7:HR-2007 p. 1. AGN-7:HR-2007 p. 2

Chapter 6 Accretion onto Compact Stars

Unstable Mass Transfer

High-Energy Astrophysics

mc 2, (8.1) = R Sch 2R

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview

PAPER 68 ACCRETION DISCS

Dr G. I. Ogilvie Lent Term 2005

Cataclysmic variables

Opacity and Optical Depth

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Accretion Disks Black holes being what they are, something that falls into one disappears without a peep. It might therefore seem that accretion onto

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Accretion Disks Angular momentum Now let s go back to black holes. Black holes being what they are, something that falls into one disappears without

7. BINARY STARS (ZG: 12; CO: 7, 17)

Overview spherical accretion

Star formation. Protostellar accretion disks

6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory

Analyzing X-Ray Pulses from Stellar Cores Pencil & Paper Version

THIRD-YEAR ASTROPHYSICS

Astrophysics Assignment; Kramers Opacity Law

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

Evolution of High Mass stars

2. Basic assumptions for stellar atmospheres

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres

B ν (T) = 2hν3 c 3 1. e hν/kt 1. (4) For the solar radiation λ = 20µm photons are in the Rayleigh-Jean region, e hν/kt 1+hν/kT.

todays lecture Line of sight effects Effect of magnetic field on accretion How to derive the mass of the compact object Accretion disk (start)

9.1 Introduction. 9.2 Static Models STELLAR MODELS

From Last Time: We can more generally write the number densities of H, He and metals.

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

TRANSFER OF RADIATION

Pulsars. The maximum angular frequency of a spinning star can be found by equating the centripetal and gravitational acceleration M R 2 R 3 G M

RADIATION FROM ACCRETION ONTO BLACK HOLES

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Problem set: solar irradiance and solar wind

Active Galactic Nuclei - Zoology

Assignment 4 Solutions [Revision : 1.4]

Chapter 0 Introduction X-RAY BINARIES

2. Basic assumptions for stellar atmospheres

Accretion in Binaries

Accretion in Astrophysics: Theory and Applications Solutions to Problem Set I (Ph. Podsiadlowski, SS10)

1. Accretion disks HENK SPRUIT

The Stellar Opacity. F ν = D U = 1 3 vl n = 1 3. and that, when integrated over all energies,

Survey of Astrophysics A110

AGN Central Engines. Supermassive Black Holes (SMBHs) Masses and Accretion Rates SMBH Mass Determinations Accretion Disks

Stellar Magnetospheres part deux: Magnetic Hot Stars. Stan Owocki

Synchrotron Radiation II

PAPER 58 STRUCTURE AND EVOLUTION OF STARS

2. Basic Assumptions for Stellar Atmospheres

Thermal-timescale mass transfer and magnetic CVs

Protoplanetary Disks. Ernst Dorfi WS 2012

Accretion Disks: angular momentum Now let s go back to black holes. Black holes being what they are, something that falls into one disappears without

2. Basic assumptions for stellar atmospheres

Lecture 13: Binary evolution

Black Holes and Active Galactic Nuclei

Atomic Structure & Radiative Transitions

F q. Gas at radius R (cylindrical) and height z above the disk midplane. F z. central mass M

Active Galactic Nuclei-I. The paradigm

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Earth, Atmospheric, and Planetary Sciences Department. Final Exam

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Accretion Disks. Accretion onto Black Holes. Magdalena Karnassnigg

while the Planck mean opacity is defined by

= m H 2. The mean mass is 1/2 the mass of the hydrogen atom. Since, the m e << m p, the mean mass of hydrogen is close to 1/2 the mass of a proton.

4U E. Bozzo. M. Falanga, A. Papitto, L. Stella, R. Perna, D. Lazzati G. Israel, S. Campana, V. Mangano, T. Di Salvo, L.

The Magnetorotational Instability

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Equations of Stellar Structure

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG

Advection Dominated Accretion Flows. A Toy Disk Model. Bohdan P a c z y ń s k i

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

t KH = GM2 RL Pressure Supported Core for a Massive Star Consider a dense core supported by pressure. This core must satisfy the equation:

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Cooling Neutron Stars. What we actually see.

Thermal and Viscous Instability of Accretion Disc in AGN

Lecture 20: Planet formation II. Clues from Exoplanets

A100 Exploring the Universe: Stellar Remnants. Martin D. Weinberg UMass Astronomy

[2 marks] Show that derivative of the angular velocity. What is the specific angular momentum j as a function of M and R in this Keplerian case?

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward

Non-thermal emission from Magnetic White Dwarf binary AR Scorpii

X-ray observations of X-ray binaries and AGN

Protostars 1. Early growth and collapse. First core and main accretion phase

Spin and mass of the nearest supermassive black hole

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Opacity. requirement (aim): radiative equilibrium: near surface: Opacity

Formation of gravitationally stable systems (from stars to galaxies and galaxy clusters)

Super-Eddington accretion onto a magnetized neutron star

Atomic Physics 3 ASTR 2110 Sarazin

Outline. Today we will learn what is thermal radiation

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

Basics, types Evolution. Novae. Spectra (days after eruption) Nova shells (months to years after eruption) Abundances

ASTRONOMY QUALIFYING EXAM August Possibly Useful Quantities

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table:

A propelling neutron star in the enigmatic Be-star γ Cassiopeia

UNIVERSITY OF SOUTHAMPTON

GAMMA-RAYS FROM MASSIVE BINARIES

Topics ASTR 3730: Fall 2003

The Stellar Graveyard Neutron Stars & White Dwarfs

Transcription:

Chapter 10 Advanced Accretion Disks The total luminosity of a disk with the viscous dissipation rate D(R) is L disk = 2π D(R)RdR = 1 R 2 GM Ṁ. (10.1) R The disk luminosity is half of the total accretion luminosity L acc = GM Ṁ/R ; the other half of the luminosity is emitted when the gas makes the transition from the inner edge of the accretion disk to the surface of the compact object. The physical characteristics of the boundary layer between the Keplerian disk and the compact object are poorly known. Let s start by considering the better-known luminosity that comes from the disk itself. If the disk is optically thick, and the luminosity L disk is in the form of black body radiation, then the temperature T bb (R) at a given radius is set by the relation σ SB Tbb 4 = 1 D(R). (10.2) 2 The factor of 1/2 enters because we are considering the radiation from only one side of the disk. Using D(R) for a viscous accretion disk, where T bb (R) = T ( R R ) 3/4 [1 (R /R) 1/2 ] 1/4, (10.3) T = ( ) 1/4 3GM Ṁ. (10.4) 8πR 3 σ SB The temperature of the disk is plotted in Figure 10.1. The hottest part of 99

100 CHAPTER 10. ADVANCED ACCRETION DISKS Figure 10.1: The temperature of an optically thick accretion disk.

101 the disk is at R = 1.36R, where T bb = 0.488T. The characteristic disk temperature T, for typical X-ray binaries, is ( ) 1/4 ( ) 1/4 ( ) T = 1 10 7 Ṁ 3/4 M R K. (10.5) 10 17 g sec 1 1 M 10 km The spectrum of the disk is the black-body spectrum integrated over all radii: S ν Ro ν 3 RdR, (10.6) R exp[hν/kt bb (R)] 1 where R o is the outer radius of the accretion disk. At high frequencies, ν kt /h, the spectrum falls away exponentially. At lower frequencies, ν kt /h, the temperature has the radial dependence T R 3/4, and the spectrum has the form S ν = ν 1/3 hν/kto 0 x 5/3 dx e x 1. (10.7) When kt o /h ν kt /h, the upper limit of the integral may be taken as infinity, yielding the spectrum S ν ν 1/3 at intermediate frequencies. At very low frequencies, ν kt o /h, the main contribution to the spectrum is the Rayleigh-Jeans tail of the cool, outer edge of the accretion disk; the resulting frequency dependence is S ν ν 2. The integrated spectrum S ν for a disk with T = 100T o is plotted in Figure 10.2. One check to see whether the physically thin, optically thick model is correct is to check for the characteristic ν 1/3 spectrum. Unfortunately, in binary systems, the luminosity of the normal star that is providing the accreting matter may overpower the luminosity of the disk. The best system for seeing the entire spectrum of the accretion disk is a cataclysmic variable in which the compact star is a white dwarf and the normal star is a low mass (0.1 1 M ) main sequence star. In the quiescent state, between cataclysmic outbursts, most of the luminosity comes from the disk. The cataclysmic variable VW Hydri (a dwarf nova) has a very dim normal companion, and a large disk. The observed spectrum of VW Hydri, in its post-outburst state, is shown in Figure 10.3. It is a fairly good example of a ν 1/3 law. It is enlightening to do slightly more elaborate modeling of alpha disks, to find its properties as a function of the radius R, the mass M of the central object, the accretion rate Ṁ, and the assumed value of α. Let ρ, a, P, and

102 CHAPTER 10. ADVANCED ACCRETION DISKS Figure 10.2: The spectrum S ν of an optically thick accretion disk. The units of ν and S ν are arbitrary. The temperature at the outer edge of the disk is T out = T o = 0.01T.

103 Figure 10.3: The dots are the observed spectrum F λ of VW Hydri after an outburst. Line a is a stellar atmosphere fit; line b is a line of slope F λ λ 7/3, corresponding to S λ ν 1/3.

104 CHAPTER 10. ADVANCED ACCRETION DISKS T be the density, sound speed, pressure, and temperature in the z = 0 plane. The optical depth τ = ρhκ R of the disk (where κ R is the Rosseland mean opacity) is assumed to be much greater than one. We can solve for the eight unknowns ρ, Σ, H, a, P, T, τ, and ν as a function of M, Ṁ, R, and α. Equations for the alpha disk: H = a ρ = Σ H ( R 3 GM (10.8) ) 1/2 (10.9) a 2 = P ρ (10.10) P = ρkt m 4σ SB T 4 = 3GM [ ( ) 1/2 ] Ṁ R 1 3τ 8πR 3 R (10.11) (10.12) τ = Σκ R (ρ,t) (10.13) νσ = Ṁ [ ( ) 1/2 ] R 1 3π R (10.14) ν = αah (10.15) When the dominant source of opacity in the disk is free-free absorption, the Rosseland mean opacity κ R (ρ,t) is well approximated by Kramers law: ( ) ( ) κ R = 6.6 cm 2 g 1 ρ T 7/2. (10.16) 10 8 g cm 3 10 4 K At higher temperatures and lower densities, the main source of opacity is Thomson scattering of photons by free electrons, with κ R = 0.40 cm 2 g 1. The above set of equations has an algebraic solution. Let f 1 (R /R) 1/2, R 10 R/10 10 cm, M c M /1 M, and Ṁ16 Ṁ/1016 g s 1. If the dominant source of opacity is free-free absorption, then Σ = 5 g cm 2 α 4/5 Ṁ 7/10 16 M 1/4 c R 3/4 10 f 14/5 (10.17) H = 2 10 8 cm α 1/10 Ṁ 3/20 16 M 3/8 c R 9/8 10 f 3/5 (10.18) ρ = 3 10 8 g cm 3 α 7/10 Ṁ 11/20 16 M 5/8 c R 15/8 10 f 11/5 (10.19)

105 T = 1 10 4 Kα 1/5 Ṁ 3/10 16 M 1/4 c R 3/4 10 f 6/5 (10.20) τ = 30α 4/5 Ṁ 1/5 16 f 4/5 (10.21) ν = 2 10 14 cm 2 sec 1 α 4/5 Ṁ 3/10 16 M 1/4 c R 3/4 10 f 6/5 (10.22) u R = 3 10 4 cm s 1 α 4/5 Ṁ 3/10 16 M 1/4 c R 1/4 10 f 14/5. (10.23) Fortunately, none of these results have an exorbitantly strong dependence on the unknown value of α. We can check whether our assumption of Kramers law is valid. The opacity within the disk will be κ R (Kramers) = 6.3 cm 2 g 1 Ṁ 1/2 16 M 1/4 c R 3/4 10 f 2. (10.24) The bremsstrahlung opacity dominates over the electron scattering opacity at radii R > 2.5 10 8 cm Ṁ2/3 16 Mc 1/3 f 8/3. (10.25) The crossover radius is smaller than the radius of a white dwarf for values of Ṁ typical of cataclysmic binaries. Thus, for white dwarfs, Kramers law usually holds. In X-ray binaries with a central neutron star, the inner parts of the accretion disk will have an opacity dominated by electron scattering. The boundary layer emits half the accretion luminosity. In the absence of a magnetic field, the accretion disk can extend all the way to the surface of the compact object, and the boundary layer consists of a very thin region just above the surface of the compact object. Consider the boundary layer in the accretion disk around a non-magnetic compact object of mass M and radius R. The boundary layer consists of the region R < R < R +b, where the angular velocity decreases from its Keplerian value Ω(R + b) = ( GM to the angular velocity of the star s surface Ω < (R + b) 3 ) 1/2 (10.26) ( ) 1/2 GM. (10.27) R 3 The angular velocity in the vicinity of the boundary region is plotted in Figure 10.4. The radial extent b of the boundary layer is less than the disk

106 CHAPTER 10. ADVANCED ACCRETION DISKS Figure 10.4: The distribution of angular velocity Ω in the boundary layer, compared to the Keplerian value. thickness H just outside the boundary layer, which in turn is less than the radius R of the compact object. To show that b < H < R, start with the equation for conservation of radial momentum: u R u R R u2 φ R + 1 ρ P R + GM = 0. (10.28) R 2 In the Keplerian disk, the gravitational term (GM /R 2 ) is balanced by the centrifugal term (u 2 φ/r). Within the boundary layer, the gravitational term is balanced by the pressure gradient term. The magnitude of the pressure gradient is 1 P ρ R a2 b, (10.29) where a is the sound speed at the outer edge of the boundary layer and b is the thickness of the boundary layer. From the balance of forces, a 2 /b GM /(R + b) 2, we see that b R + b M 2 φ, (10.30)

107 Figure 10.5: A sketch of the boundary layer of an optically thick disk. where M φ is the rotational Mach number at the outer edge of the boundary layer. In a thin disk, M φ 1, and H R/M φ, so b H/M φ R /M 2 φ. Figure 10.5 shows the resulting geometry, with b H R. The blackbody temperature within the boundary layer is T BL M 1/4 φ T. (10.31) Magnetic fields can affect the accretion of matter. The magnetic field of compact stars is a dipole field, with dipole moment µ = B R 3, where R is the radius of the star and B is the magnetic field at the surface of the star. A neutron star typically will have R 10 6 cm and B 10 12 G, yielding µ = 10 30 G cm 3. A white dwarf with R 5 10 8 cm and B 10 4 G will have the same magnetic moment, µ 10 30 G cm 3. At distances r R, the amplitude of the dipole magnetic field is B µ(1 + 3 cos2 θ) 1/2 r 3, (10.32) where θ is angle measured from the magnetic pole. The magnetic energy density in the equatorial plane is E mag = B2 4π = 1 µ 2 ( ) r 6 4π r 8 6 1022 erg cm 3 µ 2 30R6 6. (10.33) R

108 CHAPTER 10. ADVANCED ACCRETION DISKS The quantity µ 30 is the magnetic moment of the star, measured in units of 10 30 G cm 3 ; the quantity R 6 is the radius R of the star, measured in units of 10 6 cm. Consider a neutron star or white dwarf isolated in the middle of a uniform gaseous medium. The accreting matter will fall in radially at large distances, where the magnetic pressure is small. The infall will be significantly deflected from a radial flow at a radius r A (the Alfven radius), where the magnetic energy density E mag is equal to the kinetic energy density E kin of the gas. From the continuity equation, ρu = Ṁ 4πr. (10.34) 2 For an ionized gas (γ = 5/3) inside the accretion radius, the infall velocity is The kinetic energy density is thus The Alfven radius is ( ) 1/2 GM u =. (10.35) 2r E kin = 1 2 ρu2 = Ṁ GM 8π 2 r 5/2. (10.36) r A ( µ 4 Ṁ 2 GM ) 1/7. (10.37) Using the appropriate numerical values for a neutron star or white dwarf, r A = 7 10 8 cm µ 4/7 30 Ṁ 2/7 16 M 1/7 c. (10.38) Accreting neutron stars will generally have r A R. A typical white dwarf will have r A R. There exists, however, a class of magnetic white dwarfs, which have magnetic dipole moments as large as µ 10 34 G cm 3, and Alfven radii r A 10 11 cm. One class of cataclysmic variables, known as AM Herculis systems, consists of magnetic white dwarfs with low mass main sequence companions, on an orbit with P < 3 hr. In these systems, the Alfven radius is larger than the orbital radius. The mass that is lost by the main sequence star is compelled to flow along the magnetic field lines.

109 Consider a binary system in which the magnetic field of the compact star is small enough to allow an accretion disk to form. The accretion disk will be disrupted at a radius R A, which is the radius at which the torque exerted by the magnetic field on the disk is equal to the viscous torque. Computing the magnetic torque is, unfortunately, difficult. The torque exerted depends on the azimuthal component B φ of the magnetic field, which in turn depends on the extent to which the magnetic dipole configuration is distorted by the interaction of the magnetic field with the disk. Calculations usually show that R A r A /2. Because the magnetic field lines are pinned to the compact object, they have an angular velocity equal to Ω, the angular velocity with which the compact object rotates. At radii R R A, the accreting gas rotates with an angular velocity Ω(R) = (GM /R 3 ) 1/2. At radii R R A, the gas flows along the magnetic field lines, and hence rotates with an angular velocity Ω(R) = Ω. For steady accretion to occur, we must have a situation in which Ω (GM /R 3 A) 1/2. Numerically, this requires that Ω < 2 sec 1 µ 6/7 30 Ṁ 3/7 16 Mc 5/7. (10.39) If the magnetized compact object rotates more rapidly than this, gas will be unable to accrete. Matter will leave the accretion disk at a radius R A and flow along the magnetic field lines to the magnetic poles of the neutron star, as shown in Figure 10.6. The rotation axis of the the neutron star is aligned with the rotation axis of the disk. However, the magnetic axis of the neutron star is generally at an angle to the rotation axis of the disk. Let α be the angle between the magnetic axis of the star and the plane of the disk, as shown in Figure 10.6. In polar coordinates (r, θ) aligned with the magnetic axis, the magnetic field lines are described by the equation r(θ) = C sin 2 θ. The field line that passes through the disk at the radius r = R A and angle θ = α must then have the equation r(θ) = R A sin 2 θ sin 2 α. (10.40) The gas that is ripped away from the disk will follow along this path until it reaches the surface of the neutron star at a radius r = R. The accretion thus takes place on a ring of angular radius θ c around the magnetic pole, where θ c is given by the relation sin 2 θ c = R R A sin 2 α. (10.41)

110 CHAPTER 10. ADVANCED ACCRETION DISKS Figure 10.6: Accretion from a gaseous disk onto a magnetized neutron star.

111 Diffusion effects tend to smear the area of accretion into a circular cap centered on the magnetic pole. The area of the two accreting polar caps takes up a fraction f 2 πr2 sin 2 θ c 4πR 2 R sin 2 α 2R A (10.42) of the total surface area of the neutron star. The fraction f is small; f 10 3 for a neutron star with α π/2. All of the boundary layer accretion luminosity, equal in value to L = (GM Ṁ)/(2R ), will be emitted from two small regions. The rotation of the neutron star will cause a periodic modulation in the observed flux from the accreting polecaps. Pulsation periods are observed in X-ray binaries, with typical periods in the range 1 sec < P < 10 3 sec. In many X-ray binaries, the pulsation period P is observed to be decreasing steadily, on time scales of 10 4 yr. This spin-up is the result of the torque exerted by the accretion disk on the magnetic field of the neutron star. For a magnetized neutron star accreting matter from a disk, the Keplerian angular velocity at the Alfven radius, Ω = (GM /RA) 3 1/2, is larger than Ω, the angular velocity of the neutron star and its attached magnetic field. The star + magnetic field combination is thus accreting angular momentum from the disk at the rate ṀRAΩ(R 2 A ). If the moment of inertia of the star is I M R, 2 then the spin-up rate is given by the relation I Ω = ṀR2 AΩ(R A ) = Ṁ(GM R A ) 1/2. (10.43) The spin-up rate for the neutron-star is then P P 10 5 yr 1 I45 1 Ṁ 6/7 16 µ 2/7 30 Mc 3/7 P 1, (10.44) where I 45 is the moment of inertia in units of 10 45 g cm 2.

112 CHAPTER 10. ADVANCED ACCRETION DISKS