Optimal embeddings of Bessel-potential-type spaces into generalized Hölder spaces

Similar documents
ON A MAXIMAL OPERATOR IN REARRANGEMENT INVARIANT BANACH FUNCTION SPACES ON METRIC SPACES

On a compactness criteria for multidimensional Hardy type operator in p-convex Banach function spaces

Variable Lebesgue Spaces

Analytic families of multilinear operators

COMBINED EFFECTS FOR A STATIONARY PROBLEM WITH INDEFINITE NONLINEARITIES AND LACK OF COMPACTNESS

The Hilbert Transform and Fine Continuity

Sobolev embeddings and interpolations

4 Riesz Kernels. Since the functions k i (ξ) = ξ i. are bounded functions it is clear that R

MATH MEASURE THEORY AND FOURIER ANALYSIS. Contents

Lebesgue Integration on R n

Outline of Fourier Series: Math 201B

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

On pointwise estimates for maximal and singular integral operators by A.K. LERNER (Odessa)

L p -convergence of Bernstein Kantorovich-type operators. by Michele Campiti (Bari) and Giorgio Metafune (Lecce)

Decreasing Rearrangement and Lorentz L(p, q) Spaces

The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge

ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION SPACES ABSTRACT

THEOREMS, ETC., FOR MATH 515

ON FOURNIER GAGLIARDO MIXED NORM SPACES

Singular Integrals. 1 Calderon-Zygmund decomposition

Herz (cf. [H], and also [BS]) proved that the reverse inequality is also true, that is,

Sobolev Spaces. Chapter 10

Poincaré inequalities that fail

Function spaces with variable exponents

W. Lenski and B. Szal ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF CONJUGATE FOURIER SERIES

Duality of multiparameter Hardy spaces H p on spaces of homogeneous type

Nonlinear aspects of Calderón-Zygmund theory

On Riemann Boundary Value Problem in Hardy Classes with Variable Summability Exponent

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

Besov-type spaces with variable smoothness and integrability

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

HOMEOMORPHISMS OF BOUNDED VARIATION

Comparison of Orlicz Lorentz Spaces

Your first day at work MATH 806 (Fall 2015)

MAXIMAL AVERAGE ALONG VARIABLE LINES. 1. Introduction

Variational and Topological methods : Theory, Applications, Numerical Simulations, and Open Problems 6-9 June 2012, Northern Arizona University

8 Singular Integral Operators and L p -Regularity Theory

The Rademacher Cotype of Operators from l N

A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces

Real Analysis Chapter 3 Solutions Jonathan Conder. ν(f n ) = lim

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

J. Kinnunen and R. Korte, Characterizations of Sobolev inequalities on metric spaces, arxiv: v2 [math.ap] by authors

Weighted Composition Operator on Two-Dimensional Lorentz Spaces

Tools from Lebesgue integration

Hardy-Littlewood maximal operator in weighted Lorentz spaces

A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE. 1.

Spectra of weighted composition operators on spaces of analytic functions

Variable Exponents Spaces and Their Applications to Fluid Dynamics

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

ON ORLICZ-SOBOLEV CAPACITIES

Appendix A Functional Analysis

SOLUTION OF THE DIRICHLET PROBLEM WITH L p BOUNDARY CONDITION. Dagmar Medková

4 Expectation & the Lebesgue Theorems

Gaussian Measure of Sections of convex bodies

A NOTE ON FUNCTION SPACES GENERATED BY RADEMACHER SERIES

Formal Groups. Niki Myrto Mavraki

Notes. 1 Fourier transform and L p spaces. March 9, For a function in f L 1 (R n ) define the Fourier transform. ˆf(ξ) = f(x)e 2πi x,ξ dx.

Overview of normed linear spaces

FOURIER SERIES WITH THE CONTINUOUS PRIMITIVE INTEGRAL

Hong Rae Cho and Ern Gun Kwon. dv q

Wavelets and modular inequalities in variable L p spaces

Parabolic L p L q estimates

2014:05 Incremental Greedy Algorithm and its Applications in Numerical Integration. V. Temlyakov

MAT 571 REAL ANALYSIS II LECTURE NOTES. Contents. 2. Product measures Iterated integrals Complete products Differentiation 17

Neighboring feasible trajectories in infinite dimension

COMPACT EMBEDDINGS ON A SUBSPACE OF WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES

New Trends in Spectral Theory and Applications

Riesz Bases of Wavelets and Applications to Numerical Solutions of Elliptic Equations

BASES FROM EXPONENTS IN LEBESGUE SPACES OF FUNCTIONS WITH VARIABLE SUMMABILITY EXPONENT

Zygmund s Fourier restriction theorem and Bernstein s inequality

CAPACITIES ON METRIC SPACES

SOBOLEV S INEQUALITY FOR RIESZ POTENTIALS OF FUNCTIONS IN NON-DOUBLING MORREY SPACES

APPROXIMATION BY LIPSCHITZ FUNCTIONS IN ABSTRACT SOBOLEV SPACES ON METRIC SPACES

SHARP L p WEIGHTED SOBOLEV INEQUALITIES

CRITICAL POINT METHODS IN DEGENERATE ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT. We are interested in discussing the problem:

A class of non-convex polytopes that admit no orthonormal basis of exponentials

Mathematical Research Letters 4, (1997) HARDY S INEQUALITIES FOR SOBOLEV FUNCTIONS. Juha Kinnunen and Olli Martio

The Hardy Operator and Boyd Indices

Your first day at work MATH 806 (Fall 2015)

Capacitary Riesz-Herz and Wiener-Stein estimates

1.5 Approximate Identities

Uniform convergence of N-dimensional Walsh Fourier series

1 Math 241A-B Homework Problem List for F2015 and W2016

Bounded uniformly continuous functions

be the set of complex valued 2π-periodic functions f on R such that

ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES

In this note we give a rather simple proof of the A 2 conjecture recently settled by T. Hytönen [7]. Theorem 1.1. For any w A 2,

On the local existence for an active scalar equation in critical regularity setting

Pólya-Szegö s Principle for Nonlocal Functionals

INEQUALITIES FOR SUMS OF INDEPENDENT RANDOM VARIABLES IN LORENTZ SPACES

Nonlinear elliptic systems with exponential nonlinearities

MATHS 730 FC Lecture Notes March 5, Introduction

Partial Differential Equations, 2nd Edition, L.C.Evans Chapter 5 Sobolev Spaces

Preparatory Material for the European Intensive Program in Bydgoszcz 2011 Analytical and computer assisted methods in mathematical models

arxiv: v3 [math.fa] 10 Jan 2017

WEAK TYPE ESTIMATES FOR SINGULAR INTEGRALS RELATED TO A DUAL PROBLEM OF MUCKENHOUPT-WHEEDEN

Weighted norm inequalities for singular integral operators

DAVID CRUZ-URIBE, SFO, JOSÉ MARÍA MARTELL, AND CARLOS PÉREZ

HARMONIC ANALYSIS. Date:

Transcription:

Optimal embeddings of Bessel-potential-type spaces into generalized Hölder spaces J. S. Neves CMUC/University of Coimbra Coimbra, 15th December 2010 (Joint work with A. Gogatishvili and B. Opic, Mathematical Institute, Academy of Sciences of Czech Republic)

Outline of the talk 1 Introduction Classical Results Better target spaces 2 r.i. Banach function spaces (r.i. BFS) Banach function norm ρ Banach function space X(IR n ) Non-increasing rearrangement f Representation space Lorentz-Karamata spaces 3 Bessel-potential-type spaces and optimal embeddings Bessel-potential-type spaces Generalized Hölder spaces Optimal Embeddings: super-limiting case Optimal Embeddings: limiting case Bessel-potential spaces H σ X(IR n ) and optimal embeddings Optimal Embeddings: limiting case-again! Optimal Embeddings: super-limiting case-again! 4 References

Classical results Sobolev s classical embedding theorem Ω IR n is a domain with a sufficient smooth boundary Limiting case, i.e., p = n k 1 (q = +, if p = 1 so that k = n). Wp k (Ω) Lq(Ω), for all q [p,+ ), Super-limiting case, i.e., p > n/k, W k p (Ω) C B(Ω). When k = 1 + n/p IN, W k p (Ω) C 0,α (Ω), for all α (0, 1). If p = 1, we can have α = 1 - Lipschitz space.

Better target spaces Super-Limiting case: almost Lipschitz functions Brézis-Wainger [1980], H 1+n/p p (IR n ) C 0,λ( ) (IR n ) with λ(t) := t log t 1 p, t (0, 1 ), which implies, for some positive constant c, 2 f(x) f(y) c f H 1+n/p p x y log x y 1 p for all f H 1+n/p p (IR n ) and x, y IR n such that 0 < x y < 1 2.

Banach function norm ρ ρ : M + (IR n ) [0, ] ρ(f) = 0 f = 0 a.e. in IR n ρ(αf) = αρ(f) if α 0 ρ(f + g) ρ(f) + ρ(g) 0 g f a.e. = ρ(g) ρ(f) (lattice property) 0 f n ր f a.e. = ρ(f n) ր ρ(f) (Fatou property) E n < = ρ(χ E ) < E n < = R f(x) dx C E Eρ(f) f M + (IR n ), 0 < C E <

Banach function space X(IR n ) ρ Banach function norm on M(IR n ) BFS X(IR n ) = X ρ(ir n ) := {f M(IR n ) : ρ( f ) < } f X := ρ( f ) associate BFS X (IR n ) := X ρ (IR n ) associate norm ρ ρ (g) := sup{ R f(x)g(x) dx: ρ(f) 1} IR n Example 8 < Z 1/p f p (x) dx if 1 p < L p (IR n ), 1 p, ρ p(f) := IR : n ess sup IR nf(x) if p = (L p (Ω)) = L p (IR n ), 1/p + 1/p = 1

Non-increasing rearrangement f Definition (the distribution function) µ f (λ) := {x IR n : f(x) > λ} n, λ 0 Theorem Z f(x) q dx = q Z Ω 0 λ q 1 µ f (λ) dλ q (0, ). g equimeasurable with f if µ g(λ) = µ f (λ), λ 0 Definition (the non-increasing rearrangement) f (t) := inf{λ 0 : µ f (λ) t} = {λ 0; µ f (λ) > t} 1, t 0 f and f are equimeasurable: µ f (λ) = µ f (λ), λ 0.

Non-increasing rearrangement f : Example a 1 µ(b 3 ) µ f (s) a 2 a 3 f(x) µ(b 2 ) µ(b 1 ) A 2 A 3 A 1 x a 3 a 2 a 1 s 3X f(x) = a j χ Aj (x) j=1 µ f (s) = 3X kx µ(a j ) χ [ak+1,a k )(s) (a 4 := 0) k=1 j=1 {z } =:µ(b k ) a 1 f (t) a 2 3X f (t) = a j χ [µ(bj 1 ),µ(b j ))(t) (µ(b 0 ) := 0) a 3 j=1 µ(b 1 ) µ(b 2 ) µ(b 3 ) t

Non-increasing rearrangement f : Example t I 1 (x) = x 1, x IR 2 \{0} (I 1 ) (t) = ( t π ) 1/2, t > 0. I σ(x) = x σ n, x IR n \{0}, 0 < σ < n (I σ) (t) = ( t ω n ) σ/n 1, t > 0.

r.i. Banach function space BFS X is rearrangement invariant (r.i.) f X, g equimeasurable with f, then g X and g X = f X Luxemburg representation theorem = If X(IR n ) is a r.i. BFS, then a r.i. BFS X over ((0, ), µ 1 ) s.t. f X = f X f X(IR n ). X representation space of X(IR n ) Example Z f(x) p dx = IR n Z 0 f (t) p dt, 0 < p <, f M(IR n ) ess sup IR n f = f (0), f M(IR n ) L p (IR n ), 1 p are r.i. Banach function spaces

Lorentz-Karamata spaces Definition b slowly varying function on (0,+ ) (b SV(0,+ )): Lebesgue measurable function b : (0, + ) (0, + ); for each ǫ > 0, t ǫ b(t) f ǫ(t) ր and t ǫ b(t) f ǫ(t) ց.

Lorentz-Karamata spaces Definition b slowly varying function on (0,+ ) (b SV(0,+ )): Lebesgue measurable function b : (0, + ) (0, + ); for each ǫ > 0, t ǫ b(t) f ǫ(t) ր and t ǫ b(t) f ǫ(t) ց. Examples Let α, β R: b(t) = (1 + log t ) α (1 + log(1 + log t )) β ; b(t) = exp( log t α ), 0 < α < 1.

Lorentz-Karamata spaces Definition b slowly varying function on (0,+ ) (b SV(0,+ )): Lebesgue measurable function b : (0, + ) (0, + ); for each ǫ > 0, t ǫ b(t) f ǫ(t) ր and t ǫ b(t) f ǫ(t) ց. Lorentz-Karamata space L p,q;b (R n ) f p,q;b := t 1 p 1 q b(t) f (t) q;(0,+ ) Example b = l α - product of powers of iterated logs Logarithmic Bessel-potential-type spaces (Edmunds, Gurka and Opic, 1997).

Bessel-potential-type spaces Let σ > 0, p (1,+ ), q [1,+ ] and b SV(0,+ ). Let g σ be Bessel kernel. H σ L p,q;b (IR n ) = u : u = g σ f, f L p,q;b (IR n ) endowed with the (quasi-)norm u σ;p,q;b := f p,q;b. Notation: H 0 L p,q;b (IR n ) = L p,q;b (IR n ). Bessel Kernel g σ, com σ > 0: cg σ(ξ) = (2π) n/2 (1 + ξ 2 ) σ/2, ξ IR n. where the Fourier transform ˆf of a function f is given by ˆf(ξ) R := (2π) n/2 e iξ x f(x) dx IR n

Bessel-potential-type spaces Let σ > 0, p (1,+ ), q [1,+ ] and b SV(0,+ ). Let g σ be Bessel kernel. H σ L p,q;b (IR n ) = u : u = g σ f, f L p,q;b (IR n ) endowed with the (quasi-)norm u σ;p,q;b := f p,q;b. Notation: H 0 L p,q;b (IR n ) = L p,q;b (IR n ). Example b = l α - product of powers of iterated logs Logarithmic Bessel-potential-type spaces (Edmunds, Gurka and Opic, 1997).

Bessel-potential-type spaces Let σ > 0, p (1,+ ), q [1,+ ] and b SV(0,+ ). Let g σ be Bessel kernel. H σ L p,q;b (IR n ) = u : u = g σ f, f L p,q;b (IR n ) endowed with the (quasi-)norm u σ;p,q;b := f p,q;b. Notation: H 0 L p,q;b (IR n ) = L p,q;b (IR n ). Theorem [Neves 2004 (Edmunds, Gurka and Opic, 1997 - Logarithmic Bessel-potential-type spaces)] If k N, p (1, + ) and q (1, + ) H k L p,q;b (R n ) = W k L p,q;b (R n ) and the corresponding (quasi-)norms are equivalent, where W k L p,q;b (R n ) := {u : D α u L p,q;b (R n ), α k} and u W k L p,q;b (R n ) = X α k D α u p,q;b.

Notation h IR n, f C B (IR n ) h f(x) := f(x + h) f(x), x IR n k+1 h f(x) := h ( k hf)(x), x IR n, k IN ω k (f, t) := sup h t k hf, t 0. ω(f, t) := ω 1 (f, t). Definition (the class L k r ) the class L k r, k IN, r (0,+ ], consists of all continuous functions λ : (0, 1) (0,+ ) such that t 1/r 1 λ(t) = + (1) r;(0,1) t 1/r t k λ(t) < + (2) r;(0,1) k, r and λ are connected by (1) and (2)

the generalized Hölder space Definition k IN, r (0,+ ], λ L k r (IR n ) := {f C B (IR n ); f Λ k,λ( ),r (IR n ) < + } f Λ k,λ( ),r (IR n ) := f + t 1/r ω k (f, t) λ(t) Λ k;λ( ),r r;(0,1) If k = 1, we sometimes use Λ λ( ),r(ir n ) := Λ 1;λ( ),r (IR n ) and C 0,λ( ) (IR n ) := Λ λ( ), (IR n ). conditions (1) and (2) are natural the scale Λ k,λ( ),r contains both Hölder and Zygmund spaces λ(t) t α, α (0, 1] Λ 1,λ( ), (IR n ) C 0,α (IR n ) λ(t) t α, α > 0, k > α Λ k,λ( ), (IR n ) Z α (IR n )

Optimal Embeddings: super-limiting case Theorem [Gogatishvili, N. & Opic (2005)] Let σ [1, n + 1), max{1, n/σ} < p < n/(σ 1), q (1, + ), r [q,+ ] and let b SV(0, + ). Ω IR n a nonempty domain. λ(t) = t σ n/p [b(t n )] 1, t (0, 1]. (i) Then H σ L p,q;b (R n ) Λ λ( ),r(r n ). (ii) If lim t 0 + t λ(t) τ 1/r τ µ(τ) r;(0,t) = 0, H σ L p,q;b (R n ) / Λ µ(.),r(ω) (iii) Let q (0, q). H σ L p,q;b (R n ) / Λ λ( ),q (Ω). (i) - N. (2004); (i),(ii)- Logarithmic Bessel potential space-edmunds, Gurka and Opic (1997,2000) - r = + ;

Optimal Embeddings: super-limiting case Theorem [Gogatishvili, N. & Opic (2005)] Let σ (1, n + 1), p = n/(σ 1), q (1,+ ), r [q,+ ] and b SV(0, + ) such that t 1/q [b(t)] 1 q ;(0,1) = +. Z 2 «1/q +1/r λ r(t) = t [b(t n )] q /r τ 1 [b(τ)] q dτ, t (0, 1]. t n (i) Then H σ L n/(σ 1),q;b (R n ) Λ λr(.),r (R n ). τ 1/r τ λ r(τ) r;(0,t) t 0 + τ 1/r τ µ(τ) r;(0,t) (ii) If lim = 0, H σ L n/(σ 1),q;b (R n ) / Λ µ(.),r(ω) (iii) Let q (0, q). H σ L n/(σ 1),q;b (R n ) / Λ λ q (.),q (Ω). (i) - N. (2004); (i),(ii) - Logarithmic Bessel potential space-edmunds, Gurka and Opic (1997,2000) - r = + ;

Optimal Embeddings: super-limiting case [(i)] general ideas S(IR n ) is dense in H σ L p,q;b (IR n ). Let u S(R n ) H σ L p,q;b (IR n ). (Lifting argument) u x i H σ 1 L p,q;b (R n ), for i = 1,..., n. Use embedding results for limiting case and inequality of DeVore and Sharpley inequality Z t ω(u, t) u (σ n ) dσ, t > 0. 0 Use of appropriate Hardy-type inequalities. Hence u Λ λ( ),r u σ;p,q;b for all u S(R n ). Proofs: [(ii), (iii)] general ideas Use of appropriate extremal functions!

Optimal Embeddings: super-limiting case-examples Example Let n IN such that n 2 and let k IN such that 2 k n. Let p = n k 1, q (1,+ ) and r [q,+ ]. Let α IR and let b SV(0, + ) be defined by b(t) = (1 + log t ) α, t > 0. If α < 1 q, then with W k L p,q (log L) α (IR n ) Λ λq( ),q (IR n ) Λ λr( ),r (IR n ) C 0,λ ( ) (IR n ), λ r(t) = t(1 + log t ) 1 r + 1 q α and λ (t) = t(1 + log t ) 1 q α, t (0, 1]. If α = 1 q, then with W k L p,q (log L) α (IR n ) Λ λq( ),q (IR n ) Λ λr( ),r (IR n ) C 0,λ ( ) (IR n ), λ r(t) = t(1 + log t ) 1 r (1 + log(1 + log t )) 1 r + 1 q β, t (0, 1]; λ (t) = t(1 + log(1 + log t )) 1 q β, t (0, 1]. If α > 1 q then W k L p,q (log L) α (IR n ) Lip(IR n ).

Optimal Embeddings: limiting case Theorem (Gogatishvili, N. and Opic (2007)) Let 0 < σ < n, p = n/σ, q (1, + ) and b SV(0, + ) such that t 1/q [b(t)] 1 q ;(0,1) < +. Then where λ(t) := H σ L p,q;b (IR n ) C 0,λ( ) (IR n ). Z t n 0 [b(τ)] q! dt 1/q, t > 0. t Logarithmic Bessel potential space - Edmunds, Gurka and Opic (2005); 1 with αm > 1 q q and λ(t) = l αm m (t). H σ L p,q; 1 q,, 1 q,αm (IRn ) C 0,λ( ) (IR n ),

Bessel-potential spaces H σ X(IR n ) Let σ > 0 X = X(IR n ) = X(IR n, µ n)... r. i. BFS over (IR n, µ n) = X L 1 (IR n ) + L (IR n ) = u = f g σ is well defined for all f X H σ X(IR n ) := {u : u = f g σ, f X(IR n )} u H σ X := f X Notation: H 0 X(IR n ) = X(IR n ).

Optimal Embeddings: smoothness σ (0, n) Theorem [Gogatishvili, N. & Opic (2009) σ < 1, (2010) σ (0, n)] Let σ (0, n) and let X = X(IR n ) be a r. i. BFS. Assume that Ω is a domain in IR n. Then H σ X(IR n ) C(Ω) if and only if g σ X < +. Lemma [Gogatishvili, N. & Opic (2009) σ < 1, (2010) σ (0, n) ] Let σ (0, n), p (1, + ), q [1,+ ] and b SV(0, + ). If X = L p,q;b (IR n ), then if and only if either or p = n σ g σ X p > n σ and t 1 q (b(t)) 1 q ;(0,1) < +. (4) (3)

Optimal Embeddings: smoothness σ (0, n) Theorem [Gogatishvili, N. & Opic (2010)] Let σ (0, n) and let X = X(IR n ) = X(IR n, µ n) be a r. i. BFS such that g σ X < +. Put k := [σ] + 1, assume that r (0,+ ] and µ L k r. Then H σ X(IR n ) Λ k,µ( ),r (IR n ) if and only if Z t n t 1 r (µ(t)) 1 τ σ n 1 f (τ) dτ f X for all f X. r;(0,1) 0

Optimal Embeddings: smoothness σ (0, n) Proof: uses key estimates Let σ (0, n) and let X = X(IR n ) be a r. i. BFS such that g σ X < +. Then f g σ C(IR n ) for all f X and ω k (f g σ, t) Z t n 0 s σ n 1 f (s) ds t (0, 1), f X, where k [σ] + 1. Moreover, this estimate is sharp: given k IN, there are δ (0, 1) and α > 0 such that ω k (f g σ, t) Z t n 0 s σ n 1 f (s) ds t (0, 1), f X, where f(x) := f (β n x n )χ Cα(0,δ)(x), x = (x 1,, x n) IR n, C α(0, δ) := C α B(0, δ) with C α := {y IR n : y 1 > 0, y 2 1 > α P n i=2 y 2 i }.

Optimal Embeddings: limiting case-example Theorem [Gogatishvili, N. & Opic (2009) σ < 1, [Gogatishvili, N. & Opic (2010) σ (0, n) ] Let σ (0, n), p = n σ, q (1,+ ], r (0, + ], k = [σ] + 1, µ Lk r and let b SV(0, + ): t 1 q (b(t)) 1 q ;(0,1) < +. Let λ qr(x) := b q /r (x n ) If 1 < q r +, then Z x n 0! 1 b q (t) dt q + 1 r, x (0, 1]. t H σ L p,q;b (IR n ) Λ k,µ( ),r (IR n t 1 r (µ(t)) 1 r;(x,1) ) lim < +. x 0 + t 1 r (λ qr(t)) 1 r;(x,1) Remark When r [1,+ ], then Λ k,λqr( ),r (IR n ) = Λ 1,λqr( ),r (IR n ).

Embeddings: Examples in the limiting case Example Let σ (0, n), p = n, q (1,+ ] and r [q,+ ]. σ If α > 1 q, β IR, then H σ L p,q (log L) α (log log L) β (IR n ) Λ 1,λqr( ),r (IR n ) C 0,λq ( ) (IR n ), λ qr(t) = (1 + log t ) 1 r + 1 q α (1 + log(1 + log t )) β, t (0, 1]; λ q (t) = (1 + log t ) 1 q α (1 + log(1 + log t )) β, t (0, 1]. If α = 1 q, β > 1 q, then H σ L p,q (log L) α (log log L) β (IR n ) Λ 1,λqr( ),r (IR n ) C 0,λq ( ) (IR n ), λ qr(t) = (1 + log t ) 1 r (1 + log(1 + log t )) 1 r + 1 q β, t (0, 1]; λ q (t) = (1 + log(1 + log t )) 1 q β, t (0, 1].

Optimal Embeddings: super-limiting case-again! Theorem [Gogatishvili, N. & Opic (2009) σ < 1, [Gogatishvili, N. & Opic (2010) σ (0, n) ] Let σ (0, n), p ( n,+ ), q [1,+ ], b SV(0, + ), r (0, + ], k = [σ] + 1, σ and µ L k r. Let λ(x) := x σ p n (b(x n )) 1, x (0, 1]. If 1 q r +, then H σ L p,q;b (IR n ) Λ k,µ( ),r (IR n t ) lim 1 r (µ(t)) 1 r;(x,1) λ(x) < +. x 0 + Remark When r [1,+ ], then If σ = n + 1, then p Λ k,λ( ),r (IR n ) = Λ [σ p n ]+1,λ( ),r (IR n ). Λ k,λ( ),r (IR n ) = Λ 2,λ( ),q (IR n ).

Optimal Embeddings: super-limiting case-again! Corollary [Gogatishvili, N. & Opic (2010)] If σ (1, n), p = n, q (1, + ], r [q, + ] and b SV(0, + ) be such that σ 1 t 1/q [b(t)] 1 q ;(0,1) = +. Let λ(t) := t (b(t n )) 1, t (0, 1]. and let Then λ qr(t) := t [b(t n )] q /r Z 2 t n «1/q +1/r τ 1 [b(τ)] q dτ, t (0, 1]. H σ L p,q;b (IR n ) Λ 2,λ( ),q (IR n ) Λ 1,λqr( ),r (IR n ). Remark Previous Corollary improves Theorem 3.2 of (GNO, 2005), provided σ = 1 + n p < n and shows that the Brézis-Wainger embedding of the Sobolev space H 1+ n p p (IR n ), σ = 1 + n < n, into the space of almost Lipschitz functions is a p consequence of a better embedding whose target is the Zygmund space.

Example if n > 1, p = q, p > with n n 1, b(t) = lα 1 (t), t (0, + ), α < 1 p, H 1+ n p L p (log L) α (IR n ) Λ 2,λ( ),p (IR n ) Λ 1,λr( ),r (IR n ) Λ 1,λ ( ), (IR n ), and λ(x) := x l α 1 (x) for all x (0, 1], λ pr(x) = x (l 1 (x)) 1/p +1/r α, x (0, 1], r [p,+ ]. If α = 0, this example shows that the Brézis-Wainger embedding of the Sobolev space H 1+ n p p (IR n ), σ = 1 + n < n, into the space of almost Lipschitz functions is a p consequence of a better embedding whose target is the Zygmund space Λ 2,Id( ),n/k (IRn ) (Id( ) stands for the identity map).

References A. Gogatishvili, J. S. Neves and B. Opic, Optimality of embeddings of Bessel-potential-type spaces into into Lorentz-Karamata spaces, Proc. Royal Soc. of Edinburgh, 134A (2004), 1127 1147. A. Gogatishvili, J. S. Neves and B. Opic, Optimality of embeddings of Bessel-potential-type spaces into generalized Hölder spaces, Publ. Mat. 49 (2005), no. 2, 297 327. A. Gogatishvili, J. S. Neves and B. Opic, Sharpness and non-compactness of embeddings of Bessel-potential- type spaces, Math. Nachr. 280 (2007), no. 9-10, 1083 1093. A. Gogatishvili, J. S. Neves and B. Opic, Optimal embeddings and compact embeddings of Bessel-potential-type spaces, Math. Z. 262 (2009), no. 3, 645 682. A. Gogatishvili, J. S. Neves and B. Opic, Optimal embeddings of Bessel-potential-type spaces into generalized Hölder spaces involving k-modulus of smoothness, Potential Anal. 32 (2009), no.3, 201 228. A. Gogatishvili, J. S. Neves and B. Opic, Sharp estimates of the k-modulus of smoothness of Bessel potentials, J. London Math. Soc. 81 (2010), no. 3, 608 624 A. Gogatishvili, J. S. Neves and B. Opic, Compact embeddings of Bessel-potential-type spaces into generalized Hölder spaces involving k-modulus of smoothness, Z. Anal. Anwend. (to appear)