Imaging the IGM/CGM. Christopher Martin California Institute of Technology For CWI, KCWI, FIREBALL,ISTOS Teams. IGM Matters Heidelberg June 2014

Similar documents
MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH) Zheng Cai (UCSC)

THE SCIENCE ENABLED BY UV EMISSION LINE MAPPING OF THE INTERGALACTIC MEDIUM AND THE CIRCUM-GALACTIC MEDIUM

Galaxies Across Cosmic Time

Keck/Subaru Exchange Program Subaru Users Meeting January 20, 2011

High-Redshift Galaxies: A brief summary

QSO ABSORPTION LINE STUDIES with the HUBBLE SPACE TELESCOPE

BUILDING GALAXIES. Question 1: When and where did the stars form?

Illuminating the Sakura Web with Fluorescent Lyα Emission

The Intergalactic Medium: Overview and Selected Aspects

Diffuse Media Science with BigBOSS

Quasar Absorption Lines

Faint Lyman Alpha Emission at z~3

Galaxy Formation Now and Then

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004

Gas accretion in Galaxies

What matter(s) around galaxies? Shining a bright light on the cold phase of the CGM

Halo Gas Velocities Using Multi-slit Spectroscopy

How Galaxies Get Their Gas. Jason Tumlinson STScI Hubble Science Briefing December 9, 2010

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009

Galaxies 626. Lecture 5

Galaxies 626. Lecture 8 The universal metals

EUCLID Legacy with Spectroscopy

Lower Redshift Analogues of the Sources of Reionization

Lecture 9. Quasars, Active Galaxies and AGN

Age-redshift relation. The time since the big bang depends on the cosmological parameters.

Gas Accretion & Outflows from Redshift z~1 Galaxies

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg

Samuel Boissier, Laboratoire d'astrophysique de Marseille

Connection between phenomenon of active nucleus and disk dynamics in Sy galaxies

Observations of First Light

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ =

Feedback and Galaxy Formation

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations

Calling All Baryons. Extremely Low Light Level Observations of the Cosmic Web with Ultra-Large Ground-Based Optical Telescopes

ON THE RELEVANCE AND FUTURE OF UV ASTRONOMY. Ana I Gómez de Castro

Large-Scale Structure

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University

The parsec scale of. ac-ve galac-c nuclei. Mar Mezcua. International Max Planck Research School for Astronomy and Astrophysics

The Keck Cosmic Web Imager

The Star Formation Observatory (SFO)

Feedback and Feeding: The Physical Conditions and Kinematics of Gas within the High-Redshift CGM

The Galaxy Evolution Explorer. Michael Rich, UCLA. Samir Salim Ryan Mallery

Polarimetric Survey of Giant Ly Nebulae

The Circumgalactic Medium, the Intergalactic Medium, and Prospects with TMT

Astronomy 730. Evolution

Outline: Part II. The end of the dark ages. Structure formation. Merging cold dark matter halos. First stars z t Univ Myr.

The First Galaxies: Evolution drivers via luminosity functions and spectroscopy through a magnifying GLASS

Is the high-redshift inter-galactic medium metal enriched? Valentina D Odorico INAF Osservatorio Astronomico di Trieste

arxiv: v1 [astro-ph.ga] 28 Mar 2018

Measuring the evolution of the star formation rate efficiency of neutral atomic hydrogen gas from z ~1 4

THE GAS MASS AND STAR FORMATION RATE

Black Holes and Active Galactic Nuclei

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg

A new mechanism for the formation of PRGs

Origin of Bi-modality

Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies. Kazuaki Ota

High Energy Astrophysics

Chapter 15 The Milky Way Galaxy. The Milky Way

How to cheat with maps. perfectly sensible, honest version

High Redshift Universe

W. M. Keck Observatory Subaru Users Meeting

AGN-driven turbulence revealed by extreme [CII]158µm line cooling in radio-galaxies

HI clouds near the Galactic Center:

Mapping the z 2 Large-Scale Structure with 3D Lyα Forest Tomography

Active Galaxies & Quasars

Emission lines from galaxies in the Epoch of Reioniza5on

Lecture 27 The Intergalactic Medium

What HI tells us about Galaxies and Cosmology

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

FMOS. A Wide-field Multi-Object Infra-red Spectrograph for the Subaru Telescope. David Bonfield, Gavin Dalton

Feeding the Beast. Chris Impey (University of Arizona)

Introduction to SDSS -instruments, survey strategy, etc

Warm Molecular Hydrogen at high redshift with JWST

What HI tells us about Galaxies and Cosmology

HI Galaxy Science with SKA1. Erwin de Blok (ASTRON, NL) on behalf of The HI Science Working Group

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Intergalactic Medium and Lyman-Alpha / Metal Absorbers

MESSIER Unveiling galaxy formation

Formation of z~6 Quasars from Hierarchical Galaxy Mergers

Magnetic Fields in Evolving Spiral Galaxies and their Observation with the SKA

Galactic-Scale Winds. J. Xavier Prochaska Inster(stellar+galactic) Medium Program of Studies [IMPS] UCO, UC Santa Cruz.

Gas in and around z > 2 galaxies

Observational Evidence of AGN Feedback

Galaxy Formation and Evolution

Investigating the connection between LyC and Lyα emission and other indirect indicators

Astr 2310 Thurs. March 23, 2017 Today s Topics

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida

SURVEYS: THE MASS ASSEMBLY AND STAR FORMATION HISTORY

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Isotropy and Homogeneity

Wagg ea. [CII] in ALMA SV 20min, 16 ants. 334GHz. SMA 20hrs

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Active Galactic Nuclei

Science with the New Hubble Instruments. Ken Sembach STScI Hubble Project Scientist

Galactic Neighborhood and (Chandra-enabled) X-ray Astrophysics

Interpreting Galaxies across Cosmic Time with Binary Population Synthesis Models

Dwarf Galaxies in the nearby Universe

Star formation feedback in galaxy formation models. Yu Lu (KIPAC/Stanford)

Galaxy Evolution & Black-Hole Growth (review)

Transcription:

Imaging the IGM/CGM Christopher Martin California Institute of Technology For CWI, KCWI, FIREBALL,ISTOS Teams IGM Matters Heidelberg June 214

1. IGM tracing structure interconnecting galaxies Agertz, Teyssier, Moore 29 5 pkpc 3. Galaxy properties depend on recent gas flow (in/out) 4. Star forming galaxies fed by cold streams from Cosmic Web 2. Most baryons in IGM, Some in warm IGM 5. Star forming galaxies are ejecting gas & chemicals into Cosmic Web

Why Emission? Scale θ Size L = θd Mass M Overdensity δ Density n i = N i /L Ionization Γ/n Total density n = f(γ, n i ) Pressure p=nkt Filling Factor f Temperature T pressure Heating/cooling balance Timescales cooling t cool ~ T/nL Collapse time t ~ δ -1/2 Morphology outflows/inflows shocks, filaments Gas Kinematics Divergence Rotation Correlation of IGM w/ galaxies, AGN - Circum-galactic medium - Gas reservoirs - Inflow, accretion - Outflow, feedback Large Scale Structure Mapping large scale structure statistics P(k) v v r δ k phases (non-gaussian?)

Distance 11,354 Million Lt-yr Redshift 3. Wavelength 4864Å Distance 11,362 Million Lt-yr Redshift 3.1 Wavelength 4876Å Distance 11,37 Million Lt-yr Redshift 3.2 Wavelength 4888Å Map IGM/CGM using 2D Imaging Spectroscopy of Rest UV Lines: Ly, CIV, OVI

Observational Strategies Enabled by 2D Imaging Spectroscopy of Rest UV IGM/CGM Emission 1) Direct Detection à Maximize deep exposure volume à Optimal smoothing on extended scales 2) Stacking on known galaxies à redshift survey regions à large survey volume 3) Stacking on galaxy-traced filaments à redshift survey regions à low luminosity galaxies 4) Cross-correlate QSO abs/igm em à redshift survey regions à low luminosity galaxies 5) Cross-correlate Gal abs/igm em à redshift survey regions Lyman alpha Fluorescence (Cantalupo et al 25)

IGM Project Imaging & Mapping the Hidden Cosmic Web of Baryons ISTOS Explorer 125-28Å.5<z Lyα <1.2 FIREBALL Balloon 25-225Å.7<z Lyα <.85 KCWI Keck 35-1,5Å 2.<z Lyα <7.2 Time since Big Bang 12 1 7 5.7 3 2 1.5.9.75 Billion yrs Goals (rough chronological order) Redshift.1.3.7 1 2 3 4 6 8 (1) Discover & map Circum-Galactic Medium (CGM) & IGM-galaxy co-evolution ISTOS... F KCWI-B KCWI-R (2) Discover & map IGM emission from the hidden baryons (WHIM, cosmic web) Cosmic Epoch WHIM Grows, SF dies Star Formation Epoch SF Grows Reionization (3) Use IGM emission to trace large scale structure & cosmology (4) Detect & map emission from growing reionization HII regions Wavelength (µm).13.2.3.5.7 1. 1.2

FIREBALL Faint Intergalactic Redshifted Emission BALLoon Detecting the Circum-Galactic Medium at low redshift Caltech, JPL (Nikzad), LAM (Milliard), Columbia (Schiminovich), CNES Goals 1 Discover & map Circum-galactic medium to explore IGM-galaxy co-evolution 2 First demonstration of high QE UV photon-counting detectors and UV IFS and MOS

Targeting CGM Regions

ISTOS Imaging Spectroscopic Telescope for Origins Surveys Revealing the Hidden Cosmic Web of Baryons Caltech, JPL (Nikzad), LAM (Milliard), Columbia (Schiminovich), + Goals 1 Discover & map IGM emission from the hidden baryons in the Universe 2 Discover & map Circum-galactic medium to explore IGM-galaxy co-evolution 3 Decode the star formation laws at low and high redshift 4 Explore the extended, low surface brightness UV Universe

CWI Cosmic Web Imager Chris Mar1n, Anna Moore, Ma5 Ma5euzski, Patrick Morrissey, Daphne Chang, Shahin Rahman 3D, Low Surface Brightness Spectroscopy at Palomar Science Applica+ons (examples) 1 Map circum- galac1c medium 2<z<7 2 Map circum- QSO medium 3 Composi1on & age of stellar remnants (halos, intracluster light) 4 Low mass/surface brightn. universe 5 Galaxy kinematics & stellar pops 6 GRB/SNe host properties 7 Galactic superwinds/feedback Design ü Integral Field Spectrograph: 6 x 4 arcsec 2 ü R~5 spectrograph ü 1 channel,.38-.95 μm coverage w/ mul1ple gra1ngs ü Designed for low surface brightness emission ü Designed for precision sky subtrac1on ü First light 29

CWI : Image Slicer 6/17/11 11

S B Nod & Shuffle see Sembach and Tonry 1996

Comparison of Sky-Sky Test with Sky-Background e/12 s e/12 s 2 1 1 Sky Sky 2 2 4 6 Pixel 2 1 1 Src Sky 2 2 4 6 Pixel

Nod-and-Shuffle Frame Source Sky Source-Sky

CWI: Gas Flows in Galaxies Gas Flows that Trigger Star Formation Turbulent Gas the Regulates Star Formation? HβMosaic Image HβVelocity Map HβVelocity Dispersion Map M51 Whirlpool Galaxy -5 +5 2 5 v(residual) [km/s] σ v [km/s]

CWI: Gas Flows in Galactic Halos CWI Light bucket spectroscopy of NGC891 halo [OIII] Hβ

CWI: Diagnosing Stellar Halos CWI Light bucket spectroscopy of NGC891 stellar halo

CWI: Gas Flows to Circumgalactic Medium GALEX NUV M82 Superwind Outermost Shell CWI [NII] H [NII] 8 4 3 [NII] H [NII] 2 1 [NII] H [NII] 8 4 654 655 656 657 658 659 66

Circum-QSO Medium

Palomar CWI Inflow from Cosmic Web Filament to Quasar Caltech Press Release April 28 Results from Palomar Cosmic Web Imager Martin et al. 214a

Distance 11,354 Million Lt-yr Redshift 3. Wavelength 4864Å Distance 11,362 Million Lt-yr Redshift 3.1 Wavelength 4876Å Distance 11,37 Million Lt-yr Redshift 3.2 Wavelength 4888Å q l

CWI: Circum-QSO Medium Lyα emission near QSO 2 1 1 2 3 5 5 [arcsec] 4 3 2 1 4 2 2 4 4 3 2 1 2. 1 3 4. 1 3 6. 1 3 8. 1 3 1. 1 4 1.2 1 4 1.4 1 4 464 466 468 47 472 [Å] 4669Å 22

CWI: Circum-QSO Medium Lyα emission near QSO 2. 13 4. 13 6. 13 8. 13 1. 14 1.2 14 1.4 14 2 1 1 2 3 4 4669Å 2 2 4 23

CWI: Circum-QSO Medium Lyα emission near QSO 5 2. 1 3 4. 1 3 6. 1 3 8. 1 3 1. 1 4 1.2 1 4 1.4 1 4 2 4 1 1 1 2 [arcsec] 3 3 2 4 2 3 4 2 2 4 5 1 464 466 468 47 472 [Å] 4669Å 24

Lyα emission from IGM Cosmic Web 3 Million Lt-yrs 3 Million Lt-yrs 25

4 Caltech Press Release April 28 Results from Palomar Cosmic Web Imager Martin et al. 214b, ApJ, April 2.

4 L(Fil) L(Blob) Intensity Velocity Caltech Press Release April 28 Results from Palomar Cosmic Web Imager Martin et al. 214b, April 2.

4) How does gas get into galaxies? Cold Flows à Forming/Refueling Galaxies L[Lyα] ~.8 L[grav]? M DM = 3 1 12 M M DM = 1.3 1 13 M Rosdahl and Blaizot 212

Emission Models Spectral Image Plots 5 pkpc Cantalupo+5

Spectral-Image Plot Lya emission simulation Cantalupo+6 1.6 Million Light-years

CGM Emission & Kinematics z~3 Lyman α blob Emission Spectral Image 4669Å 31

CGM Emission & Kinematics z~3 Lyman α blob Emission Spectral Image 4669Å 32

Extended Cold-flow Disks produced by cold accretion from IGM Stewart+213 Velocity Profile

IGM/CGM Emission & Kinematics z~3 Lyman α blob is an extended, warped protodisk with inflow from filaments? Inner Disk Outer Disk/Ring 1 kpc Inflow from Cosmic Web 4669Å Martin+213, CWI IGM Paper III, in prep..

IGM/CGM Emission & Kinematics Kinematic profile at 45 DATA R45 MODEL R45 96 497 498 499 5 [Å] 96 497 498 499 5 [Å] Martin+213, CWI IGM Paper III, in prep..

IGM/CGM Emission & Kinematics Kinematic Profile at 2 DATA R MODEL R 1 1 2 96 497 498 499 5 [Å] 496 497 498 499 5 [Å] Martin+213, CWI IGM Paper III, in prep..

Lyman α Emission Profile Physical Diagnostics à N HI, σ, Δv w = f(n HI,σ,Δv) p = g(n HI ) = Δλ/w t = h(δv) = I + - I - I + + I - p=δλ/w t = w λ λ w λ t =.5 w λ w λ w λ

HeII 164Å vs. Ly alpha 1216Å Galaxy Formation & Gravitational Cooling HI 1216 HeII 164 Yang+6

4) How do galaxies get their gas? What is the role of hot vs. cold accretion over mass and time? log ρ ρ = log δ 5 4 3 ( ) Cold Mode Hot Mode Cold Mode Accretion 2 1 3 4 5 6 7 log( T[K] ) Birnboim & Dekel 23; Keres+24; Dekel & Birnboim 6, 8; Dekel+ 29

KCWI Flexible & Powerful 2D Spectroscopy DSS Stephan s Quintet 24 Slitlet spectra PCWI λ KCWI 3 selectable image slicers! Hβ Continuum Slicer Field of View Spatial Resolution Spectral Resolution Small 2 x 8.6 x.35.23 Å (R 2,) Medium 2 x 16.6 x.7.45 Å (R 1,) Large 2 x 32.6 x 1.4.9 Å (R 5,)

KCWI Keck Cosmic Web Imager 3D, Low Surface Brightness Spectroscopy at Keck Key Features Wide spectral range (35-15Å) Flexible field of view, image resolution Flexible spectral resolution, coverage Superb sky subtraction Excellent imaging & Dark Sky on Mauna Kea 1 st Light Spring 215 (KCWI-Blue) Science Applications (examples) Map circum-galactic medium 2<z<7 Map circum-qso medium Map z~6 reionization bubbles Composition & age of stellar remnants Unusual stellar nebulae Low mass galaxies Galaxy outskirts Galaxy kinematics & stellar age, composition Galaxy gas halos, fountains Stong lens systems Transient sky -- Explosions Galactic superwinds/feedback Exoplanet transit spectroscopy

Keck Cosmic Web Imager Team Steve Kaye Randy Bartos Patrick Morrissey CM Anna Moore Don Neill Sean Adkins Connie Rockosi Connie Rockosi Drew Phillips Drew Phillips Jason Fucik Bob Weber Alex Delacroix Matt Matuszewski Harland Epps Harland Epps Sean Adkins Valerie Duval Mike Kokorowski Matt Matuszewski 42

CWI/FIREBALL/ISTOS New tools for mapping IGM/CGM KCWI Keck 35-1,5Å 2.<z Lyα <7.2 Summary Evidence for Filamentary Extensions and Inflow into QSO Extended Filamentary Emission around LAB Strong HeII Emission 2 I[LU] 1 1 2 2 1 1 2