Super Fibonacci Graceful Labeling of Some Special Class of Graphs

Similar documents
Super Fibonacci Graceful Labeling

Super Mean Labeling of Some Classes of Graphs

Odd-even sum labeling of some graphs

SQUARE DIFFERENCE 3-EQUITABLE LABELING FOR SOME GRAPHS. Sattur , TN, India. Sattur , TN, India.

k-difference cordial labeling of graphs

SUPER MEAN NUMBER OF A GRAPH

On Odd Sum Graphs. S.Arockiaraj. Department of Mathematics. Mepco Schlenk Engineering College, Sivakasi , Tamilnadu, India. P.

CO PRIME PATH DECOMPOSITION NUMBER OF A GRAPH

Some Results on Super Mean Graphs

SOME EXTENSION OF 1-NEAR MEAN CORDIAL LABELING OF GRAPHS. Sattur , TN, India.

Graceful Labeling for Complete Bipartite Graphs

Magic Graphoidal on Class of Trees A. Nellai Murugan

Chapter 3. Antimagic Gl'aphs

Odd Sum Labeling of Tree Related Graphs

On the Gracefulness of Cycle related graphs

Graceful Related Labeling and its Applications

Pyramidal Sum Labeling In Graphs

Available Online through

Given any simple graph G = (V, E), not necessarily finite, and a ground set X, a set-indexer

ODD HARMONIOUS LABELING OF PLUS GRAPHS

Further Results on Square Sum Graph

H-E-Super magic decomposition of graphs

A Study on Integer Additive Set-Graceful Graphs

Graceful Tree Conjecture for Infinite Trees

Super Root Square Mean Labeling Of Disconnected Graphs

On cordial labeling of hypertrees

Total Dominator Colorings in Paths

On (k, d)-multiplicatively indexable graphs

Graceful Labeling of Some Theta Related Graphs

Sum divisor cordial labeling for star and ladder related graphs

ON SET-INDEXERS OF GRAPHS

Bulletin of the Iranian Mathematical Society

Further Studies on the Sparing Number of Graphs

Difference Cordial Labeling of Graphs Obtained from Double Snakes

arxiv: v2 [cs.dm] 27 Jun 2017

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA

International Journal of Scientific Research and Reviews

Harmonic Mean Labeling for Some Special Graphs

arxiv: v2 [math.co] 26 Apr 2014

Skolem Difference Mean Graphs

Strong Integer Additive Set-valued Graphs: A Creative Review

Combinatorial Labelings Of Graphs

On Graceful Labeling of Some Bicyclic Graphs

A Creative Review on Integer Additive Set-Valued Graphs

On Super Edge-magic Total Labeling of Modified Watermill Graph

Further results on relaxed mean labeling

Super edge-magic labeling of graphs: deficiency and maximality

CO TOTAL DOMINATION ON STRONG LINE CORPORATE GRAPHS. S.Padmashini 1 and K.Nagarajan 2. Sri S.R.N.M.College,

Department of Mathematics, Sri Krishna Institute of Technology, Bengaluru , Karnataka, India. *Correspondence author s

Q(a)- Balance Edge Magic of Sun family Graphs

Topological Integer Additive Set-Graceful Graphs

Power Mean Labeling of Identification Graphs

Mixed cycle-e-super magic decomposition of complete bipartite graphs

One Modulo Three Root Square Mean Labeling of Some Disconnected Graphs

One Modulo Three Harmonic Mean Labeling of Graphs

Mean Cordial Labeling of Tadpole and Olive Tree

New Constructions of Antimagic Graph Labeling

Strong Integer Additive Set-valued Graphs: A Creative Review

Some New Results on Super Stolarsky-3 Mean Labeling of Graphs

Malaya J. Mat. 2(3)(2014)

SUPER ROOT SQUARE MEAN LABELING OF SOME NEW GRAPHS

ON GLOBAL DOMINATING-χ-COLORING OF GRAPHS

Graceful polynomials of small degree

The Exquisite Integer Additive Set-Labeling of Graphs

Research Article Some New Results on Prime Cordial Labeling

Integral Root Labeling of Graphs 1 V.L. Stella Arputha Mary & 2 N. Nanthini

On (Super) Edge-Magic Total Labeling of Subdivision of K 1,3

Distance Two Labeling of Some Total Graphs

Maximal Square Sum Subgraph of a Complete Graph

Prime Cordial Labeling For Some Cycle Related Graphs

Group connectivity of certain graphs

d 2 -coloring of a Graph

ON CONSTRUCTIONS OF NEW SUPER EDGE-MAGIC GRAPHS FROM SOME OLD ONES BY ATTACHING SOME PENDANTS

INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS

Labeling, Covering and Decomposing of Graphs Smarandache s Notion in Graph Theory

DISTANCE LABELINGS: A GENERALIZATION OF LANGFORD SEQUENCES. 1. Introduction

Distance labelings: a generalization of Langford sequences

OF STAR RELATED GRAPHS

Double domination in signed graphs

NEW METHODS FOR MAGIC TOTAL LABELINGS OF GRAPHS

Z 4p - Magic labeling for some special graphs

Complementary Signed Dominating Functions in Graphs

Algorithms: COMP3121/3821/9101/9801

Lucky Edge Labeling of P n, C n and Corona of P n, C n

THE LOCATING-CHROMATIC NUMBER OF DISCONNECTED GRAPHS

ON SUPER EDGE-MAGIC LABELING OF SOME GRAPHS

The Connected and Disjoint Union of Semi Jahangir Graphs Admit a Cycle-Super (a, d)- Atimagic Total Labeling

On the super edge-magic deficiency of some families related to ladder graphs

Some Applications of pq-groups in Graph Theory

arxiv: v1 [math.co] 23 Apr 2015

PRIME LABELING OF SMALL TREES WITH GAUSSIAN INTEGERS. 1. Introduction

A Note on Disjoint Dominating Sets in Graphs

Chapter V DIVISOR GRAPHS

STRUCTURE OF THE SET OF ALL MINIMAL TOTAL DOMINATING FUNCTIONS OF SOME CLASSES OF GRAPHS

EQUITABLE COLORING OF SPARSE PLANAR GRAPHS

A Class of Vertex Transitive Graphs

Absolutely Harmonious Labeling of Graphs

L(2,1)-Labeling: An Algorithmic Approach to Cycle Dominated Graphs

(1) Which of the following are propositions? If it is a proposition, determine its truth value: A propositional function, but not a proposition.

Transcription:

International J.Math. Combin. Vol.1 (2011), 59-72 Super Fibonacci Graceful Labeling of Some Special Class of Graphs R.Sridevi 1, S.Navaneethakrishnan 2 and K.Nagarajan 1 1. Department of Mathematics, Sri S.R.N.M.College, Sattur - 626 20, Tamil Nadu, India 2. Department of Mathematics, V.O.C.College, Tuticorin - 628 008, Tamil Nadu, India E-mail: r.sridevi 2010@yahoo.com, snk.voc@gmail.com, k nagarajan srnmc@yahoo.co.in Abstract: A Smarandache-Fibonacci Triple is a sequence S(n), n 0 such that S(n) = S(n 1) + S(n 2), where S(n) is the Smarandache function for integers n 0. Certainly, it is a generalization of Fibonacci sequence. A Fibonacci graceful labeling and a super Fibonacci graceful labeling on graphs were introduced by Kathiresan and Amutha in 2006. Generally, let G be a (p,q)-graph and S(n) n 0 a Smarandache-Fibonacci Triple. An bijection f : V (G) {S(0), S(1), S(2),..., S(q)} is said to be a super Smarandache-Fibonacci graceful graph if the induced edge labeling f (uv) = f(u) f(v) is a bijection onto the set {S(1), S(2),..., S(q)}. Particularly, if S(n), n 0 is just the Fibonacci sequence F i, i 0, such a graph is called a super Fibonacci graceful graph. In this paper, we show that some special class of graphs namely Fn, t Cn t and Sm,n t are super fibonacci graceful graphs. Key Words: Smarandache-Fibonacci triple, graceful labeling, Fibonacci graceful labeling, super Smarandache-Fibonacci graceful graph, super Fibonacci graceful graph. AMS(2010): 05C78 1. Introduction By a graph, we mean a finite undirected graph without loops or multiple edges. A path of length n is denoted by P n+1. A cycle of length n is denoted by C n. G + is a graph obtained from the graph G by attaching pendant vertex to each vertex of G. Graph labelings, where the vertices are assigned certain values subject to some conditions, have often motivated by practical problems. In the last five decades enormous work has been done on this subject [1]. The concept of graceful labeling was first introduced by Rosa [6] in 1967. A function f is a graceful labeling of a graph G with q edges if f is an injection from the vertices of G to the set {0, 1, 2,..., q} such that when each edge uv is assigned the label f(u) f(v), the resulting edge labels are distinct. The notion of Fibonacci graceful labeling and Super Fibonacci graceful labeling were introduced by Kathiresan and Amutha [5]. We call a function f, a fibonacci graceful labeling of a graph G with q edges if f is an injection from the vertices of G to the set {0, 1, 2,..., F q }, where 1 Received November 1, 2010. Accepted February 25, 2011.

60 R.Sridevi, S.Navaneethakrishnan and K.Nagarajan F q is the q th fibonacci number of the fibonacci series F 1 = 1,F 2 = 2,F =, F 4 = 5,..., such that each edge uv is assigned the labels f(u) f(v), the resulting edge labels are F 1, F 2,...,...F q. An injective function f : V (G) {F 0, F 1,..., F q }, where F q is the q th fibonacci number, is said to be a super fibonacci graceful labeling if the induced edge labeling f(u) f(v) is a bijection onto the set {F 1, F 2,..., F q }. In the labeling problems the induced labelings must be distinct. So to introduce fibonacci graceful labelings we assume F 1 = 1, F 2 = 2, F =, F 4 = 5,..., as the sequence of fibonacci numbers instead of 0, 1, 2, []. Generally, a Smarandache-Fibonacci Triple is a sequence S(n), n 0 such that S(n) = S(n 1) + S(n 2), where S(n) is the Smarandache function for integers n 0 ([2]). A (p, q)- graph G is a super Smarandache-Fibonacci graceful graph if there is an bijection f : V (G) {S(0), S(1), S(2),..., S(q)} such that the induced edge labeling f (uv) = f(u) f(v) is a bijection onto the set {S(1), S(2),...,S(q)}. So a super Fibonacci graceful graph is a special type of Smarandache-Fibonacci graceful graph by definition. We have constructed some new types of graphs namely F n K + 1,m, C n P m, K 1,n K 1,2, F n P m and C n K 1,m and we proved that these graphs are super fibonacci graceful labeling in [7]. In this paper, we prove that F t n, C t n and S t m,n are super fibonacci graceful graphs. 2. Main Results In this section, we show that some special class of graphs namely F t n, C t n and S t m,n are super fibonacci graceful graphs. Definition 2.1 Let G be a (p, q) graph. An injective function f : V (G) {F 0, F 1, F 2,, F q }, where F q is the q th fibonacci number, is said to be a super fibonacci graceful graphs if the induced edge labeling f (uv) = f(u) f(v) is a bijection onto the set {F 1, F 2,...,F q }. Definition 2.2 The one point union of t copies of fan F n is denoted by F t n. The following theorem shows that the graph Fn t is a super fibonacci graceful graph. Theorem 2. F t n is a super fibonacci graceful graph for all n 2. Proof Let u 0 be the center vertex of Fn t and u j i, where i = 1, 2,...,t, j = 1, 2,..., n be the other vertices of Fn t. Also, V (G) = nt + 1 and E(G) = 2nt t. Define f : V (F n t) {F 0, F 1,...,F q } by f(u 0 ) = F 0, f(u j 1 ) = F 2j 1, 1 j n. For i = 2,,..., t, f(u j i ) = F 2n(i 1)+2(j 1) (i 2), 1 j n. We claim that all these edge labels are distinct. Let E 1 = {f (u 0 u j 1 ) : 1 j n}. Then E 1 = { f(u 0 ) f(u j 1 ) : 1 j n} = { f(u 0 ) f(u 1 1 ), f(u 0) f(u 2 1 ),..., f(u 0) f(u n 1 1 ), f(u 0 ) f(u n 1 ) } = { F 0 F 1, F 0 F,..., F 0 F 2n, F 0 F 2n 1 } = {F 1, F,...,F 2n, F 2n 1 }.

Super Fibonacci Graceful Labeling of Some Special Class of Graphs 61 Let E 2 = {f (u j 1 uj+1 1 ) : 1 j n 1}. Then E 2 = { f(u j 1 ) f(uj+1 1 ) : 1 j n 1} = { f(u 1 1 ) f(u2 1 ), f(u2 1 ) f(u 1 ),..., f(un 2 1 ) f(u n 1 1 ), f(u n 1 1 ) f(u n 1 ) } = { F 1 F, F F 5,..., F 2n 5 F 2n, F 2n F 2n 1 } = {F 2, F 4,..., F 2n 4, F 2n 2 }. For i = 2, we know that E = {f (u 0 u j 2 ) : 1 j n} = { f(u 0) f(u j 2 ) : 1 j n} = { f(u 0 ) f(u 1 2), f(u 0 ) f(u 2 2),..., f(u 0 ) f(u n 1 2 ), f(u 0 ) f(u n 2) } = { F 0 F 2n, F 0 F 2n+2,..., F 0 F 4n 4, F 0 F 4n 2 } = {F 2n, F 2n+2,..., F 4n 4, F 4n 2 }, E 4 = {f (u j 2 uj+1 2 ) : 1 j n 1} = { f(u j 2 ) f(uj+1 2 ) : 1 j n 1} = { f(u 1 2) f(u 2 2), f(u 2 2) f(u 2),..., f(u n 2 2 ) f(u n 1 2 ), f(u n 1 2 ) f(u n 2) } = { F 2n F 2n+2, F 2n+2 F 2n+4,..., F 4n 6 F 4n 4, F 4n 4 F 4n 2 } = {F 2n+1, F 2n+,..., F 4n 5, F 4n }. For i =, let E 5 = {f (u 0 u j ) : 1 j n}. Then E 5 = { f(u 0 ) f(u j ) : 1 j n} = { f(u 0 ) f(u 1 ), f(u 0) f(u 2 ),..., f(u 0) f(u n 1 ), f(u 0 ) f(u n ) } = { F 0 F 4n 1, F 0 F 4n+1,..., F 0 F 6n 5, F 0 F 6n } = {F 4n 1, F 4n+1,..., F 6n 5, F 6n }. Let E 6 = {f (u j uj+1 ) : 1 j n 1}. Then E 6 = { f(u j ) f(uj+1 ) : 1 j n 1} = { f(u 1 ) f(u2 ), f(u2 ) f(u ),..., f(un 2 ) f(u n 1 ), f(u n 1 ) f(u n ) } = { F 4n 1 F 4n+1, F 4n+1 F 4n+,..., F 6n 7 F 6n 5, F 6n 5 F 6n } = {F 4n, F 4n+2,..., F 6n 6, F 6n 4 }, Now, for i = t 1, let E t 1 = {f (u 0 u j t 1 ) : 1 j n}. Then E t 1 = { f(u 0 ) f(u j t 1 ) : 1 j n} = { f(u 0 ) f(u 1 t 1 ), f(u 0) f(u 2 t 1 ),..., f(u 0) f(u n 1 t 1 ), f(u 0) f(u n t 1 ) } = { F 0 F 2nt 4n t+, F 0 F 2nt 4n t+5,..., F 0 F 2nt 2n t 1, F 0 F 2nt 2n t+1 } = {F 2nt 4n t+, F 2nt 4n t+5,..., F 2nt 2n t 1, F 2nt 2n t+1 }.

62 R.Sridevi, S.Navaneethakrishnan and K.Nagarajan Let E t 1 = {f (u j t 1 uj+1 t 1 ) : 1 j n 1}. Then E t 1 = { f(u j t 1 ) f(uj+1 t 1 ) : 1 j n 1} = { f(u 1 t 1) f(u 2 t 1), f(u 2 t 1) f(u t 1),..., f(u n 2 t 1 ) f(un 1 t 1 ), f(un 1 t 1 ) f(un t 1 ) } = { F 2nt 4n t+ F 2nt 4n t+5, F 2nt 4n t+5 F 2nt 4n t+7,..., F 2nt 2n t F 2nt 2n t 1, F 2nt 2n t 1 F 2nt 2n t+1 } = {F 2nt 4n t+4, F 2nt 4n t+6,..., F 2nt 2n t 2, F 2nt 2n t }. F 4 4 : F 22 F 2 F 24 F 25 F 26 F 27 F 28 F 26 F 22 F 24 F 28 F 21 F 20 F 19 F 21 F 19 F 0 F 1 F F 1 F 2 F F 18 F 17 F 17 F 5 F 4 F 16 F 15 F 7 F 5 F 15 F 14 F 12 F 10 F 8 F 6 F 7 F 14 F 1 F 12 F 11 F 10 F 9 F 8 Fig.1 For i = t, let E t = {f (u 0 u j t ) : 1 j n}. Then E t = { f(u 0 ) f(u j t ) : 1 j n} = { f(u 0 ) f(u 1 t), f(u 0 ) f(u 2 t),..., f(u 0 ) f(u n 1 t ), f(u 0 ) f(u n t ) } = { F 0 F 2nt 2n t+2, F 0 F 2nt 2n t+4,..., F 0 F 2nt t 2, F 0 F 2nt t } = {F 2nt 2n t+2, F 2nt 2n t+4,..., F 2nt t 2, F 2nt t }.

Super Fibonacci Graceful Labeling of Some Special Class of Graphs 6 Let E t = {f (u j t uj+1 t ) : 1 j n 1}. Then E t = { f(u j t) f(u j+1 t ) : 1 j n 1} = { f(u 1 t ) f(u2 t ), f(u2 t ) f(u t ),..., f(un 2 t = { F 2nt 2n t+2 F 2nt 2n t+4, F 2nt 2n t+4 F 2nt 2n t+6,..., F 2nt t 4 F 2nt t 2, F 2nt t 2 F 2nt t } = {F 2nt 2n t+, F 2nt 2n t+5,..., F 2nt t, F 2nt t 1 }. ) f(u n 1 t ), f(u n 1 t ) f(u n t ) } Therefore, E = E 1 E 2,..., E t 1 E t = {F 1, F 2,..., F 2nt t } Thus, the edge labels are distinct. Therefore, Fn t admits super fibonacci graceful labeling. For example the super fibonacci graceful labeling of F 4 4 is shown in Fig.1. Definition 2.4 The one point union of t cycles of length n is denoted by C t n. Theorem 2.5 C t n is a super fibonacci graceful graph for n 0(mod). Proof Let u 0 be the one point union of t cycles and u 1, u 2,...,u t(n 1) be the other vertices of C t n. Also, V (G) = t(n 1) + 1, E(G) = nt. Define f : V (C t n) {F 0, F 1,...,F q } by f(u 0 ) = F 0. For i = 1, 2,..., t, f(u (n 1)(i 1)+(j 1)+1 ) = F nt n(i 1) 2(j 1), 1 j 2. For s = 1, 2,, n, i = 1, 2,..., t, f(u (n 1)(i 1)+j) = F nt 1 n(i 1) 2(j s 2)+(s 1), s j s + 2. Next, we claim that the edge labels are distinct. We find the edge labeling between the vertex u 0 and starting vertex of each copy of (u (n 1)(i 1)+1 ). Let E 1 = {f (u 0 u (n 1)(i 1)+1 ) : 1 i t}. Then E 1 = { f(u 0 ) f(u (n 1)(i 1)+1 ) : 1 i t} = { f(u 0 ) f(u 1 ), f(u 0 ) f(u n ),..., f(u 0 ) f(u nt 2n t+ ), f(u 0 ) f(u nt n t+2 ) } = { F 0 F nt, F 0 F nt n,..., F 0 F 2n, F 0 F n } = {F nt, F nt n,...,f 2n, F n } Now we determine the edge labelings between the vertex u (n 1)(i 1)+1 and the vertex u (n 1)(i 1)+2 of each copy. Let E 2 = {f (u (n 1)(i 1)+1 u (n 1)(i 1)+2 ) : 1 i t}. Then E 2 = { f(u (n 1)(i 1)+1 ) f(u (n 1)(i 1)+2 ) : 1 i t} = { f(u 1 ) f(u 2 ), f(u n ) f(u n+1 ),..., f(u nt 2n t+ ) f(u nt 2n t+4 ), f(u nt n t+2 ) f(u nt n t+ ) } = { F nt F nt 2, F nt n F nt n 2,..., F 2n F 2n 2, F n F n 2 } = {F nt 1, F nt n 1,..., F 2n 1, F n 1 } We calculate the edge labeling between the vertex u (n 1)(i 1)+2 and starting vertex u (n 1)(i 1)+

64 R.Sridevi, S.Navaneethakrishnan and K.Nagarajan of the first loop. Let E = {f (u (n 1)(i 1)+2 u (n 1)(i 1)+ ) : 1 i t}. Then E = { f(u (n 1)(i 1)+2 ) f(u (n 1)(i 1)+ ) : 1 i t} = { f(u 2 ) f(u ), f(u n+1 ) f(u n+2 ), f(u 2n ) f(u 2n+1 ),..., f(u nt 2n t+4 ) f(u nt 2n t+5 ), f(u nt n t+ ) f(u nt n t+4 ) } = { F nt 2 F nt 1, F nt n 2 F nt n 1, F nt 2n 2 F nt 2n 1,..., F 2n 2 F 2n 1, F n 2 F n 1 } = {F nt, F nt n, F nt 2n,...,F 2n, F n }. Now, for s = 1, let E 4 = t {f (u (n 1)(i 1)+j u (n 1)(i 1)+j+1 ) : j 4}. Then i=1 E 4 = t i=1{ f(u (n 1)(i 1)+j ) f(u (n 1)(i 1)+j+1 ) : j 4} = { f(u ) f(u 4 ), f(u 4 ) f(u 5 ) } { f(u n+2 ) f(u n+ ), f(u n+ ) f(u n+4 ) },..., { f(u nt 2n t+5 ) f(u nt 2n t+6 ), f(u nt 2n t+6 ) f(u nt 2n t+7 ) } { f(u nt n t+4 ) f(u nt n t+5 ), f(u nt n t+5 ) f(u nt n t+6 ) } = { F nt 1 F nt, F nt F nt 5 } { F nt n 1 F nt n, F nt n F nt n 5 },..., { F 2n 1 F 2n, F 2n F 2n 5 } { F n 1 F n, F n F n 5 } = {F nt 2, F nt 4 } {F nt n 2, F nt n 4 },..., {F 2n 2, F 2n 4 } {F n 2, F n 4 } For the edge labeling between the end vertex (u (n 1)(i 1)+5 ) of the first loop and starting vertex (u (n 1)(i 1)+6 ) of the second loop, calculation shows that E4 1 = { f(u (n 1)(i 1)+5 ) f(u (n 1)(i 1)+6 ) : 1 i t} = { f(u 5 ) f(u 6 ), f(u n+4 ) f(u n+5 ),..., f(u nt 2n t+7 ) f(u nt 2n t+8 ), f(u nt n t+6 ) f(u nt n t+7 ) } = { F nt 5 F nt 4, F nt n 5 F nt n 4,..., F 2n 5 F 2n 4, F n 5 F n 4 } = {F nt 6, F nt n 6,..., F 2n 6, F n 6 } For s = 2, let E 5 = t i=1 {f (u (n 1)(i 1)+j u (n 1)(i 1)+j+1 ) : 6 j 7}. Then

Super Fibonacci Graceful Labeling of Some Special Class of Graphs 65 E 5 = t i=1{ f(u (n 1)(i 1)+j ) f(u (n 1)(i 1)+j+1 ) : 6 j 7} = { f(u 6 ) f(u 7 ), f(u 7 ) f(u 8 ) } { f(u n+5 ) f(u n+6 ), f(u n+6 ) f(u n+7 ) },..., f(u nt 2n t+8 ) f(u nt 2n t+9 ), f(u nt 2n t+9 ) f(u nt 2n t+10 ) } { f(u nt n t+7 ) f(u nt n t+8 ), f(u nt n t+8 ) f(u nt n t+9 ) } = { F nt 4 F nt 6, F nt 6 F nt 8 } { F nt n 4 F nt n 6, F nt n 6 F nt n 8 },..., { F 2n 4 F 2n 6, F 2n 6 F 2n 8 } { F n 4 F n 6, F n 6 F n 8 } = {F nt 5, F nt 7 } {F nt n 5, F nt n 7 },..., {F 2n 5, F 2n 7 } {F n 5, F n 7 } Similarly, for finding the edge labeling between the end vertex (u (n 1)(i 1)+8 ) of the second loop and starting vertex (u (n 1)(i 1)+9 ) of the third loop, calculation shows that For s = n Then E 1 5 = { f(u (n 1)(i 1)+8 ) f(u (n 1)(i 1)+9 ) : 1 i t} = { f(u 8 ) f(u 9 ), f(u n+7 ) f(u n+8 ),..., f(u nt 2n t+10 ) f(u nt 2n t+11 ), f(u nt n t+9 ) f(u nt n t+10 ) } = { F nt 8 F nt 7, F nt n 8 F nt n 7,..., F 2n 8 F 2n 7, F n 8 F n 7 } = {F nt 9, F nt n 9,...,F 2n 9, F n 9 },, 1, let E n 1 = t i=1 {f (u (n 1)(i 1)+j u (n 1)(i 1)+j+1 ) : n 6 j n 5}. E n 1 = t i=1{ f(u (n 1)(i 1)+j ) f(u (n 1)(i 1)+j+1 ) : n 6 j n 5} = { f(u n 6 ) f(u n 5 ), f(u n 5 ) f(u n 4 ) } { f(u 2n 7 ) f(u 2n 6 ), f(u 2n 6 ) f(u 2n 5 ) },..., { f(u nt n t 4 ) f(u nt n t ), f(u nt n t ) f(u nt n t 2 ) } { f(u nt t 5 ) f(u nt t 4 ), f(u nt t 4 ) f(u nt t ) } = { F nt n+8 F nt n+6, F nt n+6 F nt n+4 } { F nt 2n+8 F nt 2n+6, F nt 2n+6 F nt 2n+4 },..., { F n+8 F n+6, F n+6 F n+4 } { F 8 F 6, F 6 F 4 } = {F nt n+7, F nt n+5 } {F nt 2n+7, F nt 2n+5 },..., {F n+7, F n+5 } {F 7, F 5 }

66 R.Sridevi, S.Navaneethakrishnan and K.Nagarajan We calculate the edge labeling between the end vertex (u (n 1)(i 1)+n 4 ) of the ( n 1) th loop and starting vertex (u (n 1)(i 1)+n ) of the ( n )rd loop as follows. E 1 n 1 = { f(u (n 1)(i 1)+n 4 ) f(u (n 1)(i 1)+n ) : 1 i t} = { f(u n 4 ) f(u n ), f(u 2n 5 ) f(u 2n 4 ),..., f(u nt n t+2 ) f(u nt n t 1 ), f(u nt t ) f(u nt t 2 ) } = { F nt n+6 F nt n+5, F nt 2n+4 F nt 2n+5,..., F n+4 F n+5, F 4 F 5 } = {F nt n+4, F nt 2n+,...,F n+, F } For s = n, let E n Then = t {f (u (n 1)(i 1)+j u (n 1)(i 1)+j+1 ) : n j n 2}. i=1 E n = t i=1{ f(u (n 1)(i 1)+j ) f(u (n 1)(i 1)+j+1 ) : n j n 2} = { f(u n ) f(u n 2 ), f(u n 2 ) f(u n 1 ) } { f(u 2n 4 ) f(u 2n ), f(u 2n ) f(u 2n 2 ) },..., f(u nt n t 1 ) f(u nt n t ), f(u nt n t ) f(u nt n t+1 ) } { f(u nt t 2 ) f(u nt t 1 ), f(u nt t 1 ) f(u nt t ) } = { F nt n+5 F nt n+, F nt n+ F nt n+1 } { F nt 2n+5 F nt 2n+, F nt 2n+ F nt 2n+1 },..., { F n+5 F n+, F n+ F n+1 } { F 5 F, F F 1 } = {F nt n+4, F nt n+2 } {F nt 2n+4, F nt 2n+2 },..., {F n+4, F n+2 } {F 4, F 2 } Calculation shows the edge labeling between the end vertex (u (n 1)(i 1)+n 1 ) of the ( n )rd loop and the vertex u 0 are E = { f(u (n 1)(i 1)+n 1 ) f(u 0 ) : 1 i t} = { f(u n 1 ) f(u 0 ), f(u 2n 2 ) f(u 0 ),..., f(u nt n t+1 ) f(u 0 ), f(u nt t ) f(u 0 ) } = { F nt n+1 F 0, F nt 2n+1 F 0,..., F n+1 F 0, F 1 F 0 } = {F nt n+1, F nt 2n+1,...,F n+1, F 1 }. Therefore, E = (E 1 E 2,..., E n ) (E4 1 E5, 1..., E 1 n 1) E = {F 1, F 2,...,F nt } Thus, the edge labels are distinct. Therefore, Cn t admits a super fibonacci graceful labeling.

Super Fibonacci Graceful Labeling of Some Special Class of Graphs 67 C 2 9 : F 6 F 7 F 8 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 1 F 14 F 12 F 1 10 F9F F 5 F 0 F 14 F 18 F 1 F 4 F F 5 F 4 F F 2 F 1 F 18 F 17 F 16 F 17 F 15 F 16 F 15 Fig.2 For example the super fibonacci graceful labeling of C9 2 is shown in Fig.2. Definition 2.6([4]) Let S m,n stand for a star with n spokes in which each spoke is a path of length m. Definition 2.7 The one point union of t copies of S m,n is denoted by S t m,n. Next theorem shows that the graph Sm,n t is a super Fibonacci graceful graph. Theorem 2.8 Sm,n t is a super fibonacci graceful graph for all m, n, when n 1(mod). Proof Let v 0 be the center of the star and vj i, i = 1, 2,...,mt, j = 1, 2,...,n be the other vertices of Sm,n t. Also, V (G) = mnt + 1 and E(G) = mnt. Define f : V (St m,n ) {F 0, F 1,...,F q } by f(v 0 ) = F 0. For i = 1, 2,...,mt, f(vj i) = F mnt n(i 1) 2(j 1), 1 j 2. For i = 1, 2,..., mt, F(vj i) = F mnt (2j n 1) n(i 1), n 1 j n. For s = 1, 2,..., n 4, i = 1, 2,...,mt f(vj i) = F mnt 1 n(i 1) 2(j s 2)+(s 1), s j s+2. We claim that all these edge labels are distinct. Let E 1 = {f (v 0 v1 i ) : 1 i mt}. Calculation shows that E 1 = { f(v 0 ) f(v1 i ) : 1 i mt} = { f(v 0 ) f(v 1 1), f(v 0 ) f(v 2 1),..., f(v 0 ) f(v mt 1 1 ), f(v 0 ) f(v mt 1 ) } = { F 0 F mnt, F 0 F mnt n,..., F 0 F 2n, F 0 F n } = {F mnt, F mnt n,..., F 2n, F n }. Let E 2 = {f (v i 1v i 2) : 1 i mt}. Then E 2 = { f(v1 i ) f(vi 2 ) : 1 i mt} = { f(v 1 1) f(v 1 2), f(v 2 1) f(v 2 2),..., f(v mt 1 1 ) f(v mt 1 2 ), f(v mt 1 ) f(vmt 2 ) } = { F mnt F mnt 2, F mnt n F mnt n 2,..., F 2n F 2n 2, F n F n 2 } = {F mnt 1, F mnt n 1,..., F 2n 1, F n 1 }

68 R.Sridevi, S.Navaneethakrishnan and K.Nagarajan For the edge labeling between the vertex v2 i and starting vertex vi E = {f (v2v i ) i : 1 i mt}. Calculation shows that of the first loop, let E = { f(v2 i ) f(vi ) : 1 i mt} = { f(v2 1 ) f(v1 ), f(v2 2 ) f(v2 ),..., f(vmt 1 2 ) f(v mt 1 ), f(v mt 2 ) f(v mt ) } = { F mnt 2 F mnt 1, F mnt n 2 F mnt n 1,..., F 2n 2 F 2n 1, F n 2 F n 1 } = {F mnt, F mnt n,...,f 2n, F n }. For s = 1, let E 4 = mt i=1 {f (vj ivi j+1 ) : j 4}. Then E 4 = mt i=1 { f(vi j ) f(vi j+1 ) : j 4} = { f(v 1 ) f(v 1 4), f(v 1 4) f(v 1 5) } { f(v 2 ) f(v 2 4), f(v 2 4) f(v 2 5) },..., { f(v mt 1 ) f(v mt 1 4 ), f(v mt 1 4 ) f(v mt 1 5 ) } { f(v mt ) f(v mt 4 ), f(v mt 4 ) f(v mt 5 ) } = { F mnt 1 F mnt, F mnt F mnt 5 } { F mnt n 1 F mnt n, F mnt n F mnt n 5 },..., { F 2n 1 F 2n, F 2n F 2n 5 } { F n 1 F n, F n F n 5 } = {F mnt 2, F mnt 4 } {F mnt n 2, F mnt n 4 },..., {F 2n 2, F 2n 4 } {F n 2, F n 4 }. We find the edge labeling between the vertex v5 i of the first loop and starting vertex v6 i of the second loop. Let E4 1 = {f (v5 ivi 6 ) : 1 i mt}. Then E4 1 = { f(v5 i ) f(vi 6 ) : 1 i mt} = { f(v 1 5) f(v 1 6), f(v 2 5) f(v 2 6),..., f(v mt 1 5 ) f(v mt 1 6 ), f(v mt 5 ) f(vmt 6 ) } = { F mnt 5 F mnt 4, F mnt n 5 F mnt n 4,..., F 2n 5 F 2n 4, F n 5 F n 4 } = {F mnt 6, F mnt n 6,..., F 2n 6, F n 6 }. For s = 2, let E 5 = mt i=1 {f (vj ivi j+1 ) : 6 j 7}. Then

Super Fibonacci Graceful Labeling of Some Special Class of Graphs 69 E 5 = mt i=1{ f(v i j) f(v i j+1) : 6 j 7} = { f(v 1 6 ) f(v1 7 ), f(v1 7 ) f(v1 8 ) } { f(v2 6 ) f(v2 7 ), f(v2 7 ) f(v2 8 ) },...,...,{ f(v mt 1 6 ) f(v mt 1 7 ), f(v mt 1 7 ) f(v mt 1 8 ) } { f(v mt 6 ) f(v mt 7 ), f(v mt 7 ) f(v mt 8 ) } = { F mnt 4 F mnt 6, F mnt 6 F mnt 8 } { F mnt n 4 F mnt n 6, F mnt n 6 F mnt n 8 },..., { F 2n 4 F 2n 6, F 2n 6 F 2n 8 } { F n 4 F n 6, F n 6 F n 8 } = {F mnt 5, F mnt 7 } {F mnt n 5, F mnt n 7 },..., {F 2n 5, F 2n 7 } {F n 5, F n 7 }. Let E5 1 = {f (v8 ivi 9 ) : 1 i mt}. Calculation shows that the edge labeling between the vertex v8 i of the second loop and starting vertex vi 9 of the third loop are For s = n 4 E5 1 = { f(v8 i ) f(vi 9 ) : 1 i mt} = { f(v 1 8) f(v 1 9), f(v 2 8) f(v 2 9),..., f(v mt 1 8 ) f(v mt 1 9 ), f(v mt 8 ) f(vmt 9 ) } = { F mnt 8 F mnt 7, F mnt n 8 F mnt n 7,..., F 2n 8 F 2n 7, F n 8 F n 7 } = {F mnt 9, F mnt n 9,..., F 2n 9, F n 9 }. 1, let E n 4 1 = mt i=1 {f (vj ivi j+1 ) : n 7 j n 6}. Then E n 4 1 = mt i=1{ f(vj) i f(vj+1) i : n 7 j n 6} = { f(vn 7 1 ) f(v1 n 6 ), f(v1 n 6 ) f(v1 n 5 ) } { f(v 2 n 7) f(v 2 n 6), f(v 2 n 6) f(v 2 n 5) },..., { f(vn 7 mt 1 ) f(vmt 1 n 6 ), f(vmt 1 { f(vn 7 mt ) f(vmt n 6 ), f(vmt n 6 ) f(vmt n 5 ) } n 6 ) f(vmt 1 = { F mnt n+9 F mnt n+7, F mnt n+7 F mnt n+5 } n 5 ) } { F mnt 2n+9 F mnt 2n+7, F mnt 2n+7 F mnt 2n+5 },..., { F n+9 F n+7, F n+7 F n+5 } { F 9 F 7, F 7 F 5 } = {F mnt n+8, F mnt n+6 } {F mnt 2n+8, F mnt 2n+6 },..., {F n+8, F n+6 } {F 8, F 6 }. Similarly, for the edge labeling between the end vertex vn 5 i of the (n 4 1) th loop and starting vertex vn 4 i of the (n 4 )rd loop, let E 1 = {f n 4 (v i 1 n 5 vi n 4 ) : 1 i mt}. Calcula-

70 R.Sridevi, S.Navaneethakrishnan and K.Nagarajan tion shows that E 1 n 4 1 = { f(vn 5 i ) f(vi n 4 ) : 1 i mt} = { f(vn 5) 1 f(vn 4), 1 f(vn 5) 2 f(vn 4), 2..., f(v mt 1 Now for s = n 4, let E n 4 E n 4 n 5 ) f(vmt 1 n 4 ), f(vmt n 5 ) f(vmt n 4 ) } = { F mnt n+5 F mnt n+6, F mnt 2n+5 F mnt 2n+6,..., F n+5 F n+6, F 5 F 6 } = {F mnt n+4, F mnt 2n+4,..., F n+4, F 4 }. {f (vj ivi j+1 ) : n 4 j n }. Then = mt i=1 = mt i=1 { f(vi j ) f(vi j+1 ) : n 4 j n } = { f(v 1 n 4 ) f(v1 n ), f(v1 n ) f(v1 n 2 ) } { f(v 2 n 4) f(v 2 n ), f(v 2 n ) f(v 2 n 2) },..., { f(vn 4 mt 1 ) f(vmt 1 n ), f(vmt 1 n 4 ) f(vmt 1 n ) } { f(v mt n 4) f(v mt n ), f(v mt n ) f(v mt n 2) } = { F mnt n+6 F mnt n+4, F mnt n+4 F mnt n+2 } { F mnt 2n+6 F mnt 2n+4, F mnt 2n+4 F mnt 2n+2 },..., { F n+6 F n+4, F n+4 F n+2 } { F 6 F 4, F 4 F 2 } = {F mnt n+5, F mnt n+ } {F mnt 2n+5, F mnt 2n+ },..., {F n+5, F n+ } {F 5, F }. We find the edge labeling between the end vertex vn 2 i of the ( n 4 )rd loop and the vertex vn 1 i. Let E 1 = {f (vn 2 i vi n 1 ) : 1 i mt}. Then E1 = { f(vn 2 i ) f(vi n 1 ) : 1 i mt} = { f(v 1 n 2) f(v 1 n 1), f(v 2 n 2) f(v 2 n 1),..., f(v mt 1 n 2 ) f(vmt 1 n 1 ), f(v mt n 2 ) f(vmt n 1 ) } = { F mnt n+2 F mnt n+, F mnt 2n+2 F mnt 2n+,..., F n+2 F n+, F 2 F } = {F mnt n+1, F mnt 2n+1,...,F n+1, F 1 }. Let E 2 = {f (v i n 1v i n) : 1 i mt}. Then E 2 = { f(v i n 1) f(v i n) : 1 i mt} = { f(v 1 n 1 ) f(v1 n ), f(v2 n 1 ) f(v2 n ),..., f(v mt 1 n 1 ) f(vmt 1 n ), f(vn 1) mt f(vn mt ) } = { F mnt n+ F mnt n+1, F mnt 2n+ F mnt 2n+1,..., F n+ F n+1, F F 1 } = {F mnt n+2, F mnt 2n+2,..., F n+2, F 2 }.

Super Fibonacci Graceful Labeling of Some Special Class of Graphs 71 Therefore, E = (E 1 E 2,..., E n 4 ) (E4 1 E5, 1..., E 1 n 4 1) E 1 E2 = {F 1, F 2,...,F mnt } Thus, S t m,n admits a super fibonacci graceful labeling. For example the super fibonacci graceful labeling of S 2,7 is shown in Fig.. F 42 F 41 F 40 F 9 F 41 F 40 F 9 F 8 F 7 F 6 F 8 F 7 F 6 F 42 F 5 F 4 F F 2 F 4 F F 2 F 1 F 0 F 29 F 1 F 0 F 29 F 5 F 0 F 7 F 14 F 28 F 28 F 27 F 26 F 25 F 27 F 26 F 25 F 24 F 2 F 22 F 24 F 2 F 22 F 21 F 7 F 6 F 5 F 4 F 6 F 5 F 4 F F 2 F 1 F F 2 F 1 F 14 F 1 F 12 F 11 F 1 F 12 F 11 F 10 F 9 F 8 F 10 F 9 F 8 F 21 F 20 F 19 F 18 F 20 F 19 F 18 F 17 F 16 F 15 F 17 F 16 F 15 Fig. Theorem 2.9 The complete graph K n is a super fibonacci graceful graph if n. Proof Let {v 0, v 1,..., v n 1 } be the vertex set of K n. Then v i (0 i n 1) is adjacent to all other vertices of K n. Let v 0 and v 1 be labeled as F 0 and F q respectively. Then v 2 must be given F q 1 or F q 2 so that the edge v 1 v 2 will receive a fibonacci number F q 2 or F q 1. Therefore, the edges will receive the distinct labeling. Suppose not, Let v 0 and v 1 be labeled as F 1 and F q or F 0 and F q 2 respectively. Then v 2 must be given F q 1 or F q 2 so that the edges v 0 v 2 and v 1 v 2 will receive the same edge label F q 2, which is a contradiction by our definition. Hence, K n is super fibonacci graceful graph if n.

72 R.Sridevi, S.Navaneethakrishnan and K.Nagarajan References [1] G.J.Gallian, A Dynamic survey of graph labeling, The electronic Journal of Combinotorics, 16(2009), #DS6, PP219. [2] Henry Ibstedt, Surfing on the Ocean of Numbers a Few Smarandache Notions and Similar Topics, Ethus University Press, Vail 1997. [] Ian Anderson, A First Course in Combinatorial Mathematics, Claridon Press-Oxford, 28(1989) -1. [4] K.Kathiresan, Two classes of graceful graphs, Ars Combin., 55(2000) 129-12. [5] K.M.Kathiresan and S.Amutha, Fibonacci Graceful Graphs, Ph.D.Thesis, Madurai Kamaraj University, October 2006. [6] A.Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome), July (1966). [7] R.Sridevi, S.Navaneethakrishnan and K.Nagarajan, Super Fibonacci graceful graphs, International Journal of Mathematical Combinatorics, Vol.(2010) 22-40.