ESTIMATION AND PREDICTION BASED ON K-RECORD VALUES FROM NORMAL DISTRIBUTION

Similar documents
Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Record Values from T-X Family of. Pareto-Exponential Distribution with. Properties and Simulations

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

Expectation Identities of Upper Record Values from Generalized Pareto Distribution and a Characterization

Expectation and Variance of a random variable

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Probability and statistics: basic terms

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Topic 9: Sampling Distributions of Estimators

Estimation for Complete Data

Topic 9: Sampling Distributions of Estimators

1 Inferential Methods for Correlation and Regression Analysis

Estimation of Gumbel Parameters under Ranked Set Sampling


Lecture 19: Convergence

Lecture 7: Properties of Random Samples

Minimax Estimation of the Parameter of Maxwell Distribution Under Different Loss Functions

Random Variables, Sampling and Estimation

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula

Introducing a Novel Bivariate Generalized Skew-Symmetric Normal Distribution

Topic 9: Sampling Distributions of Estimators

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Basis for simulation techniques

4. Partial Sums and the Central Limit Theorem

This section is optional.

PROBABILITY DISTRIBUTION RELATIONSHIPS. Y.H. Abdelkader, Z.A. Al-Marzouq 1. INTRODUCTION

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

The standard deviation of the mean

Section 14. Simple linear regression.

POWER AKASH DISTRIBUTION AND ITS APPLICATION

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

Stat 421-SP2012 Interval Estimation Section

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

CONTROL CHARTS FOR THE LOGNORMAL DISTRIBUTION

A NEW METHOD FOR CONSTRUCTING APPROXIMATE CONFIDENCE INTERVALS FOR M-ESTU1ATES. Dennis D. Boos

Mathematical Modeling of Optimum 3 Step Stress Accelerated Life Testing for Generalized Pareto Distribution

Stochastic Simulation

Chapter 6 Sampling Distributions

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Average Number of Real Zeros of Random Fractional Polynomial-II

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

Asymptotic distribution of products of sums of independent random variables

TMA4245 Statistics. Corrected 30 May and 4 June Norwegian University of Science and Technology Department of Mathematical Sciences.

Quick Review of Probability

1 Introduction to reducing variance in Monte Carlo simulations

A statistical method to determine sample size to estimate characteristic value of soil parameters

Statistical inference: example 1. Inferential Statistics

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Quick Review of Probability

Mathematical Statistics - MS

Non-Additive Entropy Measure and Record Values

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

Chapter 6 Principles of Data Reduction

Distribution of Random Samples & Limit theorems

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

A Note on Box-Cox Quantile Regression Estimation of the Parameters of the Generalized Pareto Distribution

V. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

AMS570 Lecture Notes #2

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

of the matrix is =-85, so it is not positive definite. Thus, the first

6.3 Testing Series With Positive Terms

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

EE 4TM4: Digital Communications II Probability Theory

Using the IML Procedure to Examine the Efficacy of a New Control Charting Technique


Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data

Module 1 Fundamentals in statistics

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

On an Application of Bayesian Estimation

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

Central limit theorem and almost sure central limit theorem for the product of some partial sums

Lecture Stat Maximum Likelihood Estimation

Chapter 2 The Monte Carlo Method

Overview of Estimation

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments:

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

Convergence of random variables. (telegram style notes) P.J.C. Spreij

IE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.

Testing Statistical Hypotheses with Fuzzy Data

A proposed discrete distribution for the statistical modeling of

THE CONSTRUCTION OF COMBINED BAYESIAN-FREQUENTIST CONFIDENCE INTERVALS FOR A POSITIVE PARAMETER

Stat 319 Theory of Statistics (2) Exercises

Advanced Stochastic Processes.

THE DATA-BASED CHOICE OF BANDWIDTH FOR KERNEL QUANTILE ESTIMATOR OF VAR

Derivation of the Exponential Distribution through an Infinite Sine Series

Transcription:

STATISTICA, ao LXXIII,. 4, 013 ESTIMATION AND PREDICTION BASED ON K-RECORD VALUES FROM NORMAL DISTRIBUTION Maoj Chacko Departmet of Statistics, Uiversity of Kerala, Trivadrum- 695581, Kerala, Idia M. Shy Mary Departmet of Statistics, Uiversity of Kerala, Trivadrum- 695581, Kerala, Idia 1. INTRODUCTION Let { Xi, i 1} be a sequece of idepedet ad idetically distributed (iid) radom variables havig a absolutely cotiuous cumulative distributio fuctio (cdf) F( x ) ad probability desity fuctio (pdf) f( x ). A observatio. X j is called a upper record if its value exceeds that of all previous observatios. Thus, X j is a upper record if X j > X i for every i< j. A aalogous defiitio deals with lower record values. Record data arise i a wide variety of practical situatios, such as i destructive stress testig, meteorological aalysis, hydrology, seismology, sportig ad athletic evets ad oil ad miig surveys. Iterest i records has icreased steadily over the years sice Chadler (195) first formulated the theory of records. The problem of estimatio of parameters ad predictio of future record values have bee discussed by several authors icludig Balakrisha ad Cha (1998), Sulta et al. (00), Sulta (000), Raqab et al. (007) ad Raqab (00). For more details about record values ad their applicatios, oe may refer to Arold et al. (1998) ad Ahsaullah (1995). Serious difficulties for statistical iferece based o records arise due to the fact that the occurreces of record data are very rare i practical situatios ad the expected waitig time is ifiite for every record after the first. These problems are avoided if we cosider the model of k-record statistics itroduced by Dziubdziela ad Kopociski (1976). For a positive iteger k, the upper k-record times T k ( ) ad the upper k-record values R k ( ) are defied as follows: ad, for 1 T ( k) = k, 0 with probability 1 T ( ) = k mi{ j : j > T 1 k ( k), X j > X + 1:T } T 1( k) 1( k) where : im X deote the i-th order statistic i a sample of size m. The sequece of upper k-records are the defied by

506 M. Chacko ad M. Shy Mary R = X +, 0, k 1. k ( ) T k ( ) k 1: T k ( ) I a aalogous way, oe ca defie the lower k-record statistics. Sice the ordiary record values are cotaied i the k-records, by puttig k =1, the results for usual records ca be obtaied as special case. Statistical iferece problems based o k-records have bee cosidered by several authors, see, Maliowska ad Szyal (004), Ahmadi et al. (005), Ahmadi ad Doostparast (008) ad Shy Mary ad Chacko (010). The pdf of R (k ), for 0 is give by (see, Arold et al., 1998) + 1 k k 1 fk ( )( x)= log(1 F( x)) 1 F( x) f( x), < x<! (1) ad the joit pdf of mth ad th k-record values for m< is give by, + 1 k fmk, ( )( x, y)= log(1 F( x)) m!( m 1)! m 1 log(1 F( y)) + log(1 F( x)) m [1 F( y)] 1 F( x) k 1 f( x) f( y), x< y. () I this paper we cosider k-record values arisig from ormal distributio. I sectio, we compute the meas, variaces ad covariaces of k-record values arisig from ormal distributio. I sectio 3, we determie the BLUEs of the mea µ ad stadard deviatio σ of ormal distributio based o k-record values. These BLUEs are the used to predict the future k-record values. I sectio 4 we illustrate the iferece procedures developed i this paper based o k-record values from ormal distributio usig real data.. MOMENTS OF THE K-RECORD VALUES Let R0( k), R1( k),, Rk ( ) be the first (+1) upper k-record values arisig from a sequece of iid stadard ormal radom variables. If we deote Φ () as the cdf ad ϕ() as the pdf of a stadard ormal radom variable, the by usig (1), the pdf of th upper k-record value Rk ( ) + 1 is give by k k 1 fk ( )( x)= log(1 Φ( x)) 1 Φ( x) ϕ( x), < x<, 0.! (3) From (), the joit pdf of mth ad th upper k-record values, Rmk ( ) ad Rk ( ) for m< is give by

Estimatio ad predictio based o k-record values from ormal distributio 507 + 1 * k fm( k) ( xy) x,, = log 1 Φ m! m 1! Let us deote ( k ( )) ( mk ( ) Rk ( )) C ov R, 0 is give by E R by ( ) ( ) ( y) ( ( )) ( ) ( ( x) ) m m 1 log 1 log 1 Φ + Φ k 1 [1 Φ( y)] ϕ( x) ϕ( y), < x< y<. 1 Φ( x) ar R by k, ( ) α k, V ( k ( )) β, E( Rmk ( ) Rk ( )) 4) by α mk, ( ) ad by β mk, ( ). The, the sigle momets of the th upper k-record value for α ( ) xf * = k ( ) ( ) k x dx, ad the product momets of the mth ad th upper k-record values for * ( ) = mk ( ) ( ) α xyf mk x,, y dy dx, x, m < is give by where fk ( ) () ad fmk, ( ) (,) are give, respectively, i (3) ad (4). We have evaluated umerically the values of α k ( ) ad α mk, ( ) for sample size up to 10. The values of meas, α k ( ) for = 0(1)9 ad k = (1)5 are give i table 1. By usig the values of α k ( ) ad mk, ( ) α we have computed the values of variaces ad covariaces, β mk, ( ) for 0 m 9 ad k = (1)5 ad are give i table. ' REMARK 1. Suppose { k ( ), 0} R is the sequece of lower k-record values arisig from a sequece { X i } of iid stadard ormal variables. The, due to the symmetry of the stadard ormal distributio, oe ca observe that d ( ) ( ) ' d ( ) ( ) ' ( ) ' k= k mk, k ( ) = mk ( ), k ( ) R R ad R R R R (5) ad hece, E ( R ( ) ) ( ) ( ( ) ) ' =, Var R ' = ( ) ad Cov R ' ( ), R ' ( ) = ( ) ( ) α β β k k k k, mk k mk, As a result, the etries i tables 1 ad also yield the meas, variaces ad covariaces of the lower k- record values from the stadard ormal distributio.

508 M. Chacko ad M. Shy Mary 3. BEST LINEAR UNBIASED ESTIMATION Let 0( k), 1( k),..., k ( ) R R R be the first ( + 1) upper k-record values from a ormal distributio with mea µ ad variace ad for m< σ. The we have Suppose R k ( ) = ( 0( k ), 1( k ),..., k ( ) ) ( k ) E R = µ + σα, ( ) k ( ) ( k ) V ar R = σ β ( ) k, ( ) ( ) C ov R, R = σ β. mk ( ) k ( ) mk, ( ) T R R R deote the vector of upper k-record values. The where ( ) T k ) 1( k ) ( k ) ( k ) E R ( ) = µ 1 + σα,. α = α 0(, α,..., α ad 1 is a colum vector of (+1) oes. The variacecovariace matrix of R k ( ) is give by ( Rk ) D ( ) = Bσ, where B = (( β i, j( k ), 0 i, j )). Followig the geeralized least-squares approach, the BLUEs of µ ad σ are give, respectively, by (see, Balakrisha ad Cohe, 1991, pp. 80-81) ad 1 T 1 T 1 T 1 α B α1 B α B 1α B µ = ( α B α )(1 B 1) ( α B 1) = T T 1 T 1 T 1 ar i i=0 ik ( ) T 1 T 1 T 1 T 1 1 B 1α B 1 B α1 B α = ( α B α )(1 B 1) ( α B 1) T 1 T 1 T 1 = br. i i=0 ik ( ) R R k ( ) k ( ) (6) (7) Furthermore, the variaces ad covariace of the above estimators are give by (see, Balakrisha ad Cohe, 1991, pp. 80-81)

Estimatio ad predictio based o k-record values from ormal distributio 509 T 1 α B α Var( µ )= σ, T 1 T 1 T 1 ( α B α)(1 B 1) ( α B 1) (8) ad T 1 1 B 1 Var( σ )= σ ( α B α)(1 B 1) ( α B 1) T 1 T 1 T 1 (9) T 1 α B 1 Cov( µ, σ )= σ. T 1 T 1 T 1 ( α B α)(1 B 1) ( α B 1) By makig use of the values of meas, variaces ad covariaces preseted i tables 1 ad, we have calculated the coefficiets a i ad b i, i = 0,1,, of BLUEs of µ ad σ for Var( µ ) Var( σ ) = 1(1)9 ; k = (1)5 ad are give i tables 3 ad 4. The values of ad for = 1(1)9 ; k = (1)5 are also computed ad are icorporated i tables 3 ad 4. From tables 3 ad 4, we see that as icreases the variaces of µ ad σ decreases. σ σ (10) 4. PREDICTION OF FUTURE K-RECORD VALUES Predictio of future evets o the basis of the past ad preset kowledge is a fudametal problem of statistics, arisig i may cotexts ad producig varied solutios. Similarly predictio of future records is also a problem of great iterest i may areas such as sports, weather etc. For example, while studyig the record raifalls or sowfalls, havig observed the record values util the preset time, we will be aturally iterested i predictig the amout of raifall or sowfall that is to be expected whe the preset record is broke for the first time i future. Based o the usual records (k=1), the problem of predictig future records has bee studied by several authors. See for example, Ahsaullah (1980), Berred (1998), Sulta et al. (008) ad Raqab ad Balakrisha (008). Ahmadi ad Balakrisha (010) discuss the problem of predictig future order statistics based o observed record values ad similarly, the predictio of future records based o observed order statistics. Ahmadi et al. (01) study the problem of predictig future k-records based o k-record data from a geeral class of distributios uder balaced type loss fuctios. Assume that we have the first (+1) upper k-record values from ormal distributio. The problem of iterest the is to predict the value of the ext upper k-record R + 1(k ), or, more geerally, the value of the mth upper k-record R m(k ) for some m>. For a locatio-scale family with locatio parameter µ ad scale parameter σ, the best liear ubiased predictor (BLUP) of mth record value was cosidered by Balakrisha ad Cha (1998). For k-record values, the BLUP R for some m> ca be writte as of m(k ) R = µ α σ, mk ( ) + mk ( ) (11)

510 M. Chacko ad M. Shy Mary where µ ad σ are the BLUEs of µ ad σ based o the first ( + 1) upper k-record values ad α mk ( ) is the mea of mth k-record value from the stadard distributio. 5. ILLUSTRATIVE EXAMPLE I order to illustrate the usefuless of the predictio procedure described i sectio 3, we use the followig data which represet the records of the total aual raifall (i iches) at Oxford, Eglad, for the years 1858-1903; (see, Arold et al., 1998, p. 173). The upper -records extracted from these data are as follows: 0.77, 5.3, 6.7, 8.07, 30.17, 30.41, 31.77, 31.94 A simple plot of these eight upper -record values agaist the expected values i table 1 idicate a very strog correlatio (correlatio coefficiet as high as 0.9905). Hece, the assumptio that these -record values have come from a ormal N ( µ, σ ) distributio is quite reasoable. Usig the first four upper -record values we predict the 6 th upper -record value. From tables 3 ad 4, we determie the BLUEs of µ ad σ to be ad ( ) ( ) ( ) ( ) µ * = 0.4768 0.77 + 0.360 5.3 + 0.169 6.7 + 0.143 8.07 = 3.716 ( ) ( ) ( ) ( ) σ * = 0.4944 0.77 0.103 5.3 0.1378 6.7 + 0.844 8.07 = 4.3774 The by usig (11), the BLUP of 6th value of -record is obtaied as ~ R 5() = 30.60, while the actual value of the 6 th -record is 30.41. REMARK. Due to the symmetry of the ormal distributio ad hece the relatio i (5), all the iferece procedures based o tables 3 ad 4 ca be suitably chaged to hadle the case whe the lower k- record values are give istead of the upper k-record values. 6. CONCLUSION Record values ad the associated statistics are of iterest ad importat i may real life applicatios. Serious difficulties for statistical iferece based o records arise due to the fact that the occurreces of record data are very rare i practical situatios ad the expected waitig time is ifiite for every record after the first. These problems are avoided if we cosider the model of k- record statistics. I this paper, we have obtaied the BLUEs of the locatio ad scale parameters of ormal distributio based o k-record values. We have also obtaied the BLUP of future k-record value for the ormal distributio. A real data set is used to illustrate the iferetial procedure developed i this paper.

Estimatio ad predictio based o k-record values from ormal distributio 511 TABLE 1 Meas of the upper k-record values from N(0,1) k 0 1 3 4 5 6 7 8 9-0.564 0.170 0.639 1.003 1.307 1.573 1.81.09.31.419 3-0.846-0.187 0.7 0.544 0.807 1.036 1.40 1.46 1.598 1.758 4-1.09-0.415-0.035 0.55 0.494 0.701 0.885 1.05 1.06 1.349 5-1.163-0.580-0. 0.049 0.71 0.463 0.634 0.789 0.930 1.06

51 M. Chacko ad M. Shy Mary k TABLE Variaces ad covariaces of the upper k-record values from N(0,1) 0 1 3 4 5 6 7 8 9 0 0.68 1 0.387 0.490 0.88 0.366 0.44 3 0.36 0.301 0.349 0.389 4 0.04 0.60 0.30 0.336 0.367 5 0.18 0.31 0.69 0.300 0.37 0.35 6 0.165 0.10 0.44 0.7 0.97 0.30 0.340 7 0.15 0.194 0.5 0.51 0.74 0.95 0.314 0.33 8 0.141 0.180 0.09 0.34 0.55 0.74 0.9 0.309 0.35 9 0.133 0.169 0.197 0.0 0.40 0.58 0.75 0.90 0.305 0.319 3 0 0.559 1 0.309 0.384 0.7 0.83 0.34 3 0.184 0.30 0.64 0.93 4 0.158 0.198 0.7 0.51 0.73 5 0.140 0.175 0.01 0.3 0.4 0.59 6 0.17 0.159 0.18 0.0 0.19 0.34 0.49 7 0.116 0.146 0.167 0.185 0.01 0.15 0.9 0.41 8 0.108 0.135 0.155 0.17 0.187 0.00 0.1 0.4 0.35 9 0.101 0.17 0.146 0.161 0.175 0.188 0.199 0.10 0.0 0.9 4 0 0.49 1 0.67 0.37 0.194 0.38 0.71 3 0.157 0.193 0.0 0.4 4 0.134 0.165 0.188 0.07 0.4 5 0.118 0.146 0.166 0.183 0.198 0.11 6 0.106 0.131 0.150 0.165 0.178 0.190 0.01 7 0.097 0.10 0.137 0.151 0.163 0.174 0.185 0.194 8 0.090 0.11 0.17 0.140 0.151 0.16 0.171 0.180 0.188 9 0.084 0.104 0.119 0.131 0.14 0.151 0.160 0.168 0.176 0.183 5 0 0.448 1 0.39 0.91 0.17 0.10 0.38 3 0.139 0.169 0.19 0.10 4 0.118 0.144 0.163 0.179 0.193 5 0.104 0.17 0.144 0.158 0.170 0.181 6 0.093 0.114 0.19 0.14 0.153 0.163 0.17 7 0.085 0.104 0.118 0.130 0.140 0.149 0.157 0.165 8 0.079 0.097 0.110 0.10 0.130 0.138 0.146 0.153 0.160 9 0.074 0.090 0.10 0.11 0.11 0.19 0.136 0.143 0.149 0.155 m

Estimatio ad predictio based o k-record values from ormal distributio 513 TABLE 3 Var( µ ) Coefficiets for the BLUE of µ ad the values of based o the first (+1) upper k-record values from σ N ( µ, σ ). Var ) σ 1 0.3 0.444 0.768 0.4 0.33 0.464 0.4 3 0.477 0.36 0.163 0.14 0.419 4 0.476 0.36 0.163 0.19-0.003 0.419 5 0.467 0.3 0.160 0.18 0.103-0.090 0.419 6 0.456 0.8 0.157 0.15 0.10 0.081-0.147 0.417 7 0.444 0.4 0.153 0.13 0.100 0.076 0.078-0.198 0.415 8 0.433 0.19 0.149 0.14 0.100 0.071 0.078 0.045-0.17 0.413 9 0.4 0.13 0.148 0.119 0.098 0.070 0.083 0.038 0.083-0.74 0.410 k a 0 a 1 a a 3 a a 4 5 a 6 a 7 a 8 a 9 3 1-0.84 1.84 0.453 0.168 0.113 0.719 0.301 3 0.80 0.161 0.118 0.441 0.74 4 0.30 0.178 0.15 0.11 0.66 0.68 5 0.335 0.185 0.130 0.11 0.086 0.15 0.67 6 0.339 0.187 0.13 0.113 0.086 0.084 0.060 0.67 7 0.339 0.187 0.13 0.113 0.086 0.084 0.051 0.008 0.67 8 0.337 0.185 0.131 0.113 0.086 0.085 0.047 0.071-0.055 0.67 9 0.333 0.183 0.131 0.111 0.083 0.087 0.048 0.071 0.060-0.106 0.66 4 1-0.676 1.676 0.538-0.044 0.03 1.01 0.77 3 0.131 0.098 0.074 0.697 0. 4 0.01 0.18 0.099 0.081 0.491 0.06 5 0.36 0.14 0.111 0.087 0.070 0.354 0.199 6 0.53 0.15 0.114 0.089 0.079 0.058 0.55 0.197 7 0.6 0.156 0.118 0.091 0.080 0.064 0.061 0.169 0.196 8 0.66 0.157 0.10 0.09 0.083 0.059 0.068 0.064 0.091 0.196 9 0.68 0.158 0.10 0.093 0.080 0.06 0.066 0.067 0.035 0.050 0.196 5 1-0.995 1.995 0.653-0.1-0.063 1.75 0.88 3 0.01 0.045 0.05 0.919 0.05 4 0.108 0.08 0.070 0.056 0.684 0.176 5 0.157 0.106 0.084 0.064 0.067 0.51 0.165 6 0.185 0.118 0.098 0.070 0.07 0.043 0.414 0.159 7 0.01 0.17 0.103 0.074 0.075 0.044 0.069 0.307 0.156 8 0.10 0.13 0.10 0.083 0.07 0.05 0.061 0.070 0.17 0.155 9 0.16 0.135 0.107 0.081 0.078 0.047 0.069 0.06 0.0 0.18 0.155 ( µ

514 M. Chacko ad M. Shy Mary TABLE 4 Var( σ ) Coefficiets for the BLUE of σ ad the values of based o the first (+1) upper k-record values σ from N ( µ, σ ). k b 0 b 1 b b 3 b 4 b 5 b 6 b 7 b 8 Var( σ ) b 9 σ 1-1.36-0.717 1.36-0.94 1.011 0.739 0.354 3-0.494-0.10-0.138 0.84 0.9 4-0.38-0.164-0.115-0.074 0.735 0.168 5-0.314-0.133-0.094-0.07-0.051 0.663 0.13 6-0.66-0.117-0.080-0.058-0.045-0.048 0.615 0.108 7-0.3-0.105-0.069-0.053-0.04-0.035-0.09 0.565 0.09 8-0.07-0.094-0.059-0.054-0.040-0.04-0.07-0.017 0.5 0.079 9-0.187-0.083-0.058-0.045-0.037-0.0-0.037-0.005-0.03 0.505 0.070 3 1-1.518 1.518 0.748-0.794-0.357 1.151 0.358 3-0.551-0.5-0.155 0.959 0.34 4-0.43-0.01-0.131-0.097 0.85 0.171 5-0.347-0.164-0.105-0.094-0.070 0.780 0.135 6-0.94-0.144-0.088-0.084-0.064-0.034 0.708 0.110 7-0.55-0.18-0.081-0.068-0.057-0.03-0.046 0.667 0.094 8-0.8-0.111-0.073-0.06-0.053-0.045-0.009-0.044 0.66 0.081 9-0.03-0.101-0.073-0.051-0.037-0.055-0.010-0.04-0.038 0.611 0.071 4 1-1.69 1.69 0.756-0.856-0.393 1.49 0.365 3-0.587-0.78-0.08 1.073 0.36 4-0.45-0.0-0.161-0.108 0.94 0.174 5-0.367-0.187-0.130-0.094-0.09 0.870 0.136 6-0.313-0.154-0.1-0.087-0.066-0.051 0.791 0.11 7-0.7-0.139-0.10-0.078-0.061-0.04-0.086 0.761 0.095 8-0.39-0.19-0.088-0.07-0.038-0.064-0.09-0.06 0.71 0.08 9-0.17-0.111-0.086-0.055-0.067-0.0-0.05-0.06-0.041 0.677 0.07 5 1-1.715 1.715 0.768-0.898-0.433 1.331 0.370 3-0.616-0.98-0.4 1.157 0.38 4-0.474-0.43-0.175-0.1 1.014 0.176 5-0.386-0.199-0.149-0.108-0.099 0.940 0.138 6-0.37-0.174-0.1-0.095-0.088-0.056 0.861 0.114 7-0.85-0.150-0.108-0.086-0.080-0.053-0.045 0.807 0.096 8-0.51-0.135-0.111-0.05-0.091-0.04-0.071-0.040 0.775 0.083 9-0.8-0.11-0.09-0.060-0.066-0.045-0.039-0.070-0.001 0.73 0.073 ACKNOWLEDGEMENTS The authors are grateful to the referees for their helpful ad costructive commets.

Estimatio ad predictio based o k-record values from ormal distributio 515 REFERENCES J. AHMADI, N. BALAKRISHNAN (010). Predictio of order statistics ad record values from two idepedet sequeces. Statistics, 44, pp. 417-430. J. AHMADI, M. DOOSTPARAST (008). Statistical iferece based o k-records. Mashhad Joural of Mathematical Scieces, 1, o., pp. 67-8. J. AHMADI, M. DOOSTPARAST, A. PARSIAN (005). Estimatio ad predictio i a two parameter expoetial distributio based o k-record values uder LINEX loss fuctio. Commuicatios i Statistics. Theory ad Methods, 34, o. 4, pp. 795-805. J. AHMADI, M. J. JOZANI, E. MARCHAND, A. PARSIAN (01). Predictio of k-records from a geeral class of distributios uder balaced type loss fuctios. Metrika, 70, pp. 19-33. M. AHSANULLAH (1980). Liear predictio of record values for the two parameter expoetial distributio. Aals of the Istitute of Statistical Mathematics, 3, pp. 363-368. M. AHSANULLAH (1995). Record Statistics. Nova Sciece Publishers, New York. B. C. ARNOLD, N. BALAKRISHNAN, H. N. NAGARAJA (1968). (1998). Records, Wiley, New York. N. BALAKRISHNAN, A. C. COHEN (1991). Order Statistics ad Iferece: Estimatio Method. Academic Press, Sa Diego. N. BALAKRISHNAN, P. S. CHAN (1998). O the ormal record values ad associated iferece. Statistics & Probability Letters, 39, pp. 73-80. A. M. BERRED (1998). Predictio of record values. Commuicatios i Statistics. Theory ad Methods, 7, pp. 1-40. K. N. CHANDLER (195). The distributio ad frequecy of record values. Joural of the Royal Statistical Society, Series B, 14, pp. 0-8. W. DZIUBDZIELA, B. KOPOCINSKI (1976). Limitig properties of the k-th record values. Zastosowaia Matematyki, 15, pp. 187-190. I. MALINOWSKA, D. SZYNAL (004). O a family of Bayesia estimators ad predictors for Gumbel model based o the k-th lower record. Applicatioes Mathematicae, 31, o. 1, pp. 107-115. M. Z. RAQAB (00). Ifereces for geeralized expoetial distributio based o record statistics. Joural of Statistical Plaig ad Iferece, 104, o., pp. 339-350. M. Z. RAQAB, N. BALAKRISHNAN (008). Predictio itervals for future records. Statistics & Probability Letters, 15, pp. 1955-1963. M. Z. RAQAB, J. AHMADI, M. DOOSTPARAST (007). Statistical iferece based o record data from Pareto model. Statistics, 41, pp. 105-108.

516 M. Chacko ad M. Shy Mary M. SHY MARY, M. CHACKO (010). Estimatio of parameters of uiform distributio based o k- record values. Calcutta Statistical Associatio Bulleti, 6, pp. 143-158. K. S. SULTAN (000). Momets of record values from uiform distributio ad associated iferece. The Egyptia Statistical Joural, 44, o., pp. 137-149. K. S. SULTAN, G. R. AL-DAYIAN, H. H. MOHAMMAD (008). Estimatio ad predictio from gamma distributio based o record values. Computatioal Statistics & Data Aalysis, 5, pp. 1430-1440. K. S. SULTAN, M. E. MOSHREF, A. CHILDS (00). Record values from geeralized Power fuctio distributio ad associated iferece. Joural of Applied Statistical Sciece, 11, pp. 143-156. SUMMARY Estimatio ad predictio based o k-record values from ormal distributio I this paper, we itroduce the k-record values arisig from ormal distributio. After computig the meas, variaces ad covariaces of the k-record values, we determie the best liear ubiased estimators for the locatio ad scale parameters of ormal distributio based o k-record values. The best liear ubiased predictor of future k-record values is also determied. Fially, a real data is give to illustrate the iferece procedures developed i this paper. Keywords: k-record values; ormal distributio; best liear ubiased estimatio; best liear ubiased predictio