1B Equilibrium. 3) Equilibrium is a dynamic state At equilibrium the rate in both directions must be the same.

Similar documents
1.6 Chemical equilibria and Le Chatelier s principle

Q.1 Write out equations for the reactions between...

Equilibrium. Reversible Reactions. Chemical Equilibrium

Kc is calculated for homogeneous reactions using the concentrations of the reactants and products at equilibrium:

Chemical Equilibrium

Equilibrium Unit. Terminology. Terminology 11/04/2018. Chemistry 30 Ms. Hayduk

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibria. OCR Chemistry A H432

Chemical Equilibrium. Chapter

15.1 The Concept of Equilibrium

1.0 L container NO 2 = 0.12 mole. time

Equilibrium. Dynamic Equilibrium, Position of Equilibrium, Liquid-Vapor Equilibrium, Equilibrium Law January 2015

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s)

Chemical Equilibrium

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g)

All reversible reactions reach an dynamic equilibrium state.

Le Chatelier's principle

N H 2 2 NH 3 and 2 NH 3 N H 2

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium

Chapter 15 Chemical Equilibrium. Equilibrium

Henry Le Chatelier ( ) was a chemist and a mining engineer who spent his time studying flames to prevent mine explosions.

Chemistry 40S Chemical Equilibrium (This unit has been adapted from

CHEMICAL EQUILIBRIA. Dynamic Equilibrium Equilibrium involves reversible reactions which do not go to completion.

January 03, Ch 13 SB equilibrium.notebook

LE CHATELIER S PRINCIPLE

EQUILIBRIUM GENERAL CONCEPTS

CHEMICAL EQUILIBRIA: GENERAL CONCEPTS

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

b t u t sta t y con o s n ta t nt

Which line represents the volume of hydrogen formed, at the same temperature and pressure, when the concentration of sulfuric acid has been halved?

Dr. Valverde s AP Chemistry Class

10 Reaction rates and equilibrium Answers to practice questions. OCR Chemistry A. number 1 (a) 1: The enthalpy change, H;

A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa.

Section 10. Rates of Reactions Goal: Learn how temperature, concentration, and catalysts affect the rate of reaction. Summary

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS

CHEMISTRY 12 UNIT II EQUILIBRIUM

5.1 Module 1: Rates, Equilibrium and ph

AQA A2 CHEMISTRY TOPIC 4.2 EQUILIBRIA BOOKLET OF PAST EXAMINATION QUESTIONS

Unit 13: Rates and Equilibrium- Guided Notes

Chemical Equilibrium

Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON. Name /98

CHEMISTRY 12 EQUILIBRIUM PROPERTIES & ENTROPY AND ENTHALPY WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES WORKSHEET

CHAPTER 3: CHEMICAL EQUILIBRIUM

Energy Diagram Endothermic Reaction Draw the energy diagram for exothermic and endothermic reactions. Label each part.

Collision Theory. Unit 12: Chapter 18. Reaction Rates. Activation Energy. Reversible Reactions. Reversible Reactions. Reaction Rates and Equilibrium

Chapter 15. Chemical Equilibrium

REACTION EQUILIBRIUM

Transition state. Products. So what really happens during a reaction? Both forward and reverse reactions occur!

The rate of a chemical reaction is the speed at which the reactants are used up or the speed at which new products are formed.

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion

Chapter 15 Equilibrium

II.1 EQUILIBRIUM REVERSIBLE REACTIO2S

Equilibrium and Reversible Rxns. CHAPTER 14 Chemical Equilibrium. What happens? Stoichiometry

1.6 Equilibria All reversible reactions reach an dynamic equilibrium state.

Chemical Equilibrium-A Dynamic Equilibrium

Topic11 Chemical Equilibrium

UNIT 11 Practice Test Page 1 of 13 Equilibrium

7.1 Dynamic Equilibrium

Experiment #14 Virtual Chemistry Laboratory (Chemical Equilibrium) Le-Chatelier s principle

Chemical Equilibrium

Mr Chiasson Advanced Chemistry 12 1 Unit C: Chemical Kinetics and Chemical Equilibrium

CHAPTER 7: Chemical Equilibrium

Chapter 14 Lecture Lecture Presentation. Chapter 14. Chemical Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc.

Chapter 17. Equilibrium

Chapter 16 - Principles of Chemical Equilibrium

Chemical Equilibrium Practice Problems #2

CHEMICAL EQUILIBRIUM. 6.3 Le Chatelier s Principle

(Unit -9) Chemical Equilibrium

GASEOUS EQUILIBRIUM CH. 12 EQUILIBRIUM

C h a p t e r 13. Chemical Equilibrium

(b) Describe, and explain, what would happen to the position of the NO 2 /N 2 O 4 equilibrium if the following changes are made

Chapter 6: Chemical Equilibrium

EQUILIBRIUM CONSTANT, K eq or K. The Law of Chemical Equilibrium: (Guldberg & Waage, 1864)

Chapter Fifteen. Chemical Equilibrium

When a reversible reaction occurs in a closed system an equilibrium is formed, in which the original reactants and products formed coexist.

[A] a [B] b [C] c [D] d

Chapter 15 Equilibrium

Chemical reactions with large K c (also K p) effectively go 100% to products.

Characteristics of Chemical Equilibrium. Equilibrium is Dynamic. The Equilibrium Constant. Equilibrium and Catalysts. Chapter 14: Chemical Equilibrium

Chemical Kinetics and

Chemical Equilibria 2

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION

CHEMICAL EQUILIBRIA. Section A Q1 The dissociation of dinitrogen tetraoxide into nitrogen dioxide is represented by the equation below.

OCR A Chemistry A-Level Module 5 - Physical Chemistry & Transition Elements

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry

AP Chem Chapter 12 Notes: Gaseous Equilibrium

F322: Chains, Energy and Resources Rates and Equilibria

3. Increased surface area (1) more collisions (1) 2

Chemical Equilibrium. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Worksheet 21 - Le Chatelier's Principle

Chemistry 40S Chemical Kinetics (This unit has been adapted from

In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve.

Gas Phase Equilibrium

2. Dynamic Equilibrium forward rate = reverse rate reactions happen, but cancel each other out, so that no overall change o steady state

Unit A: Equilibrium General Outcomes:

Gibbs Free Energy. Evaluating spontaneity

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease?

Sect 7.1 Chemical Systems in Balance HMWK: Read pages

CHEMICAL EQUILIBRIUM. Chapter 15

Transcription:

1B Equilibrium The equilibrium constant, K c Characteristics of the equilibrium state 1) Equilibrium can only be established in a closed system. Matter cannot be exchanged with the surroundings (this will affect the position of the equilibrium), but energy can be exchanged. 2) Equilibrium can be approached from either direction. The products can be used as the reactants to set up the equilibrium reversible reactions. 3) Equilibrium is a dynamic state At equilibrium the rate in both directions must be the same. 4) Dynamic equilibrium is stable under fixed conditions but is sensitive to changes in temperature, ph, pressure. In AS we discovered that Le Chatelier s Principle was given as a way of determining how changes in the conditions can affect the extent to which a reaction will go. A more Quantitative approach is needed to understand more fully the ideas of equilibria The equilibrium law: The equilibrium law is an expression of the amounts of products : reactants in an equilibrium. K c = [PRODUCTS] p [REACTANTS] r Consider the reaction: aa + bb cc + dd Where [A], [B], [C] and [D] are the equilibrium concentrations of reactants and products The indices a,b,c and d are the stoichiometric numbers in the balanced chemical reaction K c = [C]c [D] d [A] a [B] b This expression gives us a mathematical way of looking at the proportions of products and reactants in an equilibrium. At equilibrium these relative proportions will not change. This means a constant is produced, this is given by - K c

Approaching equilibrium Consider the reversible reaction: N 2 O 4(g) 2NO 2(g) N 2 O 4 is a colourless gas, NO 2 is a brown gas. Initially: As the reaction proceeds: At equilibrium: N 2 O 4 molecules decompose into 2 NO 2 molecules, the rate of the forward reaction is fast. Because there are very few molecules of NO 2, the reverse reaction can only happen slowly. There are now fewer N 2 O 4 molecules available to decompose, the rate of the forward reaction decreases. There are now more NO 2 molecules present so the rate of the reverse reaction increases. Eventually the forward reaction takes place at exactly the same rate as the reverse reaction. Dynamic equilibrium is established and is denoted by The concentrations of reactants and products now remain constant. Graph shows how the concentrations of reactants and products change: Writing expressions for K c : At equilibrium the concentrations of NO 2 and N 2 O 4 are constant: N 2 O 4(g) 2NO 2(g) K c = [NO 2 ] 2 [N 2 O 4 ]

A few other examples: 2SO 2(g) + O 2(g) 2SO 3(g) K c = [SO 3 ] 2 [SO 2 ] 2 [O 2 ] H 2(g) + I 2(g) 2HI (g) K c = [HI]2 [H 2 ] [I 2 ] Units of K c These have to be worked out for each K c. Just like the rate constant, put the units into each expression: K c = [NO 2 ] 2 K c = [SO 3 ] 2 [N 2 O 4 ] 1 [SO 2 ] 2 [O 2 ] K c = mol dm -3 x mol dm -3 K c = (mol dm -3 ) 2 mol dm -3 (mol dm -3 ) 2 mol dm -3 K c = mol dm -3 x mol dm -3 K c = (mol dm -3 ) 2 mol dm -3 (mol dm -3 ) 2 mol dm -3 K c = mol dm -3 K c = 1 mol dm -3 K c = dm 3 mol -1

Calculations using K c The equilibrium expression obviously allows you to calculate K c if you know the concentrations at equilibrium. You can also calculate K c and equilibrium concentrations knowing the starting concentrations and one of the equilibrium concentrations. Determining K c from equilibrium concentrations: 1) Hydrogen, Iodine, Hydrogen iodide equilibrium: Reaction: H 2(g) + I 2(g) 2HI (g) Equilibrium concentrations: 0.140 0.040 0.320 Write the equilibrium expression, put in the values, calculate K c and work out the units: K c = [HI] 2 K c = [HI] 2 [H 2 ] [I 2 ] [H 2 ] [I 2 ] K c = (0.320) 2 K c = mol dm -3 mol dm -3 0.140 x 0.040 mol dm -3 mol dm -3 K c = 18.3 K c = mol dm -3 mol dm -3 mol dm -3 mol dm -3 K c = No units 2) N 2 O 4 / NO 2 equilibrium: Given the number of moles at equilibrium in a volume of 2dm 3. Reaction: N 2 O 4(g) 2NO 2(g) Mole quantities at equilibrium: Equilibrium concentrations: Equilibrium concentrations: 0.400 3.20 0.400 / 2 3.20 / 2 0.20 1.60 As the quantities are given in moles, you have to calculate the equilibrium concentrations Write the equilibrium expression, put in the values, calculate K c and work out the units: K c = [NO 2 ] 2 K c = [NO 2 ] 2 [N 2 O 4 ] [N 2 O 4 ] K c = (1.60) 2 K c = mol dm -3 mol dm -3 0.20 mol dm -3

K c = 12.8 mol dm -3 K c = mol dm -3 mol dm -3 mol dm -3 K c = mol dm -3 Calculating the quantities and concentrations present at equilibrium: 3) Hydrogen, Iodine, Hydrogen iodide equilibrium: This time you are told the mole quantities at the start and one equilibrium quantity. From this you can work out all of the mole quantities at equilibrium. The final step is to convert to equilibrium concentrations, in this example the reaction is carried out in a 1 dm 3 vessel. Reaction: H 2(g) + I 2(g) 2HI (g) At start: 0.60 0.40 0.0 At equilibrium: 0.28 Reacted: Equilibrium concentrations: Write the equilibrium expression, put in the values, calculate K c and work out the units: K c = [HI] 2 K c = [HI] 2 [H 2 ] [I 2 ] [H 2 ] [I 2 ] K c = (0.64) 2 K c = mol dm -3 mol dm -3 0.28 x 0.08 mol dm -3 mol dm -3 K c = 18.3 K c = mol dm -3 mol dm -3 mol dm -3 mol dm -3 K c = No units

The equilibrium position and K c What is the significance of a K c value? K c is a mathematical representation of the ratio of products : reactants. If the amount of products is equal to reactants then K c = 1 Products favoured: K c > 1 Reactants favoured: K c < 1 How do changes in temperature affect K c? In AS we used Le Chatelier's Principle to predict the how temperature affects the position of equilibrium. We can use this to predict what happens to K c. Apply the direction movement to the formula to work out whether K c increases or decreases:

1) Endothermic reactions: Applying LCP means that an increase in temperature will shift the equilibrium to the Products. This means there will be more Products and less Reactants: The top number increases and the bottom number decreases. This makes K c a larger value. K c increases and vice versa 2) Exothermic reactions: Applying LCP means that an increase in temperature will shift the equilibrium to the Reactants. This means there will be more Reactants and less Products: The top number decreases and the bottom number increases. This makes K c a lsmaller value. K c decreases and vice versa

The equilibrium constant, K c, and the rate constant, k How does a change in concentration and pressure affect K c? In AS we used Le Chatelier's Principle to predict the how concentration and pressure affects the position of equilibrium. The reasons for these changes in the position of the equilibrium lie with K c. K c is unaltered by changes in concentration and pressure 1) Changes in concentration: A change in Concentration has no effect on the equilibrium constant. Remember if a reactant / product is added the equilibrium shifts to the opposite direction to keep the 'proportions' the same - K c is unchanged: Reaction: N 2 O 4(g) 2NO 2(g) [NO 2 ] = 1.60 Mol dm -3 [NO 2 ] = 1.60 Mol dm -3 [N 2 O 4 ] = 0.20 Mol dm -3 Double [ ] : [N 2 O 4 ] = 0.40 Mol dm -3 K c = [NO 2 ] 2 K c = [NO 2 ] 2 [N 2 O 4 ] [N 2 O 4 ] K c = (1.60) 2 K c = (3.20) 2 0.20 0.40 K c = 12.8 Mol dm -3 K c = 6.4 Mol dm -3 If the concentrations are doubled, the system is no longer at equilibrium, K c = 12.8 To bring K c back from 6.4 to 12.8: The system must increase [NO 2 ] and decrease [N 2 O 4 ] Remember if a reactant / product is added the equilibrium shifts to the opposite direction to keep the 'proportions' the same - K c is unchanged:

2) Changes in Pressure: A change in Pressure has no effect on the equilibrium constant. If pressure is doubled - the volume is halved - meaning that the concentrations will have doubled Reaction: N 2 O 4(g) 2NO 2(g) [NO 2 ] = 1.60 Mol dm -3 Double [ ] : [NO 2 ] = 3.20 Mol dm -3 [N 2 O 4 ] = 0.20 Mol dm -3 [N 2 O 4 ] = 0.40 Mol dm -3 K c = [NO 2 ] 2 K c = [NO 2 ] 2 [N 2 O 4 ] [N 2 O 4 ] K c = (1.60) 2 K c = (3.20) 2 0.20 0.40 K c = 12.8 Mol dm -3 K c = 25.6 Mol dm -3 If the pressure is doubled, the system is no longer at equilibrium, K c = 12.8 To bring K c back from 25.6 to 12.8: The system must increase [NO 2 ] and decrease [N 2 O 4 ] Remember if a reactant / product is added the equilibrium shifts to the opposite direction to keep the 'proportions' the same - K c is unchanged: How does the presence of a catalyst affect K c? A catalyst has no effect on the equilibrium constant. A catalyst speeds up both the forward and reverse reaction. Equilibrium is achieved more quickly. The equilibrium constant K c, and the rate constant, k These 2 constants tell us the most important things in the chemical industry: a) Equilibrium How far b) Rates How fast a) The equilibrium constant, K c K c indicates the position of the equilibrium: Large K c Small K c Remember LCP: Endothermic Exothermic Products predominate Reactants predominate K c increases with an increase in temperature (increases products) K c decreases with an increase in temperature (decreases products) Kc can be written from the balanced chemical equation

b) The rate constant, k k is a measure of the rate of a reaction: Large k Small k Fast rate Slow rate Remember: k increases with an increase in temperature - Rate increases with an increase in temperature k decreases with a decrease in temperature - Rate decreases with a decrease in temperature k can only be determined experimentally from the rate equation The importance of compromise: The 2 desirable outcomes are a) increasing rate and b) increasing the amount: a) Increasing the rate: Increasing temperature: Increases the rate of production of product - desirable Increasing temperature: Decreases the amount of product made - undesirable b) Increasing the amount: Decreasing the temperature: Increases the amount of product made - desirable Decreasing temperature: Decreases the rate of production of product - undesirable The compromise is: k increases moderately - Rate increases Moderate temperature: by a moderate amount Moderate temperature: K c decreases by a moderate amount - allowing a moderate yield