Introduction to Arithmetic Geometry Fall 2013 Lecture #2 09/10/2013

Similar documents
Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013

LEGENDRE S THEOREM, LEGRANGE S DESCENT

Introduction to Arithmetic Geometry Fall 2013 Lecture #5 09/19/2013

MATH 433 Applied Algebra Lecture 4: Modular arithmetic (continued). Linear congruences.

Introduction to Arithmetic Geometry Fall 2013 Lecture #24 12/03/2013

Polynomials, Ideals, and Gröbner Bases

Rational Points on Conics, and Local-Global Relations in Number Theory

LECTURE 5, FRIDAY

Course MA2C02, Hilary Term 2013 Section 9: Introduction to Number Theory and Cryptography

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

Course 2BA1: Trinity 2006 Section 9: Introduction to Number Theory and Cryptography

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

Mathematics for Cryptography

x = π m (a 0 + a 1 π + a 2 π ) where a i R, a 0 = 0, m Z.

1. Factorization Divisibility in Z.

Part II. Number Theory. Year

Elliptic Curves Spring 2017 Lecture #5 02/22/2017

Chapter 8. P-adic numbers. 8.1 Absolute values

PELL S EQUATION, II KEITH CONRAD

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

Summary Slides for MATH 342 June 25, 2018

Galois fields/1. (M3) There is an element 1 (not equal to 0) such that a 1 = a for all a.

MODEL ANSWERS TO HWK #10

1 Absolute values and discrete valuations

CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS

(k, l)-universality OF TERNARY QUADRATIC FORMS ax 2 + by 2 + cz 2

The Hasse Minkowski Theorem Lee Dicker University of Minnesota, REU Summer 2001

Algorithm for Concordant Forms

3.4. ZEROS OF POLYNOMIAL FUNCTIONS

8 Complete fields and valuation rings

2. Intersection Multiplicities

Rings. Chapter 1. Definition 1.2. A commutative ring R is a ring in which multiplication is commutative. That is, ab = ba for all a, b R.

LECTURE 7, WEDNESDAY

x = x y and y = x + y.

NOTES ON FINITE FIELDS

Solutions of exercise sheet 11

ax b mod m. has a solution if and only if d b. In this case, there is one solution, call it x 0, to the equation and there are d solutions x m d

Bjorn Poonen. MSRI Introductory Workshop on Rational and Integral Points on Higher-dimensional Varieties. January 17, 2006

2 so Q[ 2] is closed under both additive and multiplicative inverses. a 2 2b 2 + b

Exercises for algebraic curves

Elliptic Curves and Public Key Cryptography

Introduction to Arithmetic Geometry

Never leave a NEGATIVE EXPONENT or a ZERO EXPONENT in an answer in simplest form!!!!!

MATH 361: NUMBER THEORY FOURTH LECTURE

Introduction to Arithmetic Geometry Fall 2013 Problem Set #10 Due: 12/3/2013

Computing a Lower Bound for the Canonical Height on Elliptic Curves over Q

Introduction to Number Theory

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i

14 Ordinary and supersingular elliptic curves


A field F is a set of numbers that includes the two numbers 0 and 1 and satisfies the properties:

Lecture Notes. Advanced Discrete Structures COT S

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line?

SOLUTIONS FOR PROBLEMS 1-30

Math 109 HW 9 Solutions

Chapter 4 Finite Fields

POLYNOMIALS. x + 1 x x 4 + x 3. x x 3 x 2. x x 2 + x. x + 1 x 1

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

Public-key Cryptography: Theory and Practice

1. multiplication is commutative and associative;

Perspectives of Mathematics

CORRESPONDENCE BETWEEN ELLIPTIC CURVES IN EDWARDS-BERNSTEIN AND WEIERSTRASS FORMS

Algebra Summer Review Packet

Chapter 5. Modular arithmetic. 5.1 The modular ring

1 Solving Algebraic Equations

MATH 3030, Abstract Algebra FALL 2012 Toby Kenney Midyear Examination Friday 7th December: 7:00-10:00 PM

TEST CODE: MMA (Objective type) 2015 SYLLABUS

MATH 4400 SOLUTIONS TO SOME EXERCISES. 1. Chapter 1

Elliptic Curves Spring 2013 Lecture #12 03/19/2013

SOLVING ALGEBRAIC INEQUALITIES

A Generalization of Wilson s Theorem

Functions and Equations

Lecture 15: Algebraic Geometry II

HOMEWORK 11 MATH 4753

12x + 18y = 30? ax + by = m

Elliptic Curves, Factorization, and Cryptography

Exercise Sheet 3 - Solutions

Mathematical Olympiad Training Polynomials

5 Group theory. 5.1 Binary operations

Notes on Continued Fractions for Math 4400

HASSE-MINKOWSKI THEOREM

QUADRATIC RINGS PETE L. CLARK

1 The Galois Group of a Quadratic

EFFICIENT SOLUTION OF RATIONAL CONICS

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products.

Introduction to Arithmetic Geometry Fall 2013 Lecture #15 10/29/2013

Constructing genus 2 curves over finite fields

MATH 361: NUMBER THEORY TENTH LECTURE

Chapter 1: Systems of Linear Equations and Matrices

Projective Spaces. Chapter The Projective Line

Part IA Numbers and Sets

Elliptic Curves Spring 2013 Lecture #8 03/05/2013

Direct Proof Rational Numbers

Coding Theory ( Mathematical Background I)

Chapter 12 Review Vector. MATH 126 (Section 9.5) Vector and Scalar The University of Kansas 1 / 30

Number Theory. Final Exam from Spring Solutions

Prime Numbers and Irrational Numbers

Algebraic Number Theory and Representation Theory

1 Adeles over Q. 1.1 Absolute values

Higher-order ordinary differential equations

Transcription:

18.78 Introduction to Arithmetic Geometry Fall 013 Lecture # 09/10/013.1 Plane conics A conic is a plane projective curve of degree. Such a curve has the form C/k : ax + by + cz + dxy + exz + fyz with a, b, c, d, e, f k. Assuming the characteristic of k is not, we can make d = e = f = 0 via an invertible linear transformation. First, if a = b = c = 0 we can make one of them nonzero by replacing a variable by its sum with another; in this case one of d, e, f must be nonzero, say d, and then replacing y with x + y yields an equation with a = 0. So assume without loss of generality that a = 0. Replacing x with x d ay kills the xy term, and we can similarly kill the xz term by replacing x with x e az (we are just completing the square). Finally, if f = 0 we can make b nonzero and then replace y with y f bz to eliminate the yz term. Each of these substitutions corresponds to an invertible linear transformation of the projective plane, as does their composition. So we now assume char(k) =, and that C has the diagonal form ax + by + cz = 0. (1) If any of the coefficients a, b, c are zero, then this curve is not irreducible. 1 For example, if the coefficient c is zero, we can factor the LHS of (1) over k: ax + by = ( ax + by)( ax by) = 0. In this case C(k) is the union of two projective lines that intersect at (0 : 0 : 1) (but C(k) might contain only one point, as when k = Q and a, b > 0, for example). We now summarize this discussion with the following theorem. Theorem.1. Over a field whose characteristic is not, every geometrically irreducible conic is isomorphic to a diagonal curve ax + by + cz = 0 with abc = 0. Remark.. This does not hold in characteristic.. Parameterization of rational points on a conic Suppose (x 0 : y 0 : z 0 ) is a rational point on the diagonal conic C : ax + by + cz = 0. Without loss of generality, we assume z 0 = 0 and consider the substitution x = x 0 W + U, y = y 0 W + V, z = z 0 W () 1 In Lecture 1 we defined a plane projective curve f(x, y, z) = 0 to be reducible if f = gh for some g, h k[x, y, z], where k is the algebraic closure of k. Some authors distinguish between irreducibility over k versus k, referring to the latter as geometric (or absolute) irreducibility. In this course we will always work with the notion of geometrically irreducibility. Out definition of a plane projective curve f(x, y, z) = 0 requires f to have no repeated factors in k[x, y, z], which precludes the case where two of a, b, c are zero. In more general settings, curves defined by a polynomial with repeated factors are said to be non-reduced. We require our curves to be reduced. Curves that are reduced and geometrically irreducible are also said to be geometrically integral. 1 Andrew V. Sutherland

where U, V, W denote three new variables. We then have a(x 0 W + U) + b(y 0 W + V ) + c(z 0 W ) = 0 (ax 0 + by 0 + cz 0)W + (ax 0 U + by 0 V )W + au + bv = 0 (ax0u + by 0 V )W = au bv, where we have used ax 0 + by 0 + cz 0 = 0 to eliminate the quadratic term in W. After rescaling by (ax 0 u + by 0 v) and substituting for W in () we obtain the parameterization x = x 0 ( au bv ) + (ax 0 U + by 0 V )U = ax 0 U + by 0 UV bx 0 V = Q 1 (U, V ) y = y 0 ( au bv ) + (ax 0 U + by 0 V )V = ay 0 U + ax 0 UV + by 0 V = Q (U, V ) z = z 0 ( au bv ) = az 0 U bz 0 V = Q 3 (U, V ) Thus (Q 1 (U, V ) : Q (U, V ) : Q 3 (U, V )) is a polynomial map defined over k that sends each projective point (U : V ) on P 1 to a point on the curve C. Moreover, we can recover the point (U : V ) via the inverse map from C to P 1 defined by x U = x 0 y 0 z, V = y z. z 0 z 0 Thus we have an invertible map from C to P 1 that is given by rational (in fact polynomial) functions that are defined at every point (such a map is said to be regular). In this situation we regard C and P 1 as isomorphic curves. This yields the following theorem. Theorem.3. Let C/k be a geometrically irreducible conic with a k-rational point and assume that char(k) =. Then C is isomorphic over k to the projective line P 1. Remark.4. This theorem also holds when char(k) =, but we will not prove this..3 Conics over Q We now consider the case k = Q. Given a diagonal conic ax + by + cz = 0 with abc = 0, we wish to either find a rational point (which we can then use to parameterize all the rational points), or prove that there are none. After clearing denominators we can assume a, b, c are nonzero integers, and we note that if they all have the same sign then there are clearly no rational points. So let us assume that this is not the case, and without loss of generality suppose that a > 0 and b, c < 0. Multiplying both sides by a and setting d = ab and n = ac, we can put our curve in the form x dy = nz, (3) where d and n are positive integers that we may assume are square-free. Solving this equation is equivalent to expressing n = ( x + y d)( x y d) as the norm of an element of z z z z the real quadratic field Q( d). We now present a recursive procedure for doing this, based on Legendre s method of descent; the algorithm we give here is adapted from [1, Alg. I]. The basic idea is to either determine that there are no integer solutions to (3) (and hence no rational solutions), or to

reduce the problem to finding a solution to a similar equation with smaller values of d or n (this is why it is called a descent). In order to facilitate the recursion, we allow d and n to also take negative values (but still insist that they be square-free). Given square-free integers d and n, the procedure Solve(d, n) either returns an integer solution to (3), or determines that no solution exists; we use the notation fail to indicate that the latter has occured. 3

Solve(d, n) 1. If d, n < 0 then fail.. If d > n then let (x 0, y 0, z 0 ) = Solve(n, d) and return (x 0, z 0, y 0 ). 3. If d = 1 return (1, 1, 0); if n = 1 return (1, 0, 1); if d = n return (0, 1, 1). 4. If d = n then let (x 0, y 0, z 0 ) = Solve( 1, d) and return (dz 0, x 0, y 0 ). 5. If d is not a quadratic residue modulo n then fail. 6. Let x 0 d mod n, with x 0 n /, and let t = t 1 t = (x 0 d)/n with t 1 square-free. 7. Let (x 1, y 1, z 1 ) = Solve(d, t 1 ) and return (x 0 x 1 + dy 1, x 0 y 1 + x 1, t 1 t z 1 ). It is clear that if the algorithm fails in steps 1 or 5 then (3) has no solutions, and that the solutions returned in step 3 are all correct. Assuming the algorithm works correctly when d n, then the solution returned in step 3 is clearly correct, and in step 4 with d = n, if Solve( 1, d) succeeds then we have x 0 + y 0 = dz 0 dx 0 + dy 0 = (dz 0 ) (dz ) dx = dy = ny 0 0 0 0, and therefore the solution (dz 0, x 0, y 0 ) is correct (note that 1 and d are both square-free, assuming the input d is, so our square-free constraint is preserved in the recursive call). It remains to show that the solution returned in step 7 is correct, and that the algorithm is guaranteed to terminate. If we reach step 6 then we have d < n, and since x 0 d = nt, we have x 0 d x 0 + d d t + d < n + d n, n n 4 n n 4 n where the last inequality is justified by checking each of the cases n =, n = 3, and n 4, remembering that the integer d is at least 1 and strictly smaller than n. It follows that t 1 t < n, which ensures that the algorithm will terminate, since either d or n is reduced in every recursive call; indeed, the number of recursive calls is clearly bounded by a logarithmic function of max( d, n ). To see that the solution returned in step 7 is correct, we first note that t 1 is square-free as required, and if Solve(d, t 1 ) succeeds then we may inductively assume that x 1 dy 1 = t 1z 1. Multiplying the LHS by x 0 d and the RHS by x 0 d = nt yields (x 0 d)(x 1 dy1) = ntt 1 z1 x 0x 1 dx 0y 1 dx 1 + d y 1 = nt 1 t t 1 z 1 (x 0 x 1 ) + (dy 1 ) d ( (x 0 y 1 ) + x ) 1 = n(t1 t z1) (x 0 x 1 + dy 1 ) d(x 0 y 1 + x 1 ) = n(t1t z 1 ), which shows that (x 0 x 1 + dy 1, x 0 y 1 + x 1, t 1 t z 1 ) is indeed a solution to (3), as desired. Computationally, the most expensive step of the algorithm (by far) is the computation of x 0 in step 6. As we will see in the next lecture, it is easy to compute square-roots modulo primes, but in general n may be composite, and the only known algorithm for computing 4

square-roots modulo a square-free composite integer n is to compute square-roots modulo each of its prime factors and use the Chinese remainder theorem to get a square-root modulo n. This requires factoring the integer n, a problem for which no polynomial-time algorithm is known. As described in [1], the algorithm Solve(d, n) can be modified to avoid factorization in any of its recursive steps so that only one initial factorization is required. This does not yield a polynomial-time algorithm, but it greatly speeds up the process, and in practice it is now feasible to find rational solutions to ax + by + cz = 0 even when the coefficients a, b, and c are as large as 10 100. Another deficiency of the algorithm Solve(d, n) is that the solutions it finds are typically much larger than necessary. There is a theorem due to Holzer that gives us an upper bound on the size of the smallest solution to (1), and hence of the smallest solution to (3). Theorem.5 (Holzer). Let a, b, c be square-free integers that are pairwise coprime and suppose that the equation ax + by + cz = 0 has a nonzero rational solution. Then there exists a nonzero integer solution (x 0, y 0, z 0 ) with x 0 bc, y 0 ac, z 0 ab. Proof. See [] for a short and elementary proof. On Problem Set 1 you will implement a simple improvement to algorithm Solve(d, n) that significantly reduces the size of the solutions it finds (and reduces the number of recursive calls), and generally comes close to achieving the Holzer bounds. Finally, we note that there is a simple criterion for determining whether or not a diagonal conic has a rational solution that does not require actually looking for one. Theorem.6 (Legendre). Let a, b, c be square-free integers that are pairwise coprime and whose signs are not all the same. The equation ax + by + cz = 0 has a rational solution if and only if the congruences X bc mod a, Y ca mod b, Z ab mod c can be simultaneously satisfied. The necessity of the condition given in Theorem.6 is easy to check; if we look at the equation modulo a, for example, we have by cz mod a, and it follows that b/c and therefore bc must be a quadratic residue modulo a. The sufficiency can be proved by showing that if the condition holds than Solve(d, n) will succeed in finding a solution to the corresponding norm equation x dy = nz. This is basically how Legendre proved the theorem, but we will prove a more general statement after we have developed the theory of p-adic numbers. It is worth noting that while the congruences in Legendre s theorem apparently give a very simple criterion for determining whether a conic has a rational point, in order to apply them we need to know the factorization of the integers a, b, c. This means that, in general, the problem of determining the existence of a rational solution is not significantly easier than actually finding one, and we still do not have a polynomial-time algorithm for determining the existence of a rational solution to a conic over Q. 5

References [1] J.E. Cremona and D. Rusin, Efficient solution of rational conics, Mathematics of Computation 7 (003), 1417 1441. [] T. Cochrane and P. Mitchell, Small solutions of the Legendre equation, Journal of Number Theory 70 (1998), 6 66. 6

MIT OpenCourseWare http://ocw.mit.edu 01 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 7