FIELD-EFFECT TRANSISTORS

Similar documents
CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

Integrated Circuits & Systems

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

EE 560 MOS TRANSISTOR THEORY

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 12: MOS Capacitors, transistors. Context

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Transistor I-V Characteristics and Parasitics

The Devices: MOS Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

MOSFET: Introduction

Lecture 04 Review of MOSFET

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )

an introduction to Semiconductor Devices

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

EE105 - Fall 2006 Microelectronic Devices and Circuits

Section 12: Intro to Devices

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture 12: MOSFET Devices

Electrical Characteristics of MOS Devices

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Lecture 4: CMOS Transistor Theory

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Lecture 11: MOS Transistor

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The Intrinsic Silicon

Lecture 3: CMOS Transistor Theory

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

Semiconductor Physics Problems 2015

MOS CAPACITOR AND MOSFET

ECE 342 Electronic Circuits. 3. MOS Transistors

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Section 12: Intro to Devices

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

MOS Transistor Theory

Device Models (PN Diode, MOSFET )

EE5311- Digital IC Design

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Lecture 7 - PN Junction and MOS Electrostatics (IV) Electrostatics of Metal-Oxide-Semiconductor Structure. September 29, 2005

Extensive reading materials on reserve, including

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Lecture 5: CMOS Transistor Theory

Device Models (PN Diode, MOSFET )

The Devices. Jan M. Rabaey

VLSI Design The MOS Transistor

Microelectronics Part 1: Main CMOS circuits design rules

Practice 3: Semiconductors

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

MOSFET Physics: The Long Channel Approximation

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

ECE 546 Lecture 10 MOS Transistors

EE105 - Fall 2005 Microelectronic Devices and Circuits

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Semiconductor Physics fall 2012 problems

VLSI Design I; A. Milenkovic 1

Introduction and Background

MOS Transistor Properties Review

6.012 Electronic Devices and Circuits

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

MOS Transistor Theory

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

ECE 340 Lecture 39 : MOS Capacitor II

Conduction in Semiconductors -Review

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

Chapter 2 MOS Transistor theory

ECE-305: Fall 2017 MOS Capacitors and Transistors

EECS130 Integrated Circuit Devices

1. The MOS Transistor. Electrical Conduction in Solids

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

Metal-oxide-semiconductor field effect transistors (2 lectures)

Chapter 4 Field-Effect Transistors

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

The Devices. Devices

Class 05: Device Physics II

The Gradual Channel Approximation for the MOSFET:

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

ECE 497 JS Lecture - 12 Device Technologies

MOSFET Capacitance Model

Transcription:

FIEL-EFFECT TRANSISTORS 1 Semiconductor review 2 The MOS capacitor 2 The enhancement-type N-MOS transistor 3 I-V characteristics of enhancement MOSFETS 4 The output characteristic of the MOSFET in saturation 5 The PMOS transistor 6 Real MOSFET characteristics 7 CMOS design rules 1

Semiconductors Four types of charge are present inside a semiconductor: the fixed positive charge of ionized donors, the fixed negative charge of ionized acceptors, the positive mobile charge of holes, and the negative mobile charge of electrons. We consider all donors and acceptors ionized N = N and N = N + A A On this basis, the net positive charge density ρ is ρ = q( N N + p n) A 2

Boltzmann s Law (1) In equilibrium electrons and holes follow Boltzmann s law and their concentrations (number per unit volume) are proportional to k=1.38x10-23 J/K - Boltzmann constant T - absolute temperature (K). electron and hole densities in equilibrium are related to electrostatic potential φ by n( φ1) n( φ ) q=1.6x10-19 C 2 = e q( φ φ ) 1 2 kt -( Energy / kt ) e p( φ1) p( φ ) q( φ φ ) 3 2 = e 1 2 kt

n 0 and p 0 - equilibrium electron and hole concentrations in the neutral bulk (φ=0 ) u Boltzmann s Law (2) qφ qφ kt u kt = 0 = = 0 0 = 0 p p e p e = φ φ / t φ = kt / q t - normalized electrostatic potential - thermal voltage the mass-action law is n i - concentration of electrons (and holes) in the intrinsic semiconductor n n e n e 2 np = n i 4 u

Example: Calculate the built-in potential for a Si p-n junction with N A = 10 17 atoms/cm 3 and N = 10 18 atoms/cm 3,T=300K In equilibrium, if we choose the potential origin φ = 0 where the semiconductor is intrinsic (i.e., where p 0 =n 0 =n i ), then p 0 = / t nie φ φ Far from the junction in the n-side 0 n 0 = / t nie φ φ n region t n N n e φ = φ i / Far from the junction in the p-side The built-in potential is given by p region t p N n e φ = φ 0 A i / N N A NN A φbi = φn region φp region = φt ln φt ln = φt ln 2 n i n i ni 15 ( ) φ 26 ln 10 900 mv bi 5

The two-terminal MOS structure 6

The ideal two-terminal MOS structure (V FB =0) V G C ox = Aε t ox ox V Q G G φ = s Q C + Q = C G ox + φ s _ 0 Q G Q C M O S A - capacitor area, t ox - oxide thickness ε ox - permittivity of oxide Q C ε Q G = ; C ox = = A A t V G G ox ox φ Q C = s Cox ox 7

Example: oxide capacitance (a) Calculate the oxide capacitance per unit area for t ox = 5 and 20 nm assuming ε ox = 3.9ε 0, where ε 0 = 8.85 10-14 F/cm is the permittivity of free space. (b) etermine the area of a 1pF metal-oxide-metal capacitor for the two oxide thicknesses given in (a). Answer: (a) =690 nf/cm 2 = 6.9 ff/µm 2 for t ox =5 nm and = 172 nf/cm 2 = 1.7 ff/µm 2 for t ox = 20 nm. The capacitor areas are 145 and 580 µm 2 for oxide thicknesses of 5 and 20 nm, respectively. 8

The flat-band voltage In equilibrium (with the two terminals shortened/open), the contact potential between the gate and the semiconductor substrate of the MOS induces charges in the gate and the semiconductor for V GB =0. Charges inside the insulator and at the semiconductor-insulator interface also induce a semiconductor charge at zero bias. The effect of the contact potential and oxide charges can be counterbalanced by applying a gate-bulk voltage called the flat-band voltage V FB. V Q V = φ C G FB s C ox 9

Example: flat-band voltage (a) etermine the expression for the flat-band voltage of n + polysilicon-gate on p-type silicon (b) Calculate the flat-band voltage for an n + polysilicon-gate on p-type silicon structure with N A = 10 17 atoms/cm 3. Answer: (a) In equilibrium, by analogy with an n + p junction, the potential of the n + -region is positive with respect to that of the p- region. The flat-band condition is obtained by applying a negative potential to the n + gate with respect to the p-type semiconductor of value (b) V V N A _ + = φ _ + = 0.56 V φ ln ni 7 = 0.56 V φ ln 10 = 980 mv FB n p bi n p t FB t ( ) 10

Regions of operation of the MOSFET: Accumulation (p-substrate) V GB Q G G - - - - - - - - - - - Q o + + + + + + + + + + + + + + + + + + Q C V Q φ G B s < V > 0 C < 0 F B Holes + accumulate in the p-type semiconductor surface B 11

Regions of operation of the MOSFET: epletion (p-substrate) Q G G + + + + + + + + + V Q 0 > V < 0 G B C < φ < s F B φ F V GB Q o + + + + - - - - - - - - Q - - C - - - - Holes evacuate from the P semiconductor surface and acceptor ion charges become uncovered - B φ F = Fermi potential ( to be defined) 12

Regions of operation of the MOSFET: Inversion (p-substrate) V GB Q G G + + + + + + + + + Q o + + + + - - - - - - - - - - Q C - - - - - - - -- - - - - V Q φ G B s < C > > φ V 0 F F B electrons approach the surface! B 13

Inversion for p-type substrate Volume charge density inside the semiconductor: ρ = q( p e n e + n p ) u u 0 0 0 0 epletion of holes prevails over electron charge when p e > n e u 0 0 u or, equivalently φ < φ t 2 p 0 ln( ) n 0 mass-action law φt p p = ln( ) = ln( ) = φf 2 n 2 0 0 φ 2 t i ni For φ >φ F the concentration of minority carriers (n) becomes higher than that of majority carriers (p); the semiconductor operates in the inversion region 14

Strong Inversion for p-type substrate Volume charge density inside the semiconductor: ρ = q( p e n e + n p ) u u 0 0 0 0 Electron (minority carrier) density equals the hole ( majority carrier) deep in the bulk n e > p u 0 0 φ > φ p 0 t ln( ) n0 mass-action law φ p φ p = = = φ 2 0 0 t ln( ) 2 ln( ) 2 2 t F ni ni For φ >2φ F the concentration of minority carriers (n) becomes higher than that of majority carriers (p) deep in the bulk; the semiconductor operates in the strong inversion region 15

Threshold voltage ( for strong inversion) Gate voltage for which φ s = 2φ At threshold we can neglect the inversion charge Q I compared with the depletion charge Q B F Recalling that V Q Q V = φ φ C C G FB s s Cox B ox Q qn x = 2 qε N φ B A d s A s it follows that V V + 2φ + γ 2 φ T FB F F γ = 2 qε N / C s A ox 16

Example: threshold voltage Estimate V T for an n-channel transistor with n + polysilicon gate, N A =10 17 atoms/cm 3 and t ox =5 nm. Answer: The flat-band voltage (slide 10) is -0.98 V; φ F =0.419; C ox = 690 nf/cm 2. The body-effect factor is γ = 2 qε N / C = 0.264 V s A ox V V + 2φ + γ 2 φ = 0.98 + 0.838 + 0.264 0.838= 0.1V T FB F F For this low value of the threshold voltage, the off-current (for V GS =0) is too high for digital circuits. Solution to control the magnitude of the threshold voltage without an exaggerated increase in the slope factor a non-uniform high-low channel doping. 17

5.3 The Enhancement-Type NMOS Transistor n + Source Region W S Channel Region B L G n n+ + rain Region Metal Silicon ioxide ( SiO ) 2 P-Type Substrate (Body) 0.8 µ CMOS technology L min = 0.8 µm metal width 1.4 µm Wmin = 2.0 µm t ox = 160 Å X j = 0.40 µm Source (S) v S i i G i S Gate (G) n + Channel Region n + L v G P-Type Substrate Body (B) v rain () x j ( a ) NMOS transistor structure ( b ) cross section and ( c ) circuit symbol 18 G i i G i B i S S B i B v B i G = 0 i B = 0 i = i S

MOSFET in subthreshold (weak inversion) V GS <V T 19

MOSFET for V GS >V T in the linear region 20

MOSFET for V GS >V T in the triode region 21

MOSFET for V GS >V T in the saturation region 22

(a) n + S Immobile Acceptor Ion p V << V GS TN n + epletion Region ( a ) No ( electron ) channel between source and drain. B (b) (c) S S p p V < V GS TN n + n + V > V GS TN n + n + B n-type Inversion Layer B epletion Region epletion Region ( b ) No ( electron ) channel between source and drain. In fact, a weakly inverted layer can be induced in the substrate ( weak inversion ). ( c ) The electric field induces an electron channel that connects the source and drain islands. ( a ) V GS << V TN ( b ) V GS < V TN ( c ) V GS > V TN 23

V S V G 2V N + N + V V S V G V 1V 2V 1V N + N + P B P B V G = 2V V S = V = 0V ions ( a ) electrons V G = 2V V S = V = 1V ( b ) V G N + N + P B 1V ( a ) MOSFET in the linear region for V = V S = 0V ( b ) MOSFET in the linear region for V = V S = 1V ( c ) MOSFET in the linear region for V = 1V, V S = 0V V G = 2V V S = 0V V = 1V ( c ) 24

S n + G v > V GS TN n + v Small S Waterfalls analogy Water epletion Region p Acceptor Ion B S G v > V GS TN v = v - V S GS TN n + n + epletion Region p B S G v > V GS TN v > v - V S GS TN epletion Region n + p n + Pinch-off Point B ( a ) MOSFET in the linear region ( b ) MOSFET with channel just pinched off at the drain. ( c ) Channel pinch off for V S > V GS - V TN 25

MOSFET model: drift current y A z V X dx For low electric fields: v x = µ 7 vx vsat 10 cm/s n ε For high electric fields: ε x ε dq q n A dx Ix = = = q n A v x dt dt or J = q n x v x :electric field µ n : electron mobility µ n = µ n ( doping, T, electric field ) q: electronic charge =1.6 x10-19 C 26

rift current density J = J n + J p = ( q n µ n + q p µ p ) ε electron current hole current σ At T = 300 K and doping concentrations 10 15 cm -3 µ n (Si) 1400 cm 2 /Vs, µ p (Si) 500 cm 2 /Vs µ depends on doping level, temperature and electric field. 27

5.4 I-V Characteristics of the Enhancement MOSFET Simplified Analysis z x y V S Substrate is grounded φ V G SiO2 Channel length: L Channel width: W I V Q gate = - Q semi -Q I ( Q depletion is negligible ) Q I - C OX ( V G V T0 - φ ) ( inversion layer is very thin ) Q I : inversion charge/area (inversion charge density) ε OX C OX = : oxide capacitance / area TOX 28

Strong inversion (linear ) charge model 29

For small V S : I K n ( V GS V T ) V S = K ( V V ) 8.00e-4 and di dv V = 5 V GS S n GS T rain-source Current (A) 6.00e-4 4.00e-4 2.00e-4 V GS = 4 V V GS = 3 V V = 2 V GS 0.00e+0 0.0 0.2 0.4 0.6 rain-source Voltage (V) 0.8 NMOS i-v characteristics in the linear region (VSB = 0) 30

rain-source Current (A) 2.20e-4 2.00e-4 1.80e-4 1.60e-4 1.40e-4 1.20e-4 1.00e-4 8.00e-5 6.00e-5 4.00e-5 2.00e-5 0.00e+0 0 Linear Region 2 V = 5 V GS Pinchoff Locus Saturation Region V GS= 4 V V = 3 V GS V Š 1 V V = 2 V GS GS 4 6 8 10 rain-source Voltage (V) 12 I I 0 for V GS V T W S ( ) V + V I = µ C V V V L 2 n OX G T S = V GS V T V S V SSAT K 2 n ( V V ) 2 GS V GS V T V S V SSAT T Output characteristics for an NMOS transistor with V TN = 1 V and K n = 25 x 10-6 A / V 2 I G B V V S 31 S

The PMOS Transistor Source v v < 0 S G v < 0 i i S G Gate i rain p + Channel Region p + L N-Type Substrate Body i B v > 0 B Cross section of an enhancement-mode PMOS transistor S S B I I G G 32

Source-rain Current (A) 2.50e-4 2.00e-4 1.50e-4 1.00e-4 5.00e-5 0.00e+0 V = 5 V (V = -5 V) SG GS V = 4 V (V = -4 V) SG GS V = 3 V (V = -3 V) SG GS V = 2 V (V = -2 V) SG GS V Š 1 V (V -1 V) SG GS I 0 for V GS V T S ( ) V + V I = K V V V 2 P G T S I = V GS V T V S V SSAT K 2 p ( V V ) 2 GS T -5.00e-5-2 0 2 4 6 8 Source-rain Voltage (V) 10 12 V GS V T V S V SSAT Output characteristics for a PMOS transistor with V TP = -1 V and K P = 25 x 10-6 A / V 2 G S B 33 I

The CMOS Technology V (0 V) SS v I V (5 V) B S v o S B p+ Ohmic contact n+ n+ p+ p+ n-well NMOS transistor PMOS transistor p-type substrate n+ Ohmic contact N-well CMOS structure for forming both NMOS & PMOS transistors in a single silicon substrate 34

Summary of C equations for the enhancement-mode MOSFET G S n-channel I B G G or V T > 0 V S 0 S K = µc S p-channel B G V T < 0 V S 0 ( a ) v GS < V T Cutoff region, i 0 v GS V T OX W L or S I ( b ) v GS V T Triode region v GS V T S ( v V ) v v V i = K ( vg VT ) vs v v V ( v V ) G T S GS T v + v 2 S GS T G T ( b ) v GS V T Saturation region v GS V T K 2 ( vg V T ) vs vgs VT i ( ) 2 = vgs VT v v V ( v V ) S GS T G T i ( b ) ( c ) V GS2 V GS2 ( c ) ( b ) i V GS1 V GS1 V ( a ) V S S ( a ) 35

I (A) 10-3 1.00E-03 Common-source characteristic of an channel MOSFET I 0.020 2,00E-02 ( A ) 1.00E-04 1.00E-05 V B = V GB 0.015 1,50E-02 V SB = 0 0.5 V 1.0 1.00E-06 10-6 0.010 1,00E-02 V B = V GB 1.5 2.0 1.00E-07 1.00E-08 10-9 1.00E-09 V SB = 0 0.5 V 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 V GB (V) 0.005 5,00E-03 0 0,00E+00 2.5 3.0 0 1 2 3 4 5 V GB (V) V GB V SB 36

Subthreshold (weak inversion) model V GS <V T VG VT 0 VS / t n φ VS / φt 0 1 I = I e e C 2qε sn b A n=1+ = 1+ C 2 C 2 φ ox ox F 37 n:1.2-1.3

38

39

40

41

42

43

44

45

46

References EEL 7061 Eletrônica Básica http://www.eel.ufsc.br/electronics/index7061.htm Reid R. Harrison, Analog Integrated Circuit esign ECE/CS 5720/6720 epartment of Electrical and Computer Engineering University of Utah. Márcio Cherem Schneider and Carlos Galup-Montoro, CMOS Analog esign Using All-Region MOSFET Modeling, Cambridge University Press, 2010. J. M. Rabaey, igital integrated Circuits, Prentice Hall, 1995. 47