Research Article Forward and Reverse Movements of a Linear Positioning Stage Based on the Parasitic Motion Principle

Similar documents
Design and experimental research of an improved stick slip type piezodriven linear actuator

Research Article A New Type of Magnetic Actuator Capable of Wall-Climbing Movement Using Inertia Force

Research Article Electromagnetic and Mechanical Characteristics Analysis of a Flat-Type Vertical-Gap Passive Magnetic Levitation Vibration Isolator

Research Article Travel-Time Difference Extracting in Experimental Study of Rayleigh Wave Acoustoelastic Effect

Research Article Partial Pole Placement in LMI Region

Research Article The Microphone Feedback Analogy for Chatter in Machining

Research Article Propagation Characteristics of Oblique Incident Terahertz Wave in Nonuniform Dusty Plasma

Research Article On the Security of a Novel Probabilistic Signature Based on Bilinear Square Diffie-Hellman Problem and Its Extension

Research Article The Application of Baum-Welch Algorithm in Multistep Attack

A Novel Two-Axis Load Sensor Designed for in Situ Scratch Testing inside Scanning Electron Microscopes

Research Article Two Mathematical Models for Generation of Crowned Tooth Surface

Research Article Experimental Parametric Identification of a Flexible Beam Using Piezoelectric Sensors and Actuators

Research Article Investigations of Dynamic Behaviors of Face Gear Drives Associated with Pinion Dedendum Fatigue Cracks

Research Article Calculation for Primary Combustion Characteristics of Boron-Based Fuel-Rich Propellant Based on BP Neural Network

Research Article SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

Research Article Doppler Velocity Estimation of Overlapping Linear-Period-Modulated Ultrasonic Waves Based on an Expectation-Maximization Algorithm

Research Article Study on Zero-Doppler Centroid Control for GEO SAR Ground Observation

Research Article Band Structure Engineering in 2D Photonic Crystal Waveguide with Rhombic Cross-Section Elements

Research Article Realization of Ultraflat Plastic Film Using Dressed-Photon-Phonon-Assisted Selective Etching of Nanoscale Structures

Research Article Robust Switching Control Strategy for a Transmission System with Unknown Backlash

An ARX-Based PID-Sliding Mode Control on Velocity Tracking Control of a Stick-Slip Piezoelectric-Driven Actuator

Research Article Thermal Analysis of Air-Core Power Reactors

Rotatory Stepping Piezoelectric Motor With Micro-angle

Piezoelectric Resonators ME 2082

Research Article Weather Forecasting Using Sliding Window Algorithm

The electric field induced strain behavior of single. PZT piezoelectric ceramic fiber

Shanming Wang, Ziguo Huang, Shujun Mu, and Xiangheng Wang. 1. Introduction

Design and Development of Linear and Rotary Flexural Mechanism

Research Article A Mathematical Images Group Model to Estimate the Sound Level in a Close-Fitting Enclosure

Piezoelectric Actuators and Future Motors for Cryogenic Applications in Space

Open Access Permanent Magnet Synchronous Motor Vector Control Based on Weighted Integral Gain of Sliding Mode Variable Structure

Research Article Design of a Minimized Complementary Illusion Cloak with Arbitrary Position

PSD Analysis and Optimization of 2500hp Shale Gas Fracturing Truck Chassis Frame

Research Article Individual Subjective Initiative Merge Model Based on Cellular Automaton

Research Article Comprehensive Fractal Description of Porosity of Coal of Different Ranks

Spectra Power and Bandwidth of Fiber Bragg Grating Under Influence of Gradient Strain

Research Article Novel Distributed PZT Active Vibration Control Based on Characteristic Model for the Space Frame Structure

Research Article Design and Fabrication of the Large Thrust Force Piezoelectric Actuator

Research Article Influence of the Parameterization in the Interval Solution of Elastic Beams

Laser on-line Thickness Measurement Technology Based on Judgment and Wavelet De-noising

Research on the synchronous vibration of the non-integral. mechanism under the vibration environment

Development of Measuring System for the Non-Repetitive Run-Out(NRRO) of Ball Bearing

Tracking control of piezoelectric actuator system using inverse hysteresis model

Research Article Numerical Study of Flutter of a Two-Dimensional Aeroelastic System

Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell

Research Article Noncontact Measurement for Radius of Curvature of Unpolished Lens

Research Article Iterative Learning Control of Hysteresis in Piezoelectric Actuators

An Energy Circulation Driving Surface Acoustic Wave Motor

Tracking Control of an Ultrasonic Linear Motor Actuated Stage Using a Sliding-mode Controller with Friction Compensation

Research Article A PLS-Based Weighted Artificial Neural Network Approach for Alpha Radioactivity Prediction inside Contaminated Pipes

1 Linear feeder 2 Track 3 Cover 4 Side plate 5 Trim weight 6 Sub-structure. 8 Feeding technology afag.com

Research Article Simplified Robotics Joint-Space Trajectory Generation with a via Point Using a Single Polynomial

Vibration characteristics of a multi-block high-temperature superconducting maglev system

Research Article Dynamic Carrying Capacity Analysis of Double-Row Four-Point Contact Ball Slewing Bearing

Research Letter An Algorithm to Generate Representations of System Identification Errors

Development of the Screw-driven Motors by Stacked Piezoelectric Actuators

2044. Dynamics analysis for the clamping mechanisms of a rotary inchworm piezoelectric motor

Research Article An Analysis of the Quality of Repeated Plate Load Tests Using the Harmony Search Algorithm

Research on Dynamic Calibration of Piezo-two-dimensional Force Sensor

Research Article Low Frequency Axial Flux Linear Oscillating Electric Drive Suitable for Short Strokes

Chapter 2 Surface Acoustic Wave Motor Modeling and Motion Control

Further research on the coupled Influence of Temperature and Stress Field to PCB' Modal

Strength Analysis and Experiment of High Speed Railway Gearbox Bracket


Research Article Emissivity Measurement of Semitransparent Textiles

Research Article Electromagnetic Radiation from Arbitrarily Shaped Microstrip Antenna Using the Equivalent Dipole-Moment Method

A Compound Semiconductor Process Simulator and its

Research Article Characterization and Modelling of LeBlanc Hydrodynamic Stabilizer: A Novel Approach for Steady and Transient State Models

Research Article Research on Hysteresis of Piezoceramic Actuator Based on the Duhem Model

Study on the Pressure and Temperature Distribution of Solid-Plug Conveying Element on Centrifugal Extruder

Research Article Soil Saturated Simulation in Embankment during Strong Earthquake by Effect of Elasticity Modulus

Research Article Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

Analysis and Calculation of Double Circular Arc Gear Meshing Impact Model

Author(s) Oka, Koichi, Sakamoto, M., Nakamu. 日本 AEM 学会誌 = Journal of the Japan S.

1338. Experimental and numerical studies on multi-spherical sliding friction isolation bearing

Research Article Dynamic Time Warping Distance Method for Similarity Test of Multipoint Ground Motion Field

Loss analysis of a 1 MW class HTS synchronous motor

Design of a High Speed and High Precision 3 DOF Linear Direct Drive

Analytical Solution of Stiffness for a Corner-Fillet Leaf-Spring Type Flexure Hinge with a Long Fatigue Life

1439. Numerical simulation of the magnetic field and electromagnetic vibration analysis of the AC permanent-magnet synchronous motor

Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations

1711. Analysis on vibrations and infrared absorption of uncooled microbolometer

Vibration Studying of AFM Piezoelectric Microcantilever Subjected to Tip-Nanoparticle Interaction

Strength Study of Spiral Flexure Spring of Stirling Cryocooler

Research Article Visible Light Communication System Using Silicon Photocell for Energy Gathering and Data Receiving

Global Journal of Advance Engineering Technology and Sciences

Reduction of the effect of floor vibrations in a checkweigher using an electromagnetic force balance system

Research on Permanent Magnet Linear Synchronous Motor Control System Simulation *

Research Article An Optimized Grey GM(2,1) Model and Forecasting of Highway Subgrade Settlement

Research Article Data-Driven Fault Diagnosis Method for Power Transformers Using Modified Kriging Model

Research Article Force Control for a Pneumatic Cylinder Using Generalized Predictive Controller Approach

Foundations of Ultraprecision Mechanism Design

Influence of electromagnetic stiffness on coupled micro vibrations generated by solar array drive assembly

TRING-module : a high-range and high-precision 2DoF microsystem dedicated to a modular micromanipulation station.

Solder Self-assembly for MEMS

Research Article Generalized Models for Rock Joint Surface Shapes

Research Article On the Charting Procedures: T 2 Chart and DD-Diagram

Research Article Influence of End Structure on Electromagnetic Forces on End Winding of a 1550 MW Nuclear Generator

Rolling, Sliding and Torsion friction of single silica microspheres: Comparison of nanoindentation based experimental data with DEM simulation Part A

Micro/nano and precision manufacturing technologies and applications

Transcription:

Advances in Mechanical Engineering, Article ID 45256, 7 pages http://dx.doi.org/1.1155/214/45256 Research Article Forward and Reverse Movements of a Linear Positioning Stage Based on the Parasitic Motion Principle Hu Huang and Hongwei Zhao College of Mechanical Science & Engineering, Jilin University, Renmin Street 5988, Changchun, Jilin 1325, China Correspondence should be addressed to Hongwei Zhao; hwzhao@jlu.edu.cn Received 27 May 214; Accepted 2 July 214; Published 2 August 214 Academic Editor: Yong Chen Copyright 214 H. Huang and H. Zhao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A compact linear positioning stage using one microgripper and one piezoelectric stack is presented based on the parasitic motion principle. Characteristics of the linear positioning stage along the positive y-axis and the negative y-axis are measured and compared with each other. Experimental results indicate that the linear positioning stage has features of the large motion range, various movement velocities and stepping displacement, and forward and reverse movements. Meanwhile, the positioning stage has good resolution and enough load capacity. Possible reasons leading to nonlinearity and velocity difference between forward and reverse movements are discussed. Research results in this paper will make applications of the parasitic motion principle more flexible. 1. Introduction Precision positioning stages are widely required in scientific research and industrial applications. Precision positioning stages based on piezoelectric stacks and flexure hingebased compliant mechanisms are playing more and more important roles in scanning systems [1], precision and ultraprecision machining [2, 3], micromanipulators [4, 5], micro/nanomechanical testing [6, 7], and so on. For different application requirements, kinds of driving principles have been proposed, such as the piezoelectric stack direct driving principle [8], the inchworm driving principle [9], the impact driving principle [1], and the stick-slip driving principle [11]. Up to now, improving positioning accuracy and increasing the motion range are two important research topics for piezodriven positioning stages [12, 13]. But they are usually conflicting. As a modified stick-slip driving principle, the parasitic motion principle (PMP) which has the potential to solve both of these two issues was presented in [14]. Basedontheparasiticmotionprinciple,themicrogripper is used to modulate the output of the piezoelectric stack instead of directly piezodriven form stick-slip style. With the symmetrical structure, the PMP linear actuator in [14] mainly consisting of two microgrippers and two piezoelectric stacks realizes the large motion range, various velocities, and forward and reverse movements. However, the symmetrical structure also increases dimensions of the PMP linear actuator, and its size reaches 13 mm 5 mm 26 mm, which lowers the flexibility of its applications. For example, the dimension along y-axis of the in situ scratch testing device in [6] is strongly dependent on dimensions of the PMP linear actuator. If dimensions of the PMP linear actuator can be reduced but its functions still maintained, applications of the PMP linear actuator will be more flexible. Based on this consideration, we will try to use only one microgripper and one piezoelectric stack to realize similar functions of the PMP linear actuator [14]in this paper. 2. Structure Figure 1 is the model of the linear positioning stage based on the parasitic motion principle. In order to reduce repeated design, the microgripper of this linear positioning stage is the same to that of the PMP linear actuator in [14]. Compared with the structure of the PMP linear actuator in [14], the biggest difference in Figure 1 is that only one microgripper and one piezoelectric stack are used, which

2 Advances in Mechanical Engineering Mover Piezoelectric stack Microgripper positive y-axis with a fixed driving frequency of 6 Hz and different driving voltages. With the driving voltage of 1 V and the driving frequency of 1 Hz, effective displacement of the mover along the positive y-axis reaches 663.98 μm after 5 seconds. So, forward movement velocity of the mover is 132.8 μm/s when the driving voltage is 1 V and the driving frequency is 1 Hz. Linear guide Voltage Base Figure 1: Model of the linear positioning stage. T Time Figure 2: Driving wave for the movement along the positive y-axis. makes dimensions of the linear positioning stage reduce to be 81 mm 5 mm 21 mm. In order to reduce weight of the positioning stage and meanwhile improve electromagnetic compatibility with scanning electron microscopes, materials of the microgripper and the mover were changed to be Al 775. In addition, more compact linear guide (BWU 17-3, IKO) was selected to reduce weight and dimensions of the positioning stage. Of course, for specific applications, dimensions of the linear positioning stage can be further reduced by optimizing structures and dimensions of the base and the microgripper. 3. Output Characteristics along the Positive y-axis Because the structure of the linear positioning stage shown in Figure 1 is similar to the half of the PMP linear actuator in [14] whose output ability has been verified, movement of the mover along the positive y-axis is undoubtedly feasibility. Considering that materials and linear guide have been changed which will further change friction between the slide block and the guide rail and friction between the mover and the microgripper, output characteristics of the linear positioning stage shown in Figure 1 along the positive yaxis were retested. Figure 2 is the driving wave, and Figure 3 illustrates the experimental results. Figure 3 gives output characteristics of the mover along the positive y-axis with a fixed driving voltage of 1 V and different driving frequencies, and Figure 3 gives output characteristics along the y 4. Output Characteristics along the Negative y-axis Figure 3 further addresses that the linear positioning stage realizes the movement along the positive y-axis. So, the next question is that whether or not the linear positioning stage shown in Figure 1 still has the ability to realize the movement along the negative y-axis which is the reason why the symmetrical structure of the PMP linear actuator in [14] was designed. Next, we will answer this question via experiments. The movement along the positive y-axis is realized using the driving wave with a portion of the voltage slowly increasing and a portion of the voltage quickly decreasing as shown in Figure 2. Considering that deformation of the microgripper is symmetrical when the driving voltage of the piezoelectric stack increases and decreases, so, whether or not the mover can realize the movement along the negative yaxis by changing the driving wave to be with a portion of the voltage quickly increasing and a portion of the voltage slowly decreasing as shown in Figure 4? Taking this idea, similar experiments were carried out for the reverse movement. In order to compare with the forward movement, same experimental conditions were selected and the experimental results are shown in Figure 5. Figure 5 gives output characteristicsofthemoveralongthenegativey-axis with a fixed driving voltage of 1 V and different driving frequencies, and Figure 5 gives output characteristics of the mover along the negative y-axis with a fixed driving frequency of 6 Hz and different driving voltages. From Figure5, the conclusion can be addressed that the linear positioning stage shown in Figure 1 completely has the ability to realize the movement along the negative y-axis by the driving wave shown in Figure 4. Similar to the forward movement, stepping displacement and movement velocity of the reverse movement can be easily changed by changing the driving voltage and the driving frequency. With the driving voltage of 1 V and the driving frequency of 1 Hz, effective displacement of the mover along the negative y-axis reaches 763.53 μm after 5 seconds. So, reverse movement velocity of the mover is 152.7 μm/s when the driving voltage is 1 V and the driving frequency is 1 Hz. 5. Velocity Characteristics For further comparing the velocity characteristic between the forward movement and the reverse movement, movement velocity versus the driving frequency and movement velocity versus the driving voltage are illustrated in Figures 6 and 6, respectively. In Figure 6, movement velocity increases

Advances in Mechanical Engineering 3 8 1 Displacement along the positive y-axis (μm) 7 6 5 4 3 2 1 1 V 1 Hz 8 Hz 6 Hz 4 Hz 2 Hz 1 Hz 1 2 3 4 5 6 7 Displacement along the positive y-axis (μm) 8 6 4 2 6 Hz 1 V 3 V 2 V 2 4 6 8 1 12 14 8 V 6 V 4 V Figure 3: Output characteristics of the mover along the positive y-axis with a fixed driving voltage of 1 V and different driving frequencies and a fixed driving frequency of 6 Hz and different driving voltages. Voltage T Time Figure 4: Driving wave for the possible reverse movement. with increasing of the driving frequency and the driving voltageforboththeforwardmovementandthereversemovement, but nonlinearity exists in these curves. In addition, for the same experimental condition, movement velocity of the reverse movement is a little larger than that of the forward movement. In order to reveal possible reasons, initial status between the mover and microgripper was measured by an optodigital microscope (DSX 5, Olympus) and the experimental result is given in Figure 7, fromwhich we can see that manufacturing and assembling errors lead to change of the initial gap between the mover and the microgripper in different contact regions and further lead to nonlinearity of the curves and velocity difference for the forward movement and the reverse movement at the same experimental condition in Figure6.From another perspective, the linear positioning stage has low manufacturing and assembling requirements. These problems do not affect applications of the linear positioning stage in some places such as applications in in situ micro/nanomechanical testing in [6], which just requires the large motion range, various movement velocities and stepping displacement, and forward and reverse movements. Of course, for specific applications requiring high repeat positioning accuracy, improving manufacturing and assembling quality can further improve its output performances. 6. Resolution Characteristics The resolution, the minimum stable step size, is another important parameter for the micropositioning stage. From Figures 3 and 5, output characteristics of the positioning stage can be easily changed by changing the driving frequency and the driving voltage, which means that the resolution of the positioning stage depends on the driving frequency and the driving voltage. With the driving frequency of 1 Hz, lots of experiments were carried out to obtain the critical driving voltage, and results indicate that when the driving voltage is lower than 12 V, the mover can not move stably for a large range along the positive y-axis, and when the driving voltage is lower than 11.6 V, the mover cannot move stably for a large range along the negative y-axis. The resolution testing curve of the positioning stage along the positive y-axis with the driving frequency of 1 Hz and the driving voltage of 12 V is shown in Figure 8, and the resolution testing curve of the positioning stage along the negative y-axis with the driving frequencyof1hzandthedrivingvoltageof11.6visshown in Figure 8. The accumulated displacements of the mover along the positive y-axis and the negative y-axis are.93 μm and 1.1 μm, respectively, corresponding to 1 steps. So, the resolutions of the positioning stage along the positive y-axis and the negative y-axis are 93 nm and 11 nm, respectively.

4 Advances in Mechanical Engineering Displacement along the negative y-axis (μm) 1 Hz 1 2 Hz 2 3 4 Hz 4 6 Hz 5 6 8 Hz 1 V 7 1 Hz 8 1 2 3 4 5 6 7 Displacement along the negativey-axis (μm) 1 2 V 3 V 2 3 4 V 4 5 6 6 V 7 8 8 V 9 6 Hz 1 V 1 2 4 6 8 1 12 14 Figure 5: Output characteristics of the mover along the negative y-axis with a fixed driving voltage of 1 V and different driving frequencies and a fixed driving frequency of 6 Hz and different driving voltages. 2 1 18 16 8 Movement velocity (μm/s) 14 12 1 8 6 1 V Movement velocity (μm/s) 6 4 6 Hz 4 2 2 2 4 6 8 1 Positive y-axis Negative y-axis Frequency (Hz) 2 4 6 8 1 Positive y-axis Negative y-axis Voltage (V) Figure 6: Comparison between forward movement velocity and reverse movement velocity of the mover under the same driving voltage of 1 V and the same driving frequency of 6 Hz.

Advances in Mechanical Engineering 5 1 mm Figure 7: Initial status between the mover and microgripper. Displacement along the positive y-axis (μm) 3 2.5 2 1.5 1.5 12 V 1 Hz.93 μm Displacement along the negativey-axis (μm).5 1 1.5 2 2.5 11.6 V 1 Hz 1.1 μm 2 4 6 8 1 12 3 2 4 6 8 1 12 Figure 8: The resolution testing curve of the positioning stage along the positive y-axis with the driving frequency of 1 Hz and the driving voltage of 12 V and along the negative y-axis with the driving frequency of 1 Hz and the driving voltage of 11.6 V. Pulley Weight y Linear positioning stage Figure 9: The experiment setup for measuring loading capabilities of the positioning stage. Of course, the resolution can be improved by optimizing the structure of the microgripper, which is not the emphasis of this paper and will be discussed together with the backward movement in another paper. 7. Loading Capacity Loading capability is another feature for practical applications of the positioning stage. Via experiments, loading capabilities of the positioning stage along the positive yaxis and the negative y-axis were measured. Figure 9 is the experiment setup. By the pulley and standard weights, various loads along the positive y-axis were loaded on the mover, and thenoutputcharacteristicsofthemoveralongthepositive y-axis and the negative y-axis with the driving voltage of 1 V and the driving frequency of 1 Hz were measured. Experimental results are illustrated in Figure 1. Figures 1 and 1 illustrate displacements of the mover along the positive y-axis and the negative y-axis, respectively, corresponding to 1 steps. In Figure 1,when the applied load increases from N to 1 N, the accumulated displacements of the mover along the positive y-axis increase from 127.8 μm to154.82μm. That is to say, the applied load increases one step displacement of the mover along the positive y-axis. On the contrary, the applied load decreases one step displacement of the mover along the negative y-axis in Figure 1.Themainreasonisthatdirectionoftheload isthesametodirectionofthemovementofthemoverfor the positive y-axis,whileitisoppositeforthenegativeyaxis. But for both the positive y-axis and the negative y-axis, the mover moves stably when the load changes from N to 1 N, and it can satisfy the requirements for applications in in situ nanoindentation and scratch testing inside the scanning electron microscope whose loads are usually less than.5 N [6]. 8. Conclusions In summary, we have designed a more compact linear positioning stage using one microgripper and one piezoelectric stack based on the parasitic motion principle. Experimental results indicate that the linear positioning stage still has the ability to realize the large motion range, various

6 Advances in Mechanical Engineering 18 Displacement along the positive y-axis (μm) 15 12 9 6 3 N 1 V 1Hz.5 N.9 N.2 N.4 N.5 N 1 N Displacement along the negative y-axis (μm) 3 6 9 12 15 N.5 N.9 N.2 N.4 N.5 N 1 V 1Hz 1 N 4 8 12 16 2 24 18 4 8 12 16 2 24 Figure 1: Output characteristics of the mover along the positive y-axis and the negative y-axis with different loads. During experiments, the driving voltage and the driving frequency are 1 V and 1 Hz, respectively. movement velocities and stepping displacement, and forward and reverse movements. Output characteristics of the linear positioning stage along the positive y-axis and the negative yaxis are similar but small difference exists because manufacturing and assembling errors lead to change of the initial gap between the mover and the microgripper in different contact regions. For both the positive y-axis and the negative y-axis, the mover moves stably when the load changes from N to1n.takingfeaturesmentionedaboveespeciallythemore compact structurecomparedwith that in [14], applications of thepositioningstagewillbemoreflexible. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgments This research is funded by the National Natural Science Foundation of China (Grant no. 51275198), Special Projects for Development of National Major Scientific Instruments and Equipments (Grant no. 212YQ375), National Hitech Research and Development Program of China (863 Program) (Grant no. 212AA4126), Program for New Century Excellent Talents in University of Ministry of Education of China (Grant no. NCET-12-238), Specialized Research Fund for the Doctoral Program of Higher Education (Grant no. 213611126), and Patent Demonstration Project for Research Team in Jilin Province (Grant no. 213611126). References [1] Y.K.Yong,S.O.R.Moheimani,B.J.Kenton,andK.K.Leang, Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues, Review of Scientific Instruments, vol. 83, no. 12, Article ID 12111, 212. [2] G. Sze-Wei, L. Han-Seok, M. Rahman, and F. Watt, A fine tool servo system for global position error compensation for a miniature ultra-precision lathe, Machine Tools and Manufacture, vol.47,no.7-8,pp.132 131, 27. [3] Y. Tian, D. Zhang, and B. Shirinzadeh, Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation, Precision Engineering, vol. 35, no. 4, pp. 554 565, 211. [4]X.T.Sun,W.H.Chen,Y.L.Tianetal., Anovelflexurebased microgripper with double amplification mechanisms for micro/nano manipulation, Review of Scientific Instruments,vol. 84, no. 8, Article ID 852, 1 pages, 213. [5] M. N. Mohd Zubir, B. Shirinzadeh, and Y. Tian, Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation, Review of Scientific Instruments, vol. 8, no. 6, Article ID 6516, 4 pages, 29. [6] H. Huang, H. Zhao, C. Shi et al., Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope, AIP Advances,vol.2,no.4,ArticleID42193,212. [7] R. Rabe, J. M. Breguet, P. Schwaller et al., Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope, Thin Solid Films,vol. 469-47, pp. 26 213, 24. [8]H.Huang,H.W.Zhao,Z.C.Maetal., Designandanalysis of the precision-driven unit for nano-indentation and scratch

Advances in Mechanical Engineering 7 test, Manufacturing Systems,vol.31,no.1,pp.76 81, 212. [9] J. Li, R. Sedaghati, J. Dargahi, and D. Waechter, Design and development of a new piezoelectric linear Inchworm, Mechatronics,vol.15,no.6,pp.651 681,25. [1] C.F.Yang,S.L.Jeng,andW.H.Chieng, Motionbehaviorof triangular waveform excitation input in an operating impact drive mechanism, Sensors and Actuators, A: Physical, vol.166, no. 1, pp. 66 77, 211. [11] J. W. Li, G. S. Yang, W. J. Zhang, S. D. Tu, and X. B. Chen, Thermal effect on piezoelectric stick-slip actuator systems, Review of Scientific Instruments,vol.79,no.4,ArticleID4618, 3pages,28. [12]Y.Qin,Y.Tian,D.Zhang,B.Shirinzadeh,andS.Fatikow, A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications, IEEE/ASME Transactions on Mechatronics,vol.18,no.3,pp.981 989, 213. [13] Y. Qin, B. Shirinzadeh, Y. Tian, D. Zhang, U. Bhagat, and L. Clark, Design and Computational Optimization of a Decoupled 2-DOF Monolithic Mechanism, IEEE/ASME Transactions on Mechatronics,vol.19,no.3,pp.872 881,213. [14] H. Huang, H. Zhao, Z. Yang et al., A novel driving principle by means of the parasitic motion of the microgripper and its preliminary application in the design of the linear actuator, Review of Scientific Instruments,vol.83,no.5,ArticleID552, 6pages,212.

Rotating Machinery The Scientific World Journal Engineering Advances in Mechanical Engineering Sensors Distributed Sensor Networks Advances in Civil Engineering Submit your manuscripts at Advances in OptoElectronics Robotics VLSI Design Modelling & Simulation in Engineering Navigation and Observation Chemical Engineering Advances in Acoustics and Vibration Control Science and Engineering Active and Passive Electronic Components Antennas and Propagation Shock and Vibration Electrical and Computer Engineering