Example 3 Find the tangent line to the following function at.

Similar documents
Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

University of Sioux Falls. MAT204/205 Calculus I/II

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

Factorising FACTORISING.

MCH T 111 Handout Triangle Review Page 1 of 3

f a L Most reasonable functions are continuous, as seen in the following theorem:

AP Calculus AB Unit 4 Assessment

MATH 1080: Calculus of One Variable II Spring 2018 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart.

( ) as a fraction. Determine location of the highest

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

Final Exam Review. Exam 1 Material

6.5 Improper integrals

Calculus AB. For a function f(x), the derivative would be f '(

AP Calculus AB First Semester Final Review

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

SIMPLE NONLINEAR GRAPHS

Exam 1 Formula Sheet. du a2 u du = arcsin + C du a 2 + u 2 du = du u u 2 a 2 du =

MA Exam 2 Study Guide, Fall u n du (or the integral of linear combinations

Algebra 2 Semester 1 Practice Final

MATH Final Review

50 AMC Lectures Problem Book 2 (36) Substitution Method

Final Exam Review. [Top Bottom]dx =

MATH 122, Final Exam

Solids of Revolution

Edexcel Level 3 Advanced GCE in Mathematics (9MA0) Two-year Scheme of Work

Topics Covered AP Calculus AB

If we have a function f(x) which is well-defined for some a x b, its integral over those two values is defined as

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

M 106 Integral Calculus and Applications

x dx does exist, what does the answer look like? What does the answer to

Let s divide up the interval [ ab, ] into n subintervals with the same length, so we have

CALCULUS STUDY MATERIAL. B.Sc. MATHEMATICS III SEMESTER UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

Instantaneous Rate of Change of at a :

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

( ) { } [ ] { } [ ) { } ( ] { }

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

AP Calculus AB AP Review

Type 2: Improper Integrals with Infinite Discontinuities

sec x over the interval (, ). x ) dx dx x 14. Use a graphing utility to generate some representative integral curves of the function Curve on 5

Now we must transform the original model so we can use the new parameters. = S max. Recruits

Calculus AB Section I Part A A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION

x ) dx dx x sec x over the interval (, ).

Keys to Success. 1. MC Calculator Usually only 5 out of 17 questions actually require calculators.

Math 113 Exam 2 Practice

MATH 144: Business Calculus Final Review

Integration. antidifferentiation

MAT 403 NOTES 4. f + f =

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS

Chapter 6 Techniques of Integration

Sections 5.3: Antiderivatives and the Fundamental Theorem of Calculus Theory:

INTEGRALS. Chapter Introduction

ES.181A Topic 8 Notes Jeremy Orloff

Momentum and Energy Review

APPENDIX. Precalculus Review D.1. Real Numbers and the Real Number Line

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

The Double Integral. The Riemann sum of a function f (x; y) over this partition of [a; b] [c; d] is. f (r j ; t k ) x j y k

Introduction and Review

For a, b, c, d positive if a b and. ac bd. Reciprocal relations for a and b positive. If a > b then a ab > b. then

CHAPTER 9 BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

Chapter Gauss Quadrature Rule of Integration

Lecture 8: Abstract Algebra

( ) Same as above but m = f x = f x - symmetric to y-axis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists.

Proportions: A ratio is the quotient of two numbers. For example, 2 3

( ) 1. 1) Let f( x ) = 10 5x. Find and simplify f( 2) and then state the domain of f(x).

Section 2.3. Matrix Inverses

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Part 4. Integration (with Proofs)

5.3 The Fundamental Theorem of Calculus

Learning Objectives of Module 2 (Algebra and Calculus) Notes:

Lecture 6: Coding theory

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Gauss Quadrature Rule of Integration

Thomas Whitham Sixth Form

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

School of Business. Blank Page

CARLETON UNIVERSITY. 1.0 Problems and Most Solutions, Sect B, 2005

I 3 2 = I I 4 = 2A

5. Every rational number have either terminating or repeating (recurring) decimal representation.

Equivalent fractions have the same value but they have different denominators. This means they have been divided into a different number of parts.

A Primer on Continuous-time Economic Dynamics

Section 4.4. Green s Theorem

Formula for Trapezoid estimate using Left and Right estimates: Trap( n) If the graph of f is decreasing on [a, b], then f ( x ) dx

Maintaining Mathematical Proficiency

VII. The Integral. 50. Area under a Graph. y = f(x)

Non Right Angled Triangles

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

Mathematics. Area under Curve.

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

B Veitch. Calculus I Study Guide

ax bx c (2) x a x a x a 1! 2!! gives a useful way of approximating a function near to some specific point x a, giving a power-series expansion in x

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits

Mat 210 Updated on April 28, 2013

Logarithms LOGARITHMS.

Gauss Quadrature Rule of Integration

Transcription:

Emple Given n fin eh of the following. () () () () Emple Given fin. Emple Fin the tngent line to the following funtion t.

Now ll tht we nee is the funtion vlue n erivtive (for the slope) t. The tngent line is then, Emple 4 Differentite eh of the following funtions. () () () () Emple 5 Evlute the following inefinite integrl. Emple 6 Integrte.

Emple 7 Evlute eh of the following integrls. () () () () Emple 8 Determine the verge vlue of eh of the following funtions on the given intervl. on

Emple 9 Determine the numer tht stisfies the Men Vlue Theorem for Integrls for the funtion on the intervl [,4] Clerly the seon numer is not in the intervl n so tht isn t the one tht we re fter. The first however is in the intervl n so tht s the numer we wnt. Emple 0 Determine the re of the region enlose y,,, n the y-is.

Emple evlute the inite limits, if they eist. () () ()

Emple Ans 0 E Determine the seon erivtive of Ans E 4 Determine the fourth erivtive of E 5) Fin y impliit ifferentition for

E 6) Critil Points Determine the ritil points of. EX 7 Determine the ritil points of Rell tht ritil points re simply where the erivtive is zero n/or oesn t eist. In this se the erivtive is rtionl epression. Therefore we know tht the erivtive will e zero if the numertor is zero (n the enomintor is lso not zero for the sme vlues of ourse). We lso know tht the erivtive won t eist if we get ivision y zero. So, ll we nee to o is set the numertor n enomintor equl to zero n solve. Note s well tht the - we ftore out of the numertor will not ffet where it is zero n so n e ignore. Likewise, the eponent on the whole enomintor will not ffet where it is zero n so n lso e ignore. This mens we nee to solve the following two equtions. As we n see in this se we neee to use the qurti formul oth of the qurti equtions. Rememer tht not ll qurtis will ftor so on t forget out the qurti formul!

Now, rell tht we on t use omple numers in this lss n so the solutions from where the enomintor is zero (i.e. the erivtive oesn t eist) won t e ritil points. Therefore, the only ritil points of this funtion re, EX 8. Use L Hospitl s Rule to evlute n so this is form tht llows the use of L Hospitl s Rule. So, t this point let s just pply L Hospitl s Rule. At this point ll we nee to o is try the limit n see if it n e one. So, the limit n e one n we one with the prolem! The limit is then, E 9:

Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-erivtive of f ( ) on [, ]. Divie [, ] into n suintervls of is funtion, F( ), suh tht F f. * with D n hoose i from eh intervl. Inefinite Integrl : f F + * Then f limâ f ( i ) D. where F( ) is n nti-erivtive of f ( ). næ i Funmentl Theorem of Clulus Prt I : If f ( ) is ontinuous on [, ] then Vrints of Prt I : u g f () t t is lso ontinuous on [, ] f () t t u f u È Î n g f () t t f. f () t t v f v - È v Î Prt II : f is ontinuous on[, ], F( ) is u f () t t u f u v f v - v F f ) n nti-erivtive of f ( ) (i.e. f F F. then - f ± g f ± g ± ± f g f g 0 f - f f f ( ) f ( ) f ( ) + for ny vlue of. If f g on then If f 0 on then f 0 Properties f f [ ] [ ], is onstnt f f, is onstnt f g - f f If m f M on then m( - ) f M ( -) Clulus Chet Sheet Stnr Integrtion Tehniques Note tht t mny shools ll ut the Sustitution Rule ten to e tught in Clulus II lss. g u Sustitution : The sustitution u g will onvert f ( g ) g f ( u) u using g u g. For inefinite integrls rop the limits of integrtion. E. 5 os u fi u fi u :: 8 fi u fi u Integrtion y Prts : uv uv- vu n 5 8 5 sin( u) ( sin( 8) -sin() ) 8 5 5 os os u u uv uv - vu. Choose u n v from integrl n ompute u y ifferentiting u n ompute v using v v. - E. e u v e - fi u v -e - e - - e - + e - -e - - e - + E. 5 ln u ln v fi u v 5 5 5 5 ( ) ln ln - ln - 5ln 5 -ln - Prouts n (some) Quotients of Trig Funtions n m n m For sin os we hve the following : For tn se we hve the following :. n o. Strip sine out n onvert rest to osines using sin - os, then use the sustitution u os.. m o. Strip osine out n onvert rest to sines using os - sin, then use the sustitution u sin.. n n m oth o. Use either. or. 4. n n m oth even. Use oule ngle n/or hlf ngle formuls to reue the integrl into form tht n e integrte.. n o. Strip tngent n sent out n onvert the rest to sents using tn se -, then use the sustitution u se.. m even. Strip sents out n onvert rest to tngents using se + tn, then use the sustitution u tn.. n o n m even. Use either. or. 4. n even n m o. Eh integrl will e elt with ifferently. sin sin os os os sin - os Trig Formuls :, ( + ), ( ) k k+ n n+ n n+ - ln ln + lnuu uln ( u) - u+ +, - + u u e u e + + + Common Integrls osuu sinu+ Visit http://tutoril.mth.lmr.eu for omplete set of Clulus notes. sinuu - osu+ se uu tn u+ seutnuu seu+ suotuu - su+ s uu - ot u+ tnuu ln seu + seuu ln seu+ tn u + u tn + u - u + u - u sin u + - 005 Pul Dwkins E. 5 tn se 4 ( se se ) tnse 4 ( u ) uu ( u se ) 5 4 tn se tn se tn se - - se - se + 7 5 7 5 Visit http://tutoril.mth.lmr.eu for omplete set of Clulus notes. E. sin5 os 5 4 sin sin sin (sin ) sin os os os (- os ) sin os (-u) u u4 - u - + - u u ( os ) u u se + ln os - os + 005 Pul Dwkins

Clulus Chet Sheet Trig Sustitutions : If the integrl ontins the following root use the given sustitution n formul to onvert into n integrl involving trig funtions. - fi sinq os q - sin q 6 E. 4-9 sin q fi osq q 4 4sin 4os 4-9 - q q os q Rell. Beuse we hve n inefinite integrl we ll ssume positive n rop solute vlue rs. If we h efinite integrl we nee to ompute q s n remove solute vlue rs se on tht n, Ï if 0 Ì Ó - if < 0 In this se we hve 4-9 osq. - fi seq tn se P Q q q - Û ı ( os ) ( os ) + fi tnq se q + tn q 6 4 sin q q sin q 9 q q q s q - otq + Use Right Tringle Trig to go k to s. From sustitution we hve sinq so, From this we see tht ot 4-9 q. So, 6 4 4-9 4-9 - + Prtil Frtions : If integrting where the egree of P( ) is smller thn the egree of Q( ). Ftor enomintor s ompletely s possile n fin the prtil frtion eomposition of the rtionl epression. Integrte the prtil frtion eomposition (P.F.D.). For eh ftor in the enomintor we get term(s) in the eomposition oring to the following tle. Ftor in Q( ) Term in P.F.D Ftor in Q( ) + A + A+ B + + + + ( + ) k ( + + ) k Term in P.F.D A A A k + + L + + + + A + B A k + Bk + L + + + + + k k Clulus Chet Sheet Applitions of Integrls Net Are : represents the net re etween f f n the -is with re ove -is positive n re elow -is negtive. Are Between Curves : The generl formuls for the two min ses for eh re, Èupper funtion Èlower funtion Î Î & fi Îright funtion - Îleft funtion y f fi A - È È f y A y If the urves interset then the re of eh portion must e foun iniviully. Here re some skethes of ouple possile situtions n formuls for ouple of possile ses. A f ( y) -g( y) y - + - A f -g A f g g f Volumes of Revolution : The two min formuls re V A n V A y y. Here is some generl informtion out eh metho of omputing n some emples. Rings Cyliners A p ( ) outer rius - inner rius A p ( rius) ( with / height) Limits: /y of right/ot ring to /y of left/top ring Limits : /y of inner yl. to /y of outer yl. f, f y, f y, f, Horz. Ais use g( ), A( ) n. Vert. Ais use g( y ), A( y ) n y. Horz. Ais use g( y ), A( y ) n y. Vert. Ais use g( ), A( ) n. E. Ais : y > 0 E. Ais : y 0 E. Ais : y > 0 E. Ais : y 0 7+ ( - )( + 4) E. 7+ 4 + 6 + ( - )( + 4) - + 4 + + 4 6 - + 4 + 4 - ( ) 4ln - + ln + 4 + 8tn Here is prtil frtion form n reomine. A( 7+ A B+ C + 4) + ( B+ C)( -) + ( - )( + 4) - + 4 ( - )( + 4) Set numertors equl n ollet like terms. 7 + A+ B + C - B + 4A- C Set oeffiients equl to get system n solve to get onstnts. A+ B 7 C- B 4A- C 0 A 4 B C 6 outer rius : - f inner rius : - g outer rius: + g inner rius: + f rius : - y with : f ( y) - g( y) rius : + y with : f ( y) - g( y) An lternte metho tht sometimes works to fin onstnts. Strt with setting numertors equl in 7 + A + 4 + B+ C -. Chose nie vlues of n plug in. previous emple : For emple if we get 0 5A whih gives A 4. This won t lwys work esily. These re only few ses for horizontl is of rottion. If is of rottion is the -is use the y 0 se with 0. For vertil is of rottion ( > 0 n 0 ) interhnge n y to get pproprite formuls. Visit http://tutoril.mth.lmr.eu for omplete set of Clulus notes. 005 Pul Dwkins Visit http://tutoril.mth.lmr.eu for omplete set of Clulus notes. 005 Pul Dwkins

Work : If fore of F moves n ojet in, the work one is W Clulus Chet Sheet F Averge Funtion Vlue : The verge vlue of f ( ) on is f vg f ( ) - Ar Length Surfe Are : Note tht this is often Cl II topi. The three si formuls re, L s SA p ys (rotte out -is) SA p s (rotte out y-is) where s is epenent upon the form of the funtion eing worke with s follows. y s + if y f, s + y if f y, y y y () () s + t if f t, y g t, t t t r if, s r + q r f q q q With surfe re you my hve to sustitute in for the or y epening on your hoie of s to mth the ifferentil in the s. With prmetri n polr you will lwys nee to sustitute. Improper Integrl An improper integrl is n integrl with one or more infinite limits n/or isontinuous integrns. Integrl is lle onvergent if the limit eists n hs finite vlue n ivergent if the limit oesn t eist or hs infinite vlue. This is typilly Cl II topi. Infinite Limit. lim t f f tæ. lim - tæ- t. f f + f provie BOTH integrls re onvergent. - - Disontinuous Integrn f f t. Disont. t : f lim f +. Disont. t : lim -. Disontinuity t tæ t f f < < : f ( ) f ( ) f ( ) + provie oth re onvergent. Comprison Test for Improper Integrls : If f g 0 on [, ) then,. If f onv. then g ( ) onv.. If g ( ) ivg. then f Useful ft : If > 0 then For given integrl f ( ) p onverges if p > n iverges for p. tæ ivg. Approimting Definite Integrls - n n (must e even for Simpson s Rule) efine D n n ivie [, ] into n suintervls [ 0, ], [, ],, [, n n ] * * * Mipoint Rule : f ªD Èf + f + + f ( n) - with 0 L, n n then, * Î i, i- i D f ª Èf 0 + f ++ f + + f n- + f n Î L D f ª Èf 0 + 4f + f + + f - + 4f - + f Î L is mipoint [ ] Trpezoi Rule : Simpson s Rule : n n n Visit http://tutoril.mth.lmr.eu for omplete set of Clulus notes. 005 Pul Dwkins

Clulus Chet Sheet Derivtives Definition n Nottion f ( + h) f If y f then the erivtive is efine to e f lim. h 0 h If y f then ll of the following re equivlent nottions for the erivtive. f y f y f Df If y f then,. m f is the slope of the tngent line to y f t n the eqution of the tngent line t is y f + f. given y If f ( ) n. ( f ) f If y f ll of the following re equivlent nottions for erivtive evlute t. f y f y Df Interprettion of the Derivtive f is the instntneous rte of. hnge of f ( ) t.. If f ( ) is the position of n ojet t time then f is the veloity of the ojet t. Bsi Properties n Formuls g re ifferentile funtions (the erivtive eists), n n re ny rel numers,. ( f ± g) f ± g. fg f g+ fg Prout Rule f f g fg 4. Quotient Rule g g ( ) ( sin) os ( os) sin ( tn) se ( se) setn n n n Power Rule ( f ( g )) f g g This is the Chin Rule 5. ( ) 0 Common Derivtives ( s) sot ( ot) s ( sin ) ( os ) ( tn ) + 6. 7. ( ) ln ( ) ( e ) e ( ln ), > 0 ( ln ), 0 ( log ), > 0 ln Clulus Chet Sheet Chin Rule Vrints The hin rule pplie to some speifi funtions. n n. ( f ) n f f 5. ( os f ) f sin f f f. ( e ) f e 6. ( tn f ) f se f f. ( ln f ) 7. se [ f ] f se f tn f f f 4. ( sin f ) f os f 8. ( tn f ) + f [ ] [ ] Higher Orer Derivtives The Seon Derivtive is enote s The n th Derivtive is enote s ( ) f ( f f n is efine s ) n n f f n is efine s n f ( f ( )), i.e. the erivtive of the ( n ) ( n ) f ( f ), i.e. the erivtive of first erivtive, f. the (n-) st n erivtive, f. Impliit Differentition + y sin y + y y here, so prouts/quotients of n y 9y Fin y if e. Rememer will use the prout/quotient rule n erivtives of y will use the hin rule. The trik is to ifferentite s norml n every time you ifferentite y you tk on y (from the hin rule). After ifferentiting solve for y. e ( y ) y yy ( y) y e y y e e 9 + + os + 9y y + y + yy y y + y 9y 9y e 9 os y 9 os y y y Critil Points 9 9 is ritil point of f. f 0 or. f Inresing/Deresing Conve Up/Conve Down oesn t eist. provie either Inresing/Deresing. If f > 0 for ll in n intervl I then f ( ) is inresing on the intervl I. < for ll in n intervl I then. If f 0 f ( ) is eresing on the intervl I. for ll in n intervl I then. If f 0 f ( ) is onstnt on the intervl I. e y y e 9y 9y 9 os ( y) Conve Up/Conve Down. If f > 0 for ll in n intervl I then f ( ) is onve up on the intervl I. < for ll in n intervl I then. If f 0 f ( ) is onve own on the intervl I. Infletion Points is infletion point of f onvity hnges t. if the Visit http://tutoril.mth.lmr.eu for omplete set of Clulus notes. 005 Pul Dwkins Visit http://tutoril.mth.lmr.eu for omplete set of Clulus notes. 005 Pul Dwkins

Asolute Etrem. is n solute mimum of f ( ) if f f for ll in the omin. is n solute minimum of f ( ). if f f for ll in the omin. Fermt s Theorem f hs reltive (or lol) etrem t If, then is ritil point of Clulus Chet Sheet f. Etreme Vlue Theorem f is ontinuous on the lose intervl If [, ] then there eist numers n so tht,.,,. f ( ) is the s. m. in [, ],. f ( ) is the s. min. in [, ]. Fining Asolute Etrem To fin the solute etrem of the ontinuous, use the funtion f ( ) on the intervl [ ] following proess.. Fin ll ritil points of f ( ) in [, ].. Evlute f ( ) t ll points foun in Step.. Evlute f ( ) n f ( ). 4. Ientify the s. m. (lrgest funtion vlue) n the s. min.(smllest funtion vlue) from the evlutions in Steps &. Etrem Reltive (lol) Etrem. is reltive (or lol) mimum of f f for ll ner. f ( ) if. is reltive (or lol) minimum of f f for ll ner. f ( ) if st Derivtive Test If is ritil point of. rel. m. of f ( ) if f 0 f then is > to the left of n f < 0 to the right of.. rel. min. of f ( ) if f 0 < to the left of n f > 0to the right of. is. not reltive etrem of f ( ) if f the sme sign on oth sies of. n Derivtive Test If Men Vlue Theorem, is ritil point of f ( ) suh tht f 0 then. is reltive mimum of f ( ) if f < 0.. is reltive minimum of f ( ) if f > 0.. my e reltive mimum, reltive minimum, or neither if f 0. Fining Reltive Etrem n/or Clssify Critil Points f.. Fin ll ritil points of. Use the st erivtive test or the n erivtive test on eh ritil point. If f ( ) is ontinuous on the lose intervl [ ] n ifferentile on the open intervl (, ) f f then there is numer < < suh tht f. Newton s Metho If n is the n th guess for the root/solution of f ( ) 0 then (n+) st guess is provie f ( n ) eists. f f n+ n ( n ) ( ) n Clulus Chet Sheet Relte Rtes Sketh piture n ientify known/unknown quntities. Write own eqution relting quntities n ifferentite with respet to t using impliit ifferentition (i.e. on erivtive every time you ifferentite funtion of t). Plug in known quntities n solve for the unknown quntity. E. A 5 foot ler is resting ginst wll. The ottom is initilly 0 ft wy n is eing pushe towrs the wll t ft/se. How fst 4 is the top moving fter se? is negtive euse is eresing. Using Pythgoren Theorem n ifferentiting, + y 5 + yy 0 After se we hve 0 7n so y 5 7 76. Plug in n solve for y. 7 7( 4 ) + 76 y 0 y ft/se 4 76 4 E. Two people re 50 ft prt when one strts wlking north. The ngleθ hnges t 0.0 r/min. At wht rte is the istne etween them hnging when θ 0.5 r? We hve θ 0.0 r/min. n wnt to fin. We n use vrious trig fns ut esiest is, seθ seθ tnθθ 50 50 We knowθ 0.5 so plug in θ n solve. se( 0.5) tn( 0.5)( 0.0) 50 0. ft/se Rememer to hve lultor in rins! Optimiztion Sketh piture if neee, write own eqution to e optimize n onstrint. Solve onstrint for one of the two vriles n plug into first eqution. Fin ritil points of eqution in rnge of vriles n verify tht they re min/m s neee. E. We re enlosing retngulr fiel with E. Determine point(s) on y + tht re 500 ft of fene mteril n one sie of the losest to (0,). fiel is uiling. Determine imensions tht will mimize the enlose re. Mimize A y sujet to onstrint of + y 500. Solve onstrint for n plug into re. A y( 500 y) 500 y 500y y Differentite n fin ritil point(s). A 500 4y y 5 By n eriv. test this is rel. m. n so is the nswer we re fter. Finlly, fin. 500 5 50 The imensions re then 50 5. Minimize f ( 0) ( y ) + n the onstrint is y +. Solve onstrint for n plug into the funtion. y f y + y + y y y+ Differentite n fin ritil point(s). f y y By the n erivtive test this is rel. min. n so ll we nee to o is fin vlue(s). ± The points re then (, ) n (, ) Visit http://tutoril.mth.lmr.eu for omplete set of Clulus notes. 005 Pul Dwkins Visit http://tutoril.mth.lmr.eu for omplete set of Clulus notes. 005 Pul Dwkins