Coefficient bounds for p-valent functions

Similar documents
THE FEKETE-SZEGÖ COEFFICIENT FUNCTIONAL FOR TRANSFORMS OF ANALYTIC FUNCTIONS. Communicated by Mohammad Sal Moslehian. 1.

Fekete-Szegö Problem for Certain Subclass of Analytic Univalent Function using Quasi-Subordination

NEW SUBCLASS OF MULTIVALENT HYPERGEOMETRIC MEROMORPHIC FUNCTIONS

Differential Sandwich Theorem for Multivalent Meromorphic Functions associated with the Liu-Srivastava Operator

Coefficient bounds for some subclasses of p-valently starlike functions

Rosihan M. Ali, M. Hussain Khan, V. Ravichandran, and K. G. Subramanian. Let A(p, m) be the class of all p-valent analytic functions f(z) = z p +

Rosihan M. Ali and V. Ravichandran 1. INTRODUCTION

Inclusion and argument properties for certain subclasses of multivalent functions defined by the Dziok-Srivastava operator

A Certain Subclass of Multivalent Analytic Functions Defined by Fractional Calculus Operator

SOME CLASSES OF MEROMORPHIC MULTIVALENT FUNCTIONS WITH POSITIVE COEFFICIENTS INVOLVING CERTAIN LINEAR OPERATOR

Coefficient inequalities for certain subclasses Of p-valent functions

Convolution Properties for Certain Meromorphically Multivalent Functions

arxiv: v1 [math.cv] 19 Jul 2012

ON CERTAIN CLASSES OF MULTIVALENT FUNCTIONS INVOLVING A GENERALIZED DIFFERENTIAL OPERATOR

Sufficient conditions for certain subclasses of meromorphic p-valent functions

Convolutions of Certain Analytic Functions

Bulletin of the Transilvania University of Braşov Vol 8(57), No Series III: Mathematics, Informatics, Physics, 1-12

QuasiHadamardProductofCertainStarlikeandConvexPValentFunctions

Research Article Some Properties of Certain Integral Operators on New Subclasses of Analytic Functions with Complex Order

Malaya J. Mat. 4(1)(2016) 37-41

ON THE FEKETE-SZEGÖ INEQUALITY FOR A CLASS OF ANALYTIC FUNCTIONS DEFINED BY USING GENERALIZED DIFFERENTIAL OPERATOR

Differential Subordination and Superordination Results for Certain Subclasses of Analytic Functions by the Technique of Admissible Functions

On the Second Hankel Determinant for the kth-root Transform of Analytic Functions

Quasi-Convex Functions with Respect to Symmetric Conjugate Points

ORDER. 1. INTRODUCTION Let A denote the class of functions of the form

Coefficient Estimates for Bazilevič Ma-Minda Functions in the Space of Sigmoid Function

Applied Mathematics Letters

CERTAIN SUBCLASSES OF STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER

DIFFERENTIAL SUBORDINATION AND SUPERORDINATION OF ANALYTIC FUNCTIONS DEFINED BY THE MULTIPLIER TRANSFORMATION

SOME PROPERTIES OF A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY A GENERALIZED SRIVASTAVA-ATTIYA OPERATOR. Nagat. M. Mustafa and Maslina Darus

Research Article On a New Class of p-valent Meromorphic Functions Defined in Conic Domains

SUBORDINATION RESULTS FOR CERTAIN SUBCLASSES OF UNIVALENT MEROMORPHIC FUNCTIONS

On products of multivalent close-to-star functions

Fekete-Szegö Inequality for Certain Classes of Analytic Functions Associated with Srivastava-Attiya Integral Operator

STARLIKENESS ASSOCIATED WITH PARABOLIC REGIONS

Some basic properties of certain subclasses of meromorphically starlike functions

Uniformly convex functions II

A NOTE ON UNIVALENT FUNCTIONS WITH FINITELY MANY COEFFICIENTS. Abstract

Applied Mathematics and Computation

SECOND HANKEL DETERMINANT FOR A CERTAIN SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS

On a new class of (j, i)-symmetric function on conic regions

Subclass of Meromorphic Functions with Positive Coefficients Defined by Frasin and Darus Operator

The Fekete-Szegö Theorem for a Certain Class of Analytic Functions (Teorem Fekete-Szegö Bagi Suatu Kelas Fungsi Analisis)

Majorization Properties for Subclass of Analytic p-valent Functions Defined by the Generalized Hypergeometric Function

Research Article Subordination and Superordination on Schwarzian Derivatives

On neighborhoods of functions associated with conic domains

BIII/. Malaysinn Math. Sc. Soc. (Second Series) 26 (2003) Coefficients of the Inverse of Strongly Starlike Functions. ROSlHAN M.

Coecient bounds for certain subclasses of analytic functions of complex order

A note on variational representation for singular values of matrix

Hankel determinant for p-valently starlike and convex functions of order α

Applied Mathematics and Computation

Subclasses of Analytic Functions with Respect. to Symmetric and Conjugate Points

On sandwich theorems for p-valent functions involving a new generalized differential operator

FABER POLYNOMIAL COEFFICIENTS FOR GENERALIZED BI SUBORDINATE FUNCTIONS OF COMPLEX ORDER

Research Article Sufficient Conditions for Janowski Starlikeness

Research Article Subordination Results on Subclasses Concerning Sakaguchi Functions

A NEW CLASS OF MEROMORPHIC FUNCTIONS RELATED TO CHO-KWON-SRIVASTAVA OPERATOR. F. Ghanim and M. Darus. 1. Introduction

On a subclass of certain p-valent starlike functions with negative coefficients 1

Journal of Inequalities in Pure and Applied Mathematics

Starlike Functions of Complex Order

Products of Composition, Multiplication and Differentiation between Hardy Spaces and Weighted Growth Spaces of the Upper-Half Plane

On a New Subclass of Meromorphically Multivalent Functions Defined by Linear Operator

Coefficient Bounds for a Certain Class of Analytic and Bi-Univalent Functions

RIEMANN-STIELTJES OPERATORS BETWEEN WEIGHTED BERGMAN SPACES

SOME SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED BY GENERALIZED DIFFERENTIAL OPERATOR. Maslina Darus and Imran Faisal

denote the subclass of the functions f H of the form H of the form

SUBCLASS OF HARMONIC STARLIKE FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE

Convolution properties for subclasses of meromorphic univalent functions of complex order. Teodor Bulboacă, Mohamed K. Aouf, Rabha M.

GENERALIZED NORMS INEQUALITIES FOR ABSOLUTE VALUE OPERATORS

ON SOME LENGTH PROBLEMS FOR ANALYTIC FUNCTIONS

On Certain Properties of Neighborhoods of. Dziok-Srivastava Differential Operator

Coefficient Inequalities of a Subclass of Starlike Functions Involving q - Differential Operator

Inclusion relationships for certain classes of analytic functions involving the Choi-Saigo-Srivastava operator

The Noor Integral and Strongly Starlike Functions

Properties of Starlike Functions with Respect to Conjugate Points

COEFFICIENT INEQUALITY FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS

On a New Subclass of Salagean Type Analytic Functions

Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli

SOME INCLUSION PROPERTIES OF STARLIKE AND CONVEX FUNCTIONS ASSOCIATED WITH HOHLOV OPERATOR. II

Second Hankel determinant for the class of Bazilevic functions

On Multivalent Functions Associated with Fixed Second Coefficient and the Principle of Subordination

Int. J. Open Problems Complex Analysis, Vol. 3, No. 1, March 2011 ISSN ; Copyright c ICSRS Publication,

j(z) > + FZ f(z) z + oz f(z) 1-.F < 1-.F zf (z) } 1 E (z 6 U,F 1). (1.3) >/(z e u) ANGULAR ESTIMATIONS OF CERTAIN INTEGRAL OPERATORS

COEFFICIENT INEQUALITY FOR CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS

The Relationships Between p valent Functions and Univalent Functions

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions

Coefficient Bounds for Certain Subclasses of Analytic Function Involving Hadamard Products

FUNCTIONS WITH NEGATIVE COEFFICIENTS

Notes on Starlike log-harmonic Functions. of Order α

Research Article A Third-Order Differential Equation and Starlikeness of a Double Integral Operator

Journal of Inequalities in Pure and Applied Mathematics

SOME RESULTS OF p VALENT FUNCTIONS DEFINED BY INTEGRAL OPERATORS. Gulsah Saltik Ayhanoz and Ekrem Kadioglu

Differential Operator of a Class of Meromorphic Univalent Functions With Negative Coefficients

HEAT AND LAPLACE TYPE EQUATIONS WITH COMPLEX SPATIAL VARIABLES IN WEIGHTED BERGMAN SPACES

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2,

Research Article A New Class of Meromorphically Analytic Functions with Applications to the Generalized Hypergeometric Functions

Initial Coefficient Bounds for a General Class of Bi-Univalent Functions

A sharp generalization on cone b-metric space over Banach algebra

On certain subclasses of analytic functions associated with generalized struve functions

Certain subclasses of uniformly convex functions and corresponding class of starlike functions

Transcription:

Alied Mathematics and Comutation 7 (2007) 35 46 www.elsevier.com/locate/amc Coefficient bounds for -valent functions Rosihan M. Ali *, V. Ravichandran, N. Seenivasagan School of Mathematical Sciences, Universiti Sains Malaysia, 00 USM Penang, Malaysia Dedicated to Professor H.M. Srivastava on the occasion of his 65th birthday Abstract Shar bounds for ja 2 la 2 j and ja +3j are derived for certain -valent analytic functions. These are alied to obtain Fekete-Szegö like inequalities for several classes of functions defined by convolution. Ó 2006 Elsevier Inc. All rights reserved. Keywords Analytic functions; Starlike functions; Convex functions; -Valent functions; Subordination; Convolution; Fekete-Szegö inequalities. Introduction Let A be the class of all functions of the form f ðzþ ¼z X n¼ a n z n ðþ which are analytic in the oen unit disk D ¼ {zjzj < } and let A ¼ A. For f(z) given by () and g(z) given by gðzþ ¼z P n¼ b nz n, their convolution (or Hadamard roduct), denoted by f * g, is defined by ðf gþðzþ ¼ z X a n b n z n n¼ The function f(z) is subordinate to the function g(z), written f(z) g(z), rovided there is an analytic function w(z) defined on D with w(0) = 0 and jw(z)j < such that f(z)=g(w(z)). Let u be an analytic function with ositive real art in the unit disk D with u(0) = and u 0 (0) > 0 that mas D onto a region starlike with resect to and symmetric with resect to the real axis. We define the class S b; ðuþ to be the subclass of A consisting of functions f(z) satisfying * Corresonding author. E-mail addresses rosihan@cs.usm.my (R.M. Ali), vravi@cs.usm.my (V. Ravichandran), vasagan2000@yahoo.co.in (N. Seenivasagan). 0096-3003/$ - see front matter Ó 2006 Elsevier Inc. All rights reserved. doi0.06/j.amc.2006.0.00

36 R.M. Ali et al. / Alied Mathematics and Comutation 7 (2007) 35 46 zf 0 ðzþ b f ðzþ uðzþ; ðz 2 D and b 2 C nf0gþ As secial cases, let S ðuþ ¼ S ; ðuþ; S b ðuþ ¼ S b; ðuþ; S ðuþ ¼ S ; ðuþ For a fixed analytic function g 2 A with ositive coefficients, define the class S b;;gðuþ to be the class of all functions f 2 A satisfying f g 2 S b;ðuþ. This class includes as secial cases several other classes studied in the literature. For examle, when gðzþ ¼z P n¼ n zn, the class S b;;g ðuþ reduces to the class C b,(u) consisting of functions f 2 A satisfying b b zf 00 ðzþ uðzþ; f 0 ðzþ ðz 2 D and b 2 C nf0gþ The classes S * (u) andc(u) ¼ C, (u) were introduced and studied by Ma and Minda [9]. Define the class R b, (u) to be the class of all functions f 2 A satisfying f 0 ðzþ uðzþ; ðz 2 D and b 2 C nf0gþ; b z and for a fixed function g with ositive coefficients, let R b,,g (u) be the class of all functions f 2 A satisfying f * g 2 R b, (u). Several authors [4,,0,6,7,2] have studied the classes of analytic functions defined by using the exression zf 0 ðzþ f 00 ðzþ. We shall also consider a class defined by the corresonding quantity for -valent functions. f ðzþ f ðzþ Define the class S ða; uþ to be the class of all functions f 2 A satisfying að Þ zf 0 ðzþ f ðzþ a z 2 f 00 ðzþ uðzþ f ðzþ ðz 2 D and a P 0Þ Note that S ð0; uþ is the class S ðuþ. Let S ;g ða; uþ be the class of all functions f 2 A for which f g 2 S ða; uþ. We shall also consider the class L M ða; uþ consisting of -valent a-convex functions with resect to u. These are functions f 2 A satisfying a zf 0 ðzþ f ðzþ a zf 00 ðzþ uðzþ f 0 ðzþ ðz 2 D and a P 0Þ Further let M (a,u) be the class of functions f 2 A satisfying zf 0 a ðzþ zf 00 ðzþ f ðzþ f 0 ðzþ a uðzþ ðz 2 D and a P 0Þ Functions in this class are called logarithmic -valent a-convex functions with resect to u. In this aer, we obtain Fekete-Szegö inequalities and bounds for the coefficient a +3 for the classes S ðuþ and S ;gðuþ. These results are then extended to the other classes defined earlier. See [ 7,9,3,4,] for Fekete- Szegö roblem for certain related classes of functions. Let X be the class of analytic functions of the form wðzþ ¼w z w 2 z 2 ð2þ in the unit disk D satisfying the condition jw(z)j <. We need the following lemmas to rove our main results. Lemma. If w 2 X, then >< t if t 6 ; jw 2 tw 2 j 6 if 6 t 6 ; > t if t P When t < ort>, equality holds if and only if w(z) = z or one of its rotations. If < t <, then equality holds if and only if w(z) = z 2 or one of its rotations. Equality holds for t = if and only if wðzþ ¼

z kz kz R.M. Ali et al. / Alied Mathematics and Comutation 7 (2007) 35 46 37 ð0 6 k 6 Þ or one of its rotations while for t =, equality holds if and only if wðzþ ¼ z kz kz or one of its rotations. Also the shar uer bound above can be imroved as follows when < t < ð0 6 k 6 Þ jw 2 tw 2 jðt Þjw j 2 6 ð < t 6 0Þ and jw 2 tw 2 jð tþjw j 2 6 ð0 < t < Þ Lemma is a reformulation of a Lemma of Ma and Minda [9]. Lemma 2 [5, Inequality 7,. 0]. If w 2 X, then, for any comlex number t, jw 2 tw 2 j 6 maxf; jtjg The result is shar for the functions w(z) = z 2 or w(z) = z. Lemma 3 []. If w 2 X, then for any real numbers q and q 2, the following shar estimate holds jw 3 q w w 2 q 2 w 3 j 6 Hðq ; q 2 Þ; ð3þ where for ðq ; q 2 Þ2D [ D 2 ; jq 2 j for ðq ; q 2 Þ2 S7 >< 2 Hðq ; q 2 Þ¼ ðjq 2 3 jþ for ðq ; q 2 Þ2D [ D 9 ; 3 q 2 q 2 4 q 2 4q 2 jq j 3ðjq jq 2 Þ k¼3 D k ; q 2 2 for ðq ; q 2 Þ2D 0 [ D f2; g; 4 3ðq 2 Þ > 2 ðjq 2 3 j Þ for ðq ; q 2 Þ2D 2 jq j 3ðjq j q 2 Þ The extremal functions, u to rotations, are of the form wðzþ ¼z 3 ; wðzþ ¼z; wðzþ ¼w 0 ðzþ ¼ zð½ð kþe 2 ke Š e e 2 zþ ; ½ð kþe ke 2 Šz wðzþ ¼w ðzþ ¼ zðt zþ t z ; wðzþ ¼w 2ðzÞ ¼ zðt 2 zþ t 2 z ; je j¼je 2 j¼; e ¼ t 0 e ih 0 2 ða bþ; e2 ¼ e ih 0 2 ðia bþ; rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi a ¼ t 0 cos h 0 2 ; b ¼ h t 2 0 0 sin2 ; k ¼ b a 2 2b ; t 0 ¼ 2q 2ðq 2 2Þ 3q2 2 3ðq 2 Þðq 2 4q ; t ¼ 2Þ t 2 ¼ jq j 2; 3ðjq jq 2 Þ jq j 2; h 0 cos 3ðjq j q 2 Þ 2 ¼ q q 2 ðq 2 Þ 2ðq2 2Þ 2 2q 2 ðq 2 2Þ 3q2

3 R.M. Ali et al. / Alied Mathematics and Comutation 7 (2007) 35 46 The sets D k,k=,2,...,2, are defined as follows D ¼ ðq ; q 2 Þ jq j 6 2 ; jq 2j 6 ; D 2 ¼ ðq ; q 2 Þ 2 6 jq j 6 2; 4 27 ðjq jþ 3 ðjq jþ 6 q 2 6 ; D 3 ¼ ðq ; q 2 Þ jq j 6 2 ; q 2 6 ; D 4 ¼ ðq ; q 2 Þ jq j P 2 ; q 2 6 2 3 ðjq jþ ; D 5 ¼fðq ; q 2 Þ jq j 6 2; q 2 P g; D 6 ¼ ðq ; q 2 Þ 2 6 jq j 6 4; q 2 P 2 ðq2 Þ ; D 7 ¼ ðq ; q 2 Þ jq j P 4; q 2 P 2 3 ðjq j Þ ; D ¼ ðq ; q 2 Þ 2 6 jq j 6 2; 2 3 ðjq jþ 6 q 2 6 4 27 ðjq jþ 3 ðjq jþ ; D 9 ¼ ðq ; q 2 Þ jq j P 2; 2 3 ðjq jþ 6 q 2 6 2jq jðjq jþ q 2 2jq ; j4 D 0 ¼ ðq ; q 2 Þ 2 6 jq j 6 4; 2jq jðjq jþ q 2 2jq j4 6 q 2 6 2 ðq2 Þ ; D ¼ ðq ; q 2 Þ jq j P 4; 2jq jðjq jþ q 2 2jq j4 6 q 2 6 2jq jðjq j Þ q 2 2jq ; j4 D 2 ¼ ðq ; q 2 Þ jq j P 4; 2jq jðjq j Þ q 2 2jq j4 6 q 2 6 2 3 ðjq j Þ 2. Coefficient bounds By making use of the Lemmas 3, we rove the following bounds for the class S ;g ðuþ Theorem. Let u(z) = + B z+b 2 z 2 +B 3 z 3 +, and r ¼ B 2 B B 2 ; r 2B 2 2 ¼ B 2 B B 2 ; r 2B 2 3 ¼ B 2 B 2 2B 2 If f(z) given by () belongs to S ðuþ, then B >< 2 2 ð 2lÞB 2 if l 6 r ; a 2 la 2 B 6 if r 2 6 l 6 r 2 ; > B 2 2 ð 2lÞB 2 if l P r 2 if r 6 l 6 r 3, then a 2 la 2 B 2 ð2l ÞB 2B B If r 3 6 l 6 r 2, then a 2 la 2 B 2 ð2l ÞB 2B B ja j 2 6 B 2 ð5þ ja j 2 6 B 2 ð6þ ð4þ

R.M. Ali et al. / Alied Mathematics and Comutation 7 (2007) 35 46 39 For any comlex number l, a 2 la 2 6 B 2 max ; B 2 ð 2lÞB B ð7þ ja 3 j 6 B 3 Hðq ; q 2 Þ; ðþ where H(q,q 2 ) is as defined in Lemma 3, q ¼ 4B 2 3B 2 and q 2B 2 ¼ 2B 3 3B B 2 2 B 3 2B These results are shar. Proof. If f ðzþ 2S ðuþ; then there is an analytic function w(z) =w z + w 2 z 2 + 2X such that zf 0 ðzþ f ðzþ ¼ uðwðzþþ Since zf 0 ðzþ f ðzþ ¼ a z a2 2a 2 we have from (9), a ¼ B w ; a 2 ¼ 2 B w 2 ðb 2 B 2 Þw2! z 2 3a 3 3 a a 2 a3! z 3 ; ð9þ ð0þ ðþ and a 3 ¼ B 3 w 3 4B 2 3B 2 w w 2 2B 3 3B B 2 2 B 3 w 3 2B 2B ð2þ Using (0) and (), we have a 2 la 2 ¼ B w 2 vw 2 ; ð3þ 2 where v ¼ B ð2l Þ B 2 B The results (4) (6) are established by an alication of Lemma, inequality (7) by Lemma 2 and () follows from Lemma 3. To show that the bounds in (4) (6) are shar, we define the functions K un (n =2,3,...)by zk 0 un ðzþ K un ðzþ ¼ uðzn Þ; K un ð0þ ¼0 ¼½K un Š 0 ð0þ and the functions F k and G k (0 6 k 6 ) by zf 0 k ðzþ zðz kþ ¼ u ; F k ð0þ ¼0 ¼ F 0 k F k ðzþ kz ð0þ and zg 0 k ðzþ zðz kþ ¼ u ; G k ð0þ ¼0 ¼ G 0 k G k ðzþ kz ð0þ Clearly the functions K un ; F k ; G k 2 S ðuþ. We shall also write K u ¼ K u2.

40 R.M. Ali et al. / Alied Mathematics and Comutation 7 (2007) 35 46 If l < r or l > r 2, then equality holds if and only if f is K u or one of its rotations. When r < l < r 2, then equality holds if and only if f is K u3 or one of its rotations. If l = r then equality holds if and only if f is F k or one of its rotations. Equality holds for l = r 2 if and only if f is G k or one of its rotations. h Corollary. Let u(z)=+b z+b 2 z 2 +B 3 z 3 +, and let r ¼ g2 B 2 B B 2 ; r g 2 2B 2 2 ¼ g2 B 2 B B 2 ; r g 2 2B 2 3 ¼ g2 B 2 B 2 g 2 2B 2 If f(z) given by () belongs to S ;gðuþ, then 2g 2 B 2 2 g 2 l B 2 g 2 if l 6 r ; >< a 2 la 2 B 6 2g 2 if r 6 l 6 r 2 ; 2g 2 B 2 2 g 2 > B 2 if l P r 2 g 2 l if r 6 l 6 r 3, then a 2 la 2 g2 B 2 2g 2 B B If r 3 6 l 6 r 2, then a 2 la 2 g2 2g 2 B B 2 B 2 g 2 l g 2 2 g 2 l g 2!B!!B! ja j 2 6 B 2g 2 ja j 2 6 B 2g 2 For any comlex number l, ( a 2 la 2 6 B max ; B 2 2 g! ) 2 l B 2g 2 B g 2 ja 3 j 6 B 3g 3 Hðq ; q 2 Þ; ð4þ where H(q,q 2 ) is as defined in Lemma 3, q ¼ 4B 2 3B 2 and q 2B 2 ¼ 2B 3 3B B 2 2 B 3 2B These results are shar. Theorem 2. Let u be as in Theorem. If f(z) given by () belongs to S b;;gðuþ, then, for any comlex number l,we have (! ) a 2 la 2 6 jbjb max ; B 2 b 2g 2 B The result is shar. 2 g2 g 2 l Proof. The roof is similar to the roof of Theorem. h Proceeding similarly, we now obtain coefficient bounds for the class R b,,g (u). B

Theorem 3. Let u(z) = + B z+b 2 z 2 +B 3 z 3 + If f(z) given by () belongs to R b, (u), then for any comlex number l, a 2 la 2 6 jcj max f; jvjg; ð5þ where v ¼ l bb ð 2Þ B 2 ð Þ 2 B and c ¼ bb 2 ja 3 j 6 jbjb 3 Hðq ; q 2 Þ; ð6þ where H(q,q 2 ) is as defined in Lemma 3, q ¼ 2B 2 and q B 2 ¼ B 3 B These results are shar. Proof. A comutation shows that f 0 ðzþ ¼ b z b a z 2 b a 2z 2 3 b a 3z 3 Thus a 2 la 2 ¼ bb 2 w 2 vw 2 ¼ c w2 vw 2 ; ð7þ h i where v ¼ bb lð2þ B ðþ 2 2 B and c ¼ bb. The result now follows from Lemmas 2 and 3. h 2 Remark. When = and uðzþ ¼ Az ð 6 B 6 A 6 Þ; Bz inequality (5) reduces to give the inequality [3, Theorem 4,. 94]. For the class R b,,g (u), we have the following result. Theorem 4. Let u(z)=+b z+b 2 z 2 +B 3 z 3 +. If f(z) given by () belongs to R b, (u), then for any comlex number l, a 2 la 2 6 jcj max f; jvjg; where v ¼ lg2 g 2 R.M. Ali et al. / Alied Mathematics and Comutation 7 (2007) 35 46 4 bb ð 2Þ ð Þ 2 B 2 B and c ¼ bb g 2 ð2 Þ ja 3 j 6 jbjb ð3 Þg 3 Hðq ; q 2 Þ; ðþ where H(q,q 2 ) is as defined in Lemma 3, q ¼ 2B 2 and q B 2 ¼ B 3 B These results are shar.

42 R.M. Ali et al. / Alied Mathematics and Comutation 7 (2007) 35 46 We now rove the coefficient bounds for S ;gða; uþ. Theorem 5. Let u(z) = + B z+b 2 z 2 +B 3 z 3 + Further let r ¼ ð að ÞÞ½ð að ÞÞðB 2 B ÞB 2 Š ; 2B 2 r 2 ¼ ð að ÞÞ½ð að ÞÞðB 2 B ÞB 2 Š ; 2B 2 r 3 ¼ ð að ÞÞ½ð að ÞÞB 2 B 2 Š ; 2B 2 v ¼ 2lB ða 2a Þ B ð að ÞÞ 2 að Þ B 2 If f(z) given by () belongs to S ða; uþ, then >< cv if l 6 r ; a 2 la 2 6 c if r 6 l 6 r 2 ; > cv if l P r 2 B ; c ¼ if r 6 l 6 r 3, then a 2 la 2 ð að ÞÞ2 c ðv Þja 2 B 2 j 2 6 c If r 3 6 l 6 r 2, then a 2 la 2 ð að ÞÞ2 c ð vþja 2 B 2 j 2 6 c For any comlex number l, a 2 la 2 6 c maxf; jvjg B 2ð að 2ÞÞ ð9þ ð20þ B ja 3 j 6 að5 2 Þ3 Hðq ; q 2 Þ; where H(q,q 2 ) is as defined in Lemma 3, q ¼ 2B 2 B 2 ðað3 5Þ3Þ B 2ðað ÞÞðað 2ÞÞ and q 2 ¼ B 3 B 2ðað3 5Þ3Þ 2 B 2 ða a Þ B 2ðað ÞÞðað 2ÞÞ These results are shar. ð2þ Proof. If f ðzþ 2S ða; uþ. It is easily shown that að Þ zf 0 ðzþ f ðzþ a z 2 f 00 ðzþ ¼ f ðzþ ð að ÞÞ a z ð3 að5 2 ÞÞ a 3 The roof can now be comleted as in the roof of Theorem. ð að 2ÞÞ 2a 2 ð3 að3 5ÞÞ a a 2 h ð að ÞÞ a 2 z 2 ð að ÞÞ a 3 z 3 ð22þ

For the class S ;gða; uþ, we have the following result. Theorem 6. Let u(z) = + B z+b 2 z 2 +B 3 z 3 +, and let r ¼ g2 ð að ÞÞ½ð að ÞÞðB 2 B ÞB 2 Š 2B 2 g ; 2 r 2 ¼ g2 ð að ÞÞ½ð að ÞÞðB 2 B ÞB 2 Š 2B 2 g ; 2 r 3 ¼ g2 ð að ÞÞ½ð að ÞÞB 2 B 2 Š 2B 2 g ; 2 v ¼ 2g 2lB ða 2a Þ g 2 ð að ÞÞ2 If f(z) given by () belongs to S ;gða; uþ, then >< cv if l 6 r ; a 2 la 2 6 c if r 6 l 6 r 2 ; > cv if l P r 2 if r 6 l 6 r 3, then a 2 la 2 ð að ÞÞ2 g 2 c ðv Þja 2 B 2 j 2 6 c If r 3 6 l 6 r 2, then a 2 la 2 ð að ÞÞ2 g 2 c ð vþja 2 B 2 j 2 6 c For any comlex number l, a 2 la 2 6 c maxf; jvjg R.M. Ali et al. / Alied Mathematics and Comutation 7 (2007) 35 46 43 B að Þ B 2 B ; c ¼ B 2g 2 ð að 2ÞÞ B ja 3 j 6 g 3 ½að5 2 Þ3Š Hðq ; q 2 Þ; where H(q,q 2 ) is as defined in Lemma 3, q ¼ 2B 2 B 2 ðað3 5Þ3Þ B 2ðað ÞÞðað 2ÞÞ and q 2 ¼ B 3 B 2ðað3 5Þ3Þ 2 B 2 ða a Þ B 2ðað ÞÞðað 2ÞÞ These results are shar. ð23þ Remark 2. When = and zð 2bÞ uðzþ ¼ ða P 0; 0 6 b < Þ; z (9) and (20) of Theorem 5 reduces to [4, Theorem 4 and 3,. 95]. For the class L M ða; uþ, we now get the following coefficient bounds

44 R.M. Ali et al. / Alied Mathematics and Comutation 7 (2007) 35 46 Theorem 7. Let u(z) = + B z+b 2 z 2 +B 3 z 3 +. Let r ¼ c 3ðB 2 B Þc 2 B 2 c B 2 ; r 2 ¼ c 3ðB 2 B Þc 2 B 2 c B 2 ; r 3 ¼ c 3B 2 c 2 B 2 ; c B 2 c ¼ 4 2 ð 2 2aÞ; c 2 ¼ð aþ½2ð Þ 2 aš2a 3 ; c 3 ¼ 2ð aþ 2 ; v ¼ c l c 2 c 3 B 2 B ; T ¼ 3ð2 ð aþð3 2ÞÞ 3 ; T 2 ¼ a 6 ½ð 6 Þ3 ½6ð aþaðaþš a½ 6 3 2 ð 7aÞ3ð3aÞ3aŠŠ a If f(z) given by () belongs to L M ða; uþ, then 2 B v if l 6 r 2ð2 2aÞ ; >< a 2 la 2 6 2 B if r 2ð2 2aÞ 6 l 6 r 2 ; > 2 B v if l P r 2ð2 2aÞ 2 if r 6 l 6 r 3, then a 2 la 2 c 3 ð vþja j 2 6 B c If r 3 6 l 6 r 2, then a 2 la 2 c 3 ð vþja j 2 6 B c For any comlex number l, a 2 la 2 2 B 6 2ð 2 2aÞ 2 B ja 3 j 6 3ð 3a 3Þ Hðq ; q 2 Þ; where H(q,q 2 ) is as defined in Lemma 3, q ¼ 2B 2 B T 4 B 2ð a Þð 2a 2Þ 2 B 2ð 2 2aÞ 2 B 2ð 2 2aÞ ð24þ ð25þ ð26þ max f; jvjg ð27þ and q 2 ¼ B 3 B T 4 ðc 3 B 2 c 2 B 2 Þ 2c 3 ð a Þð 2a 2Þ T 2 6 B 2 ð a Þ 3 These results are shar. Proof. The roof is similar to the roof of Theorem. h Remark 3. As secial cases, we note that for =, inequalities (24) (27) in Theorem 7 are those found in [5, Theorems 2. and 2.2,. 3]. Additionally, if a =, then inequalities (24) (26) are the results established in [4, Theorem 2., Remark 2.2,. 3]. Our final result is on the coefficient bounds for M (a,u).

Theorem. Let u(z) = + B z+b 2 z 2 +B 3 z 3 + Let r ¼ c ðb 2 B Þc 2 B 2 c 3 B 2 ; r 2 ¼ c ðb 2 B Þc 2 B 2 c 3 B 2 c ¼ ð aþ 2 ; c 2 ¼ a ð 2aÞ; c 3 ¼ 2ð 2aÞ; v ¼ ½ð 2aÞð2l Þ ašb B 2 c 3 B If f(z) given by () belongs to M (a,u), then 2 B v if l 6 r 2ð2aÞ ; >< a 2 la 2 6 2 B if r 2ð2aÞ 6 l 6 r 2 ; > 2 B v if l P r 2ð2aÞ 2 ; r 3 ¼ c B 2 c 2 B 2 ; c 3 B 2 if r 6 l 6 r 3, then a 2 la 2 c ð vþja j 2 6 2 B B c 3 2ð 2aÞ ð29þ If r 3 6 l 6 r 2, then a 2 la 2 c ð vþja j 2 6 2 B B c 3 2ð 2aÞ ð30þ For any comlex number l, a 2 la 2 6 2 B max f; jvjg ð3þ 2ð 2aÞ ja 3 j 6 2 B 3ð 3aÞ Hðq ; q 2 Þ; where H(q,q 2 ) is as defined in Lemma 3, q ¼ 2B 2 B R.M. Ali et al. / Alied Mathematics and Comutation 7 (2007) 35 46 45 3ð2 3a 2aÞ 2ð aþð 2aÞ B ; q 2 ¼ B 3 3ð2 3a 2aÞ B 2ð aþð 2aÞ B 2 ð4 5a 3 3 2 að2a Það9a 2Þ2a 2 Þ B 2 2ð aþ 3 ð 2aÞ These results are shar. Proof. For f(z) 2 M (a,u), a comutation shows that a zf 0 ðzþ f ðzþ a zf 00 ðzþ ¼ ð aþa z f 0 ðzþ 3ð 3aÞ 2 ð2 2a aþa 2 3 a 3 3ð2 3a 2aÞ 3 The remaining art of the roof is similar to the roof of Theorem. 2ð 2aÞa 2 2! a a 2 3 3 2 a 3a a a 3 4 Remark 4. When = and uðzþ ¼ð z z Þb ða P 0; 0 < b 6 Þ; (2) and (3) of Theorem reduce to [2, Theorems 2. and 2.2,. 23]. When = and a =,(2) (30) of Theorem reduce to [9, Theorem 3 and Remark,. 7]. h z 2 ð2þ z 3

46 R.M. Ali et al. / Alied Mathematics and Comutation 7 (2007) 35 46 Acknowledgement The authors gratefully acknowledged suort from the research grant IRPA 09-02-05-00020 EAR. References [] S. Abdul Halim, On a class of functions of comlex order, Tamkang J. Math. 30 (2) (999) 47 53. [2] N.E. Cho, S. Owa, On the Fekete-Szegö roblem for strongly a-quasiconvex functions, Tamkang J. Math. 34 () (2003) 2 2. [3] K.K. Dixit, S.K. Pal, On a class of univalent functions related to comlex order, Indian J. Pure Al. Math. 26 (9) (995) 9 96. [4] A. Janteng, M. Darus, Coefficient roblems for certain classes of analytic functions, J. Inst. Math. Comut. Sci. Math. Ser. 3 () (2000) 9 96. [5] F.R. Keogh, E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (969) 2. [6] K. Kieiela, M. Pietrzyk, J. Szynal, The shar bound for some coefficient functional within the class of holomorhic bounded functions and its alications, Rocky Mountain J. Math. 3 () (200) 33 326. [7] O.S. Kwon, N.E. Cho, On the Fekete-Szegö roblem for certain analytic functions, J. Korea Soc. Math. Educ. Ser. B Pure Al. Math. 0 (4) (2003) 265 27. [] J.-L. Li, S. Owa, Sufficient conditions for starlikeness, Indian J. Pure Al. Math. 33 (3) (2002) 33 3. [9] W.C. Ma, D. Minda, A unified treatment of some secial classes of univalent functions, in Proceedings of the Conference on Comlex Analysis (Tianjin, 992), Internat. Press, Cambridge, MA,. 57 69. [0] K.S. Padmanabhan, On sufficient conditions for starlikeness, Indian J. Pure Al. Math. 32 (4) (200) 543 550. [] D.V. Prokhorov, J. Szynal, Inverse coefficients for (a, b)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sec. A 35 (9) 25 43, 94. [2] C. Ramesha, S. Kumar, K.S. Padmanabhan, A sufficient condition for starlikeness, Chinese J. Math. 23 (2) (995) 67 7. [3] V. Ravichandran, Y. Polatoglu, M. Bolcal, A. Sen, Certain subclasses of starlike and convex functions of comlex order, Hacettee J. Math. Stat. 34 (2005) 9 5. [4] V. Ravichandran, A. Gangadharan, M. Darus, Fekete-Szegö inequality for certain class of Bazilevic functions, Far East J. Math. Sci. 5 (2) (2004) 7 0. [5] V. Ravichandran, M. Darus, M. Hussain Khan, K.G. Subramanian, Differential subordination associated with linear oerators defined for multivalent functions, Acta Math. Vietnam. 30 (2) (2005) 3 2. [6] V. Ravichandran, Certain alications of first order differential subordination, Far East J. Math. Sci. 2 () (2004) 4 5. [7] V. Ravichandran, C. Selvaraj, R. Rajalaksmi, Sufficient conditions for starlike functions of order a, J. Inequal. Pure Al. Math. 3 (5) (2002). Article, 6. (electronic). [] D.G. Yang, The Fekete-Szegö roblem for Bazilevič functions of tye a and order b, J. Math. Res. Exos. () (99) 99 04.