CHEM-E2105. Wood and Wood Products

Similar documents
CHEM-E2105. Wood and Wood Products

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization

THE TRANSVERSE OFF-AXIS STIFFNESS AND STRENGTH OF SOFTWOODS. Abstract

MATERIALS SCIENCE POLYMERS

CHEM-E2200: Polymer blends and composites Fibre architecture and principles of reinforcement

Lecture No. (1) Introduction of Polymers

Lecture 6, Wood notes, 3.054

Supporting information for

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

Thermoplastic. Condensation. Homopolymer. Polymer POLYMERS. Synthetic. Natural. Addition. Copolymer. Polymer. Thermosetting

Polymers and Composite Materials

Introduction to Engineering Materials ENGR2000 Chapter 14: Polymer Structures. Dr. Coates

Periodic table with the elements associated with commercial polymers in color.

1. Demonstrate that the minimum cation-to-anion radius ratio for a coordination number of 8 is

Swelling of cellulose. Puu Cellulose Chemistry Michael Hummel

MECHANICAL PROPERTIES OF MATERIALS

Nanoindentation for Characterizing Wood & Related Systems

Studies on Furan Polymer Concrete

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

A MOLECULAR DYNAMICS STUDY ON CELLULOSE FIBER REINFORCED NANOCOMPOSITE

Materials Engineering with Polymers

Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro

Assessment of moisture absorption in marine GRP laminates with aid of nuclear magnetic resonance imaging

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials

TOPIC 7. Polymeric materials

Unit 5 Test. Name: Score: 37 / 37 points (100%)

An Introduction to Polymer Physics

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?

Answer Additional Guidance Mark. Answer Additional Guidance Mark

Qualitative analysis of aramide polymers by FT-IR spectroscopy

Influence of Hemicellulose Extraction on Suitability for Oriented Strand Board (OSB) Production

Johns Hopkins University What is Engineering? M. Karweit MATERIALS

`1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals?

Mechanical properties 1 Elastic behaviour of materials

Wood Chemistry. Cellulose: the Basics. Cellulose: More Basics. PSE 406/Chem E 470. Reducing End Groups. Lecture 5 Cellulose.

Ch 3: Chemistry of Life. Chemistry Water Macromolecules Enzymes

1 What is used in the production of ethanol from ethene? hydrogen and oxygen. oxygen only. steam. yeast

Wood structure Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press, Figure courtesy of

Basics of Bleaching Chemical Pulps Art J. Ragauskas Institute of Paper Science and Technology Georgia Institute of Technology

How materials work. Compression Tension Bending Torsion

Small Angle Scattering - Introduction

REGRESSION MODELING FOR STRENGTH AND TOUGHNESS EVALUATION OF HYBRID FIBRE REINFORCED CONCRETE

Applicability of Engineering Models in Multiscale Modeling of Natural Fiber Hygro- Elastic Properties

Revision Guide for Chapter 4

A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer.

The Chemical Basis of Animal Life. Chapter 2

BIOCHEMISTRY 10/9/17 CHEMISTRY OF LIFE. Elements: simplest form of a substance - cannot be broken down any further without changing what it is

CHAPTER 4 MODELING OF MECHANICAL PROPERTIES OF POLYMER COMPOSITES

POLYMER STRUCTURES ISSUES TO ADDRESS...

MATERIALS SCIENCE TEST Part 1: Structure & Synthesis Topics

High strength high modulus Fibres

Wikipedia.org BUILDING STONES. Chapter 4. Materials of Construction-Building Stones 1

Chapter 2: INTERMOLECULAR BONDING (4rd session)

Basic Chemistry. Chapter 2 BIOL1000 Dr. Mohamad H. Termos

Introduction to Engineering Materials ENGR2000. Dr. Coates

, to obtain a way to calculate stress from the energy function U(r).

Engineering materials

Effects of Basalt Fibres on Mechanical Properties of Concrete

Structural organisation of the wood polymers in structure

Section 1 Compounds and Molecules

WATER SORPTION CHARACTERISTICS OF BANANA FIBRE/PHENOLFORMALDEHYDE COMPOSITES. Abstract

Chapter 13 - Polymers Introduction

Full file at

Chemistry Chapter 1 Section 1 bjective 1: Define Chemistry Objective 2: List The Branches of Chemistry.

Properties of Compounds

1.Matter and Organic Compounds Matter =

Materials Design. From violins to superconducting magnets. Prof. Susie Speller Department of Materials, University of Oxford

MECHANICAL AND RHEOLOGICAL PROPERTIES

Flexural properties of polymers

Soil Mechanics III. SOIL COMPOSITION WEIGHT-VOLUME RELATIONSHIPS TERMINOLOGY AND DEFINITIONS

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Chemistry (A-level)

PROPERTIES OF IONIC COMPOUNDS Excerpt from chemistry.about.com

Chemistry in Biology. Section 1. Atoms, Elements, and Compounds

UNIT I SIMPLE STRESSES AND STRAINS

Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure.

NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE. Honors Biology I

CHAPTER 13. States of Matter. Kinetic = motion. Polar vs. Nonpolar. Gases. Hon Chem 13.notebook

Downloaded from Unit - 15 POLYMERS. Points to Remember

AM11: Diagnostics for Measuring and Modelling Dispersion in Nanoparticulate Reinforced Polymers. Polymers: Multiscale Properties.

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online

ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE MATERIAL

Scale, structure and behaviour

Using the Timoshenko Beam Bond Model: Example Problem

Matter: Elements and Compounds

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Fibrillated Cellulose and Block Copolymers as a Modifiers of Unsaturated Polyester Nanocomposites

CHAPTER 4 RESULTS AND DISCUSSION

UNIT 12: Solutions Lesson 1: Factors Affecting Solubility

The Rheology of Wood - Considerations of the Mechano-Sorptive Creep

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

Classification of Matter. States of Matter Physical and Chemical Properties Physical and Chemical Changes

The Chemistry of Life

Plant Anatomy: roots, stems and leaves

OBTAINING MICROCRYSTALLINE CELLULOSE FROM SOFTWOOD AND HARDWOOD PULP

Effects of water adsorption in hydrophilic polymers

Chemistry 101 Chapter 14 Liquids & Solids

Biopolymers as sustainable fillers for elastomers

Transcription:

CHEM-E2105 Wood and Wood Products Cell wall and mass-volume relationships Mark Hughes 2 nd February 2016

The wood cell wall Mass-volume relationships Today

Composition of the cell wall

Chemical composition Three main structural polymers Cellulose Hemicelluloses Lignin Analogous to fibre-reinforced-plastics Additional polymeric compounds known as extractives (because they can be extracted from the wood, i.e. they are not bound to the cell wall) Generally these have a range of properties, e.g. some are more hydrophobic than others and so tend to be soluble in different solvents Inorganic material ash, large amount of silica

Chemical composition Mass Component Softwood (%) Hardwood (%) Polymeric state Molecular derivatives Function Cellulose 42±2 45±2 Crystalline, highly oriented, large linear molecule Glucose Fibre Reinforcement Hemicellulose Lignin 27±2 28±3 30±5 20±5 Semicrystalline, slightly branched, smaller molecule Amorphous, large 3-D molecule, not fully elucidated Galactose Mannose Xylose Phenylpropane Matrix Extractives 3±2 5±4 Principally compounds soluble in organic solvents (e.g. water, toluene, ethanol) Terpenes, polyphenols, stillbenoids Extraneous (Adapted from Dinwoodie, 2000)

Cellulose Cellobiose General structure (C 6 H 10 O 5 ) n Based on glucose molecule (C 6 H 12 O 6 ) Smallest repeating unit is cellobiose (two anhydroglucopyranose units) Long thin chain molecule, containing 8000-10000 units per cellulose chain in secondary wall, 2000-4000 in primary cell wall Cellulose form the basic structural component of the cell all. The molecules aggregate to form highly crystalline structures through intermolecular bonding, forming the basis for the microfibril, the basic building block of the cell wall

Intermolecular bonding

Inter- and intra- molecular hydrogen bonding

Properties of cellulose The Young s modulus of cellulose has been estimated to be in the region of 135 GPa (similar to Aramid fibre and greater than glass fibre!) Very high tensile properties are seen in fibres like flax, hemp and ramie which have a high proportion of cellulose (>80%), oriented nearly parallel with the fibre axis Cellulose therefore provides the structural strength of wood and can be thought of as the ultimate fibre reinforcement (using the analogy with fibrereinforced composites) of the wood cell wall

Hemicelluloses Range of sugar molecules (e.g. Galactose, glucose, mannose, arabinose Degree of polymerisation (number of units) lower than cellulose (~200) Mainly linear but sometimes branched Lower degree of crystallisation Young s modulus of hemicellulose ~8 GPa (<< cellulose)

Lignin Complex 3-D molecule composed of short, branched molecules Structure of lignin not fully understood, as removal from wood affects its structure With hemicellulose, lignin forms the matrix to cellulose s reinforcement Lignin more hydrophobic than hemicellulose and mediates moisture Young s modulus of lignin ~4 GPa (similar to unreinforced polymers like epoxy, unsaturated polyester)

Structure of lignin Possible lignin structure

Structure of lignin Another possible lignin structure!

The microfibril Models for the structure of microfibrils (Dinwoodie, 2000) The basic fibrous building block of the cell wall Composed of a backbone of cellulose, surrounded by a sheath of hemicellulose and lignin

Cell wall structure

Ultrastructural wood Microfibrils Cell wall structure (Adapted from: Dinwoodie, 2000)

Cell wall structure Cell wall composed of the primary and secondary walls Secondary wall composed of three layers, known as S 1, S 2 and S 3 layers Region between cells known as the middle lamella, composed of a lignin-pectin complex. It does not have any microfibrils

Cell wall cross-section

Cell wall structure (Adapted from: Dinwoodie, 2000)

Lamellar structure Wall layer Approx. thickness (%) Angle to fibre axis (degrees) P 3 random S1 10 50-70 S2 85 10-30 S3 2 60-90 (Source: Dinwoodie, 2000) Microfibrils in primary wall loosely packed random arrangement S1 layer: 4-6 concentric lamellae in left and right hand spirals (S and Z helix) S2 layer: 30-150 lamellae, all in Z helix S3 layer: few lamellae Warty layer inside

Lamellar structure Wall layer Approx. thickness (%) Angle to fibre axis (degrees) P 3 random S1 10 50-70 S2 85 10-30 S3 2 60-90 (Source: Dinwoodie, 2000) Microfibrils in primary wall loosely packed random arrangement S1 layer: 4-6 concentric lamellae in left and right hand spirals (S and Z helix) S2 layer: 30-150 lamellae, all in Z helix S3 layer: few lamellae Warty layer inside

S 2 layer and wood properties Since ~85% of secondary wall is consists of the S 2 later, mechanical and other properties are dominated by the winding angle of this layer

Summary Wood is structured at many levels - chemical, ultrastructural, micro-structural and macro-structural Features at all level affect the properties and behaviour of wood

Mass-volume relationships

Density Density is mass per unit volume: Density is an important material parameter since it affects other properties such as thermal conductivity and mechanical properties Consider wood : what will affect it s density? Moisture content: Will affect both mass and volume! Composition - presence of extractives: Will affect mass (can be a few percent up to 10% of the mass)

Wood density The density of wood at 12% moisture content ranges from balsa (176 kg/m 3 ) to lignum vitae (~1250 kg/m 3 ) Since the density of the cell wall is, more or less constant, the difference must be due to the voids, i.e. the cellular structure of the fibre and wood Timber Density (kg/m 3 ) Balsa 176 Norway spruce European redwood 417 481 Beech 673 Greenheart 977 Flax Softwood

Density and specific gravity Since moisture affects both the mass and volume of wood, it is important to measure both at the same moisture content and this is usually at 12% moisture content Specific gravity (SG) is traditionally the ratio of density to that of water at 4 o C (1000 kg/m 3 ): G t w Where: But since the mass and volume of wood vary with moisture content, so too will SG. It is therefore usual to quote SG based on the oven dry mass of wood to that of the oven dry volume of wood, or, the volume at some specific moisture content, so: t w is the density of timber is the density of water at 4 o C G m o Where: m 0 is the oven dry mass of timber V w V is the volume of timber at moisture content

Density of the cell wall The density of the cell wall is sensibly independent of species and in wood is around 1500 kg/m 3 The density of dry cell wall material varies from 1451 kg/m 3 to 1525 kg/m 3. What is the reason for the discrepancy? Depends on the measurement method used: Measurement of volume by displacement in a liquid Optical measurement of the cross-sectional area of microtome slices of wood

Measuring the density of dry cell wall material The oven dry mass can be measured accurately. However, the presence of extractives will affect the mass. It may be necessary to remove them prior to measurement, if the species/sample contains a high percentage of extractives The volume can be measured by displacement in a liquid However, the properties of the liquid will affect the measurement of volume A polar liquid like water will be able to penetrate the void (pore) space in the cell wall (estimated to occupy in the region of 5% of the cell wall volume), whereas a non-polar liquid such a toluene, will not be able to do so and therefore the volume displaced by any given sample will be different if it is measured by displacement in either a polar or a non-polar liquid

Measuring the density of dry cell wall material Another way of measuring the volume is to directly measure the cross-sectional area of thin microtomed specimens This generally leads to a lower measure of cell wall density because of damage caused to the cell wall and optical effects

Porosity Using the composite analogy, the porosity, p, - the void space in wood and fibres - can be determined using the RoM: Where in this case substance p 1 V f is the volume fraction of the cell wall V f This will be affected by the moisture content

Density and other properties Density is well known to be correlated with certain wood properties like strength and stiffness (Source: Dinwoodie, 2000)

Specific properties Materials can be given a merit index or performance index, based on a property normalised by its density Material property charts can be created enabling materials selection to be made. Also useful in designing new materials, such as composites This is useful in materials design and selection..

(Ashby and Cebon, 1993)

Comparison of mechanical properties Material Specific gravity Young s modulus (GPa) Tensile strength (MPa) Fracture toughness (MPa m 0.5 ) Rubber 1.2 0.01 20 0.1 Concrete 2.4 40 20 0.2 Nylon 1.1 2.5 80 4 Spruce wood (parallel to grain) 0.6 16 (27) 80 (133) 6 (10) Mild steel 7.8 208 (27) 400 (51) 140 (18) Flax 1.4 50 (36) 500 (360) - Glass fibre 2.6 76 (29) 2000 (770) - Fibre reinforced composite 1.8 20 (11) 300 (166) 40 (22) (Figures in parentheses are specific values, i.e. value divided by specific gravity)

References and further reading Ashby M.F. and D. Cebon: Materials Selection in Mechanical Design. Troisieme Conference Europeenne sur les Materiaux et les Procedes Avances, Euromat 93, Paris, June 8-10 1993 Gordon J.E. The New Science of Strong Materials: Or Why You Don't Fall Through the Floor (Penguin Science) Gordon J.E.Structures: Or Why Things Don't Fall Down (Penguin Science)) Dinwoodie J.M. (2000): Timber: Its Nature and Behaviour Society of Wood Science and Technology: http://www.swst.org/teach/set2/struct1.html Wilson, K. and White, D.J.B. (1986): The Anatomy of Wood: Its Diversity and Variability