Gedankenexperimente werden Wirklichkeit The strange features of quantum mechanics in the light of modern experiments

Similar documents
Wave properties of matter & Quantum mechanics I. Chapter 5

Erwin Schrödinger and his cat

Honors 225 Physics Study Guide/Chapter Summaries for Final Exam; Roots Chapters 15-18

Cosmology Lecture 2 Mr. Kiledjian

226 My God, He Plays Dice! Entanglement. Chapter This chapter on the web informationphilosopher.com/problems/entanglement

4.1 Einstein-Podolsky-Rosen Paradox

The Relativistic Quantum World

How does it work? QM describes the microscopic world in a way analogous to how classical mechanics (CM) describes the macroscopic world.

Has CHSH-inequality any relation to EPR-argument?

Bell s Theorem 1964 Local realism is in conflict with quantum mechanics

Quantum Mechanics: Fundamentals

Quantum mechanics and reality

The Mysteries of Quantum Mechanics

Einstein-Podolsky-Rosen paradox and Bell s inequalities

228 My God - He Plays Dice! Schrödinger s Cat. Chapter 28. This chapter on the web informationphilosopher.com/problems/scrodingerscat

Problems with/failures of QM

Entanglement. arnoldzwicky.org. Presented by: Joseph Chapman. Created by: Gina Lorenz with adapted PHYS403 content from Paul Kwiat, Brad Christensen

Introduction to Bell s theorem: the theory that solidified quantum mechanics

A trip to Quantum Physics

Laboratory 1: Entanglement & Bell s Inequalities

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage

Alan Mortimer PhD. Ideas of Modern Physics

The Measurement Problem

Decoherence and The Collapse of Quantum Mechanics. A Modern View

We can't solve problems by using the same kind of thinking we used when we created them.!

David Bohm s Hidden Variables

- Presentation - Quantum and Nano-Optics Laboratory. Fall 2012 University of Rochester Instructor: Dr. Lukishova. Joshua A. Rose

COLLEGE PHYSICS. Chapter 30 ATOMIC PHYSICS

Lecture 9: Introduction to QM: Review and Examples

Modern Physics notes Spring 2007 Paul Fendley Lecture 27

Exam 4. P202 Spring 2004 Instructor: Prof. Sinova

Quantum Entanglement. Chapter Introduction. 8.2 Entangled Two-Particle States

Beginning Modern Quantum

3/10/11. Which interpreta/on sounds most reasonable to you? PH300 Modern Physics SP11

Bell s Theorem...What?! Entanglement and Other Puzzles

The Photoelectric Effect

QUANTUM ENTANGLEMENT AND ITS ASPECTS. Dileep Dhakal Masters of Science in Nanomolecular Sciences

Contextuality and the Kochen-Specker Theorem. Interpretations of Quantum Mechanics

Quantum reality. Syksy Räsänen University of Helsinki, Department of Physics and Helsinki Institute of Physics

Bose-Einstein condensates (Fock states): classical or quantum?

Neutron interferometry. Hofer Joachim

Chapter 27. Quantum Physics

Physics. Light Quanta

General Physical Chemistry II

74 My God, He Plays Dice! Chapter 10. Bohr-Einstein Atom

Introduction to Cavity QED: fundamental tests and application to quantum information Serge Haroche July 2004

LECTURE 6 QUANTUM PHYSICS II. Instructor: Shih-Chieh Hsu

Basics on quantum information

ON EPR PARADOX, BELL S INEQUALITIES AND EXPERIMENTS THAT PROVE NOTHING

Quantum Entanglement and Bell s Inequalities Zachary Evans, Joel Howard, Jahnavi Iyer, Ava Dong, and Maggie Han

Lecture 21: Lasers, Schrödinger s Cat, Atoms, Molecules, Solids, etc. Review and Examples. Lecture 21, p 1

Quantum Physics in the Nanoworld

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons

Basics on quantum information

Quantum Optics and Quantum Information Laboratory

1 1D Schrödinger equation: Particle in an infinite box

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

When I hear of Schrödinger s cat, I reach for my gun. --Stephen W. Hawking. Lecture 21, p 1


1 1D Schrödinger equation: Particle in an infinite box

J = L + S. to this ket and normalize it. In this way we get expressions for all the kets

Collapse versus correlations, EPR, Bell Inequalities, Cloning

Experimental realisation of the weak measurement process

Rb, which had been compressed to a density of 1013

Electron in a Box. A wave packet in a square well (an electron in a box) changing with time.

The Uncertainty Principle The Limits of Measurement

Solving the Einstein Podolsky Rosen puzzle: The origin of non-locality in Aspect-type experiments

Lecture 36 Chapter 31 Light Quanta Matter Waves Uncertainty Principle

Physical Electronics. First class (1)

Quantum Weirdness. Part 5 The Uncertainty Principle The Laser Quantum Zeno Effect Quantum Entanglement 14:28 1

The nature of Reality: Einstein-Podolsky-Rosen Argument in QM

chmy361 Lec42 Tue 29nov16

viii My God, He Plays Dice! Preface Preface

Violation of Bell Inequalities

Bell s inequalities and their uses

A classical view of quantum entanglement

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21.

INTRODUCTORY NOTES ON QUANTUM COMPUTATION

Q8 Lecture. State of Quantum Mechanics EPR Paradox Bell s Thm. Physics 201: Lecture 1, Pg 1

Decoherence in QM physics 491 fall 2009 friday feature M. Gold updated Oct. 1, 2015

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Where is quantum theory headed?

Card Appendix Quantum Concepts

Hardy s Paradox. Chapter Introduction

T he Science of. What exactly is quantum physics? Until the end of the nineteenth century, scientists thought

Take that, Bell s Inequality!

Entanglement and Bell s Inequalities Edward Pei. Abstract

Timeline: Bohm (1951) EPR (1935) CHSH (1969) Bell (1964) Theory. Freedman Clauser (1972) Aspect (1982) Weihs (1998) Weinland (2001) Zeilinger (2010)

Quantum Mechanics: Interpretation and Philosophy

stranger than we can imagine Bell's theorem Limits on hidden variable accounts

Hong-Ou-Mandel effect with matter waves

about Quantum Physics Bill Poirier MVJS Mini-Conference Lawrence Hall of Science July 9, 2015

Lecture 8: Wave-Particle Duality. Lecture 8, p 2

Lecture Notes. Quantum Theory. Prof. Maximilian Kreuzer. Institute for Theoretical Physics Vienna University of Technology. covering the contents of

How is it possible to have a microscope able to zoom so much so that individual atoms can be seen?

Richard Feynman: Electron waves are probability waves in the ocean of uncertainty.

Writing-Intensive Quantum Mechanics

Chapter 7. The Quantum Mechanical Model of the Atom

CURIOSITY KILLED THE CAT

Chapter 6 - Electronic Structure of Atoms

Transcription:

Gedankenexperimente werden Wirklichkeit The strange features of quantum mechanics in the light of modern experiments Particle-wave complementarity Double-slit experiments (many examples) Entanglement Einstein-Podolsky-Rosen (EPR) paradox Bell s inequality (I omit the proof) EPR experiments with entangled photons Nonlocality in quantum mechanics Schrödinger s cat (very brief) Peter Schmüser Decoherence and the quantum-classical boundary (very brief) Albert Einstein and Niels Bohr Solvay Congress 1927

Double slit experiment with particles and waves For many decades this was a Gedankenexperiment in quantum theory

Double-slit experiments with photons, electrons, C60-buckyballs

Statistical interpretation of quantum mechanics a) Compute the wave function by solving the Schrödinger equation b) Square the wave function to get the probability for finding the particle Erwin Schrödinger Werner Heisenberg Max Born

Is the statistical interpretation correct? Answer: yes Double-slit experiment few electrons and very many electrons these experiments were impossible in 1925 Niels Bohr was the main proponent of the statistical interpretation Copenhagen interpretation of quantum mechanics Albert Einstein rejected it: Gott würfelt nicht 5

What is light? Wave or stream of particles? Answer: both Compton effect

Helmut Rauch Physik in unserer Zeit, Nov. 1998 Text 7

Neutron interferometer: each neutron interferes with itself perfect crystal interferometer cut out of a Si single crystal use Bragg reflection put aluminum slab in one arm acts like a glass plate in an optical interferometer

Influence of gravtiy on neutron interference rotatable interferometer fringes a a function of rotation angle 9

Dirac-spinors change sign upon a 2π rotation Paul Dirac: Dirac equation and antiparticles 10

Double-slit experiment with Na atoms and Na2 molecules 11

Bose-Einstein condensation Wolfgang Ketterle Macroscopic interference of matter waves

The quantum corral (Don Eigler IBM) Wave nature of electron is directly visible Using scanning tunneling microscope

Aharanov-Bohm effect: the wavelength of an electron is changed by a magnetic vector potential (q= charge) essential for QED Gottfried Möllenstedt 14

Akira Tonomura Hitachi Research Labs Physics Today April 1990 15

Evolution of the diffraction pattern each electron makes just one spot 16

Verification of Aharonov-Bohm effect magnetic flux quantization in Nb superconductor magnetic flux lines emerging from a superconductor 17

Entanglement: consequence of superposition principle, applied to 2 or more particles Wikipedia:

Important application of superposition principle: hybrid wave functions in molecular and solid state physics ethylene benzene graphite graphene methane diamond silicon germanium GaAs 19

Einstein-Podolsky-Rosen (EPR) paradox 1935 EPR answer: No Conclusion by Einstein et al: quantum mechanics cannot be the ultimate theory. There must exist an underlying deterministic theory. This would be a local theory with hidden variables, and quantum mechanics might be considered as an averaged version of the deeper theory. Analogy: Statistical thermodynamics is the underlying theory of phenomenological thermodynamics. The positions and momenta of a huge number of particles are the hidden variables which are not measurable. Internal energy, pressure, entropy etc. are averaged quantities that can be measured.

Reponse by Niels Bohr, a few months later Bohr claims that quantum mechanics is complete. But it is a nonlocal theory, as we will see Bohr s arguments are not very convincing (at least not to me) 21

1957: David Bohm proposes an EPR experiment that seems feasible Bohm and Aharonov consider a spin-0 molecule that disintegrates into 2 spin-1/2 atoms From then on the EPR paradox was usually discussed in the variant proposed by Bohm But for many years most physicists ignored the issue 22

Example: ground state of hydrogen molecule symmetric spatial wave function antisymmetric spin function (spins antiparallel) energy as function of distance between nuclei 23

EPR experiment as proposed by Aharonov and Bohm The 2 electrons in the H2 molecule have antiparallel spin vectors. Molecule is split into 2 atoms by a method which does not affect the spin. Suppose this is a classical system. Then the 2 hydrogen atoms must have antiparallel spin vectors even at large separation from angular momentum conservation All 3 components of the spin vector of atom 2 are completeley determined by measuring the spin vector of atom 1. No measurement on atom 2 is needed, nor any long-range interaction between the atoms. Quantum mechanics is much more complicated: only one spin component can have a definite value, the other two are completely unknown spin singlet state (reference is z axis) 24

Important result: spin singlet along z axis is also spin singlet along x or y (reference is z axis) (reference is x axis) 25

Consequences of a spatial limitation of entanglement Einstein et al. assume a limited interaction range of the 2 systems. Outside this range the 2 atoms have nothing to do with each other. We apply the EPR view in a very naive way (Einstein was not that naive!). Immediately after the disintegration of the H2 molecule the two H-atoms are still in the entangled spin singlet state, but when they leave the interaction range, the atoms have to decide which spin orientation they want to choose. within interaction range outside interaction range Now Experimenter does something terrible: he measures spin in x direction in 50% of the cases he finds RR or LL: angular momentum is not conserved! Hence: entanglement must be of unlimited range 26

Two possibilities to understand the long-range spin correlation (1) Niels Bohr: quantum mechanics is a complete theory. An entangled wave function may be infinitely long (2) Albert Einstein: the spukhafte Fernwirkung is absurd. Quantum mechanics is an incomplete theory. There must exist a more fundamental local theory Theoretical arguments alone cannot settle the dispute. The great scholars Einstein and Bohr debated all their life about quantum theory but never came to an agreement. 1964: John Bell takes a fresh look at quantum mechanics and derives the Bell inequality 27

Nature March 1998 John Bell theoretician Alain Aspect experimentalist It is the great achievement of John Bell that the discussion about the physical reality of quantum systems has been transferred from philosophy to experimental physics 28

Experiment with entangled photons by Alain Aspect two-photon cascade of Calcium atom entangled 2-photon wave function circular polarization linear polarization

Detection of photons at large distance from source S polarizing beam splitters measure polarization parallel or perpendicular to unit vector a resp. unit vector b parallel +1 result, perpendicular -1 result From entangled wave function follows: coincidence of the 2 photons

Define expectation value E(φ) angle φ between the two polarizers Aspect et al. PRL 49 (1982) φ The two photons are indeed correlated in polarization Choose angle φ=0: the polarization detectors are then parallel, and we get E(φ)=1. The photons are 100% correlated. From the measurement on photon 1 we know everything about photon 2. 31

Aim of Aspect s experiment: try to distinguish between the 2 possible origins of long-range polarization correlation: (1) entangled quantum state (2) local theory with hidden variables Measure with two orientations a, a of detector A and b, b of detector B Define linear combination of expectation values 32

Experimental result: quantum theory is correct, hidden variables do not exist the quantum mechanical form of S is Bell s inequality evaluated for S reads 4 2 Bell-limit 0 30 60 90 angle φ 2 4 Bell s inequality is viotated by 40 standard deviations

Intermezzo: Derivation of Bell s inequality (after K. Fredenhagen) 34

statement: magnitude of S must be less than 2 35

Aspect s experiment shows strong violation of Bell s inequality. There remains one final loophole for protagonists of the idea of hidden variables: if the setting of the detectors A and B is static they could communicate by some some mysterious mechanism Can be excluded by changing the angles of detectors A and B during the flight of the photons so rapidly that information transfer from A to B would require signal speed much larger than speed of light Experiments with entangled laser photons and time-varying detectors violate Bell s inequality as well Anton Zeilinger 1 UV photon is converted into 2 infrared photons in BBO crystal The IR photons are in an entangled polarization state

The nonlocal nature of quantum mechanics The experiments (by Aspect, Zeilinger and many others) prove: quantum theory is correct, hidden variables do not exist So Bohr was right, Einstein was wrong Unavoidable consequence: entangled wave functions may have very large extension (more than 140 km measured) Abstract of Nature article by Alain Aspect 37

Schrödinger s cat Inspired by the EPR paper, Erwin Schrödinger proposed in 1935 a Gedankenexperiment in which a macrocopic object (the cat) is entangled with a microscopic system (radioactive atomic nucleus). He wanted to demonstrate the incompleteness and weirdness of quantum mechanics. ψ=[ (excited nucleus/ cat alive)+(nucleus in ground state / cat dead) ] The nucleus is in a superposition of excited and ground state, so the cat should also be in a superposition of alive and dead, and a decision would only be done in the moment when a measurement is performed Result of many Schrödinger cat experiments: a macroscopic system has always a lot of interaction with the environment. This destroys the quantum mechanical coherence very rapidly. A cat is either alive or dead, but not both at the same time 38

Serge Haroche et al.: experiments with mini-cats mini-cat: microwave photons in a superconducting cavity decoherence time = τ / n τ=time constant of cavity=160 μsec n number of photons ( n=3-10) decoherence time of a cat is unmeasurably short because n is huge The cat is always a classical object, it is never a quantum object Physics Today July 1998