NGF - twenty years a-growing

Similar documents
PDBe TUTORIAL. PDBePISA (Protein Interfaces, Surfaces and Assemblies)

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Cell Death & Trophic Factors II. Steven McLoon Department of Neuroscience University of Minnesota

Basics of protein structure

1. (5) Draw a diagram of an isomeric molecule to demonstrate a structural, geometric, and an enantiomer organization.

Trophic Factors. Trophic Factors. History 2. History Growth Factors. Giles Plant

Model Worksheet Teacher Key

NMR, X-ray Diffraction, Protein Structure, and RasMol

Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor

From Amino Acids to Proteins - in 4 Easy Steps

Bonds and Structural Supports

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor

SUPPLEMENTARY INFORMATION

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Introduction to" Protein Structure

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 04

Part 7 Bonds and Structural Supports

Receptor Based Drug Design (1)

Ch 3: Chemistry of Life. Chemistry Water Macromolecules Enzymes

Protein structure (and biomolecular structure more generally) CS/CME/BioE/Biophys/BMI 279 Sept. 28 and Oct. 3, 2017 Ron Dror

Supporting Information

Supplementary Information

From DNA to protein, i.e. the central dogma

SUPPLEMENTARY INFORMATION

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function. The importance of proteins

1. What is an ångstrom unit, and why is it used to describe molecular structures?

Mechanisms of Human Health and Disease. Developmental Biology

CAP 5510 Lecture 3 Protein Structures

Section III - Designing Models for 3D Printing

Review Activity Module 1: Biological Chemistry

Model Mélange. Physical Models of Peptides and Proteins

CHEM 463: Advanced Inorganic Chemistry Modeling Metalloproteins for Structural Analysis

Supporting Information

Model Worksheet Student Handout

Detailed description of overall and active site architecture of PPDC- 3dThDP, PPDC-2HE3dThDP, PPDC-3dThDP-PPA and PPDC- 3dThDP-POVA

Pymol Practial Guide

Biophysics II. Key points to be covered. Molecule and chemical bonding. Life: based on materials. Molecule and chemical bonding

Preparing a PDB File

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions

SAM Teacher s Guide Protein Partnering and Function

SUPPLEMENTARY INFORMATION

Visualization of Macromolecular Structures

Potassium channel gating and structure!

The sense of smell Outline Main Olfactory System Odor Detection Odor Coding Accessory Olfactory System Pheromone Detection Pheromone Coding

Cell-Cell Communication in Development

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate

Silica surface - Materials Studio tutorial. CREATING SiO 2 SURFACE

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

AP Biology. Proteins. AP Biology. Proteins. Multipurpose molecules

Molecular Modeling. Prediction of Protein 3D Structure from Sequence. Vimalkumar Velayudhan. May 21, 2007

SUPPLEMENTARY INFORMATION. doi: /nature07461


SUPPLEMENTARY INFORMATION

Drug targets, Protein Structures and Crystallography

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration:

RNA and Protein Structure Prediction

AP Biology Unit 1, Chapters 2, 3, 4, 5

Get familiar with PDBsum and the PDB Extract atomic coordinates from protein data files Compute bond angles and dihedral angles

2. In regards to the fluid mosaic model, which of the following is TRUE?

Molecular Visualization. Introduction

Overview of ion channel proteins. What do ion channels do? Three important points:

Sample Questions for the Chemistry of Life Topic Test

AMINO ACIDS ARE JOINED TOGETHER BY BONDS. FILE

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Chapter 002 The Chemistry of Biology

Identifying Interaction Hot Spots with SuperStar

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain.

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells?

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Sunhats for plants. How plants detect dangerous ultraviolet rays

Ion Channel Structure and Function (part 1)

Structural insights into Aspergillus fumigatus lectin specificity - AFL binding sites are functionally non-equivalent

The Structure and Functions of Proteins

Introduction Molecular Structure Script Console External resources Advanced topics. JMol tutorial. Giovanni Morelli.

Protein Structure Basics

Homology models of the tetramerization domain of six eukaryotic voltage-gated potassium channels Kv1.1-Kv1.6

X-ray Crystallography

Cell Cell Communication in Development

Teacher Instructions

Lab: Model Building with Covalent Compounds - Introduction

MCB65. Physical Biochemistry: Understanding Macromolecular Machines. Rachelle Gaudet Martin Samuels MCB 65 1/25/16 1

Lec.1 Chemistry Of Water

Lesson Overview The Structure of DNA

Key Stage 3 DNA detectives

REVIEW 1: BIOCHEMISTRY UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

Name. Molecular Models

BIBC 100. Structural Biochemistry

Bioinformatics. Macromolecular structure

Supplementary Figure 1. Biochemical and sequence alignment analyses the

Name: Date: Per: Chapter 2 & 3 Review ~ for Test on Friday September How many hydrogen atoms are in a molecule of water?

2: CHEMICAL COMPOSITION OF THE BODY

BA, BSc, and MSc Degree Examinations

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 01

Chapter 12: Intracellular sorting

Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 1:

VCell Tutorial. Building a Rule-Based Model

X- ray crystallography. CS/CME/Biophys/BMI 279 Nov. 12, 2015 Ron Dror

Supporting Information. Structural and functional characterization of human and murine C5a anaphylatoxins

Transcription:

NGF - twenty years a-growing A molecule vital to brain growth It is twenty years since the structure of nerve growth factor (NGF) was determined [ref. 1]. This molecule is more than 'quite interesting' as it is required for all of us to develop a brain that can take any interest in anything! During the embryonic development of the brain and nerves, cells signal specifically to each other in a variety of ways so that growth, contacts, and changes in structure can be coordinated. One way is through the release of growth factors from a secreting cell and the display of receptors for these factors on the cells that need to respond. NGF is one of a family of neurotrophins which are growth factors involved in the formation of the nervous system. These are also used in adults to maintain and regenerate nerves and also in some pain responses. The NGF molecule is built from β-strands and with disulfide bonds It was immediately clear from the crystal structure (PDB entry 1bet) that NGF was different from any previously determined proteins or domains. It had an elongated shape built from a new arrangement of β-strands twisted around each other (see view-1). Each strand is an extended polypeptide chain that hydrogen-bonds through its backbone nitrogen and carbonyl oxygen atoms to a neighbouring strand in the structure. These non-covalent H-bond interactions are shown here for several residue pairs through the structure showing how their backbone atoms hold each other in line. Additionally, special covalent bonds help to stabilise the NGF structure. These are the three disulfide bonds from one side of the structure to the other. Disulfide bonds are covalent links between cysteines commonly observed in extracellular proteins. Cysteines linked in this way have been historically called 'cystine' - dropping the middle 'e'. The NGF structure threads disulfides to give a cystine knot Disulfide bonds had been observed many times before - for example in immunoglobulin structures - and were anticipated in the NGF structure following its sequencing in 1971 by Ralph Bradshaw (ref. 2). He showed that cystines could be isolated from the protein which contained six cysteines along its length as highlighted in view-2. Strikingly, the NGF fold contains a neat interlocking between these cysteines (see view-3). The cysteines cluster towards one end of the molecule and are arranged so that one S-S bond threads through two others to give an arrangement called the 'cystine knot'. At the time of its discovery this was such an unexpected feature that the authors had to double check the experimental data to be sure of what they had observed. Subsequently, this neat arrangement was found to be the basis for a complete family of 'cystine knot' containing growth factors that includes other nerve-directed 'neurotrophins' and other important signalling proteins. Interestingly, it is clear from this view that the cysteine residues are close enough that with small adjustments in the register of the residues completely different connections could be made.

Making the NGF dimer involves symmetry in the crystal NGF is known to be a dimeric molecule in solution and to act by binding specifically to a number of different receptors at susceptible cell surfaces. The binding of NGF produces a change in the structure of these dimeric receptors which in turn activates signalling pathways at the inner surface of the cell membrane. So why is a dimer not observed in the PDB entry for the NGF structure? In fact the authors did report a dimer in the crystal structure. However, it is customary in X-ray crystallography to deposit only the smallest building block of the crystal - the so-called asymmetric unit. To build the complete crystal, rotational symmetry operations need to be applied to this unit. The operations are specified by the space group definition of how the proteins pack together to form the crystal. In this case the dimer is produced by a so called '2-fold' rotational symmetry operation corresponding to a 180 degree rotation around an axis parallel to the long axis of the protein (see view-4). Application of this symmetry operation is required to generate a second copy of the NGF molecule (shown here appearing in grey). This ghostly 'copy' is in fact present in the crystal and, significantly, is needed to complete the biological assembly of NGF - shown as a dimer of red and green molecules. The rotational symmetry is more obvious if you rotate the molecule to look down along the axis of symmetry which is how this view ends - but feel free to rotate the molecule for yourself to see how the dimer is constructed. PDBePISA serves up the NGF dimeric assembly Many crystal structures in the PDB archive require a similar use of symmetry operations to give the biologically-relevant assembly. For this reason, PDBe provides a sophisticated service to apply crystal symmetry operations to deposited structures in order to identify the most likely quaternary structure. This PDBePISA service automatically examines all contacts between macromolecules in the crystal - including any copies generated by symmetry. These contacts are then scrutinized to determine whether they are likely to persist in solution and stabilise the so-called quaternary structure of the molecules. You can learn about applying PDBePISA to the 1bet NGF structure in this mini-tutorial. The PDBePISA analysis is pre-calculated for most crystal structures in the PDB. You can see a picture of the predicted biological assembly by visiting the PDBe summary page for the entry you are interested in. It will be shown as part of the PDBportfolio of images. The NGF dimer interacts with cell receptors In the case of NGF, the construction of the elongated dimer sets up the faces of the protein that interact with similarly elongated multidomain receptors and produce the various biological responses in target cells. NGF family neurotrophins bind to two classes of receptor. One is the Trk tyrosine kinase class which has distinct subtypes each specific to one type of neurotrophin. Binding activates the kinase activity of the intracellular part of these receptors. The other class is the p75 neurotrophin receptor (p75ntr) which binds all the neurotrophins and has an intracellular domain that is structurally similar to death domains which are involved in apoptotic cell death. Despite this homology, NGF binding to p75ntr can promote cell survival. Here (see view-5) is one example (PDB entry 3buk) of an NGF family member in complex with the p75ntr receptor showing how the NGF molecule binds to the receptor domains. This receptor uses cysteine-linked (although unknotted!) and glycosylated extracellular domains to recognise the dimeric NGF-like neurotrophin-3. The transmembrane and

intracellular death domain of this receptor were removed before crystallisation. The structure of the death domain is known from a separate NMR structure determination that is deposited in the PDB as entry 1ngr. Further exploration Some other growth factors have been crystallised with the dimeric form of the growth factor as the crystal building block. One example of this is the neurotrophin-3 in the PDB entry 3buk where it is bound to its receptor. A dimer was also observed for NGF in a different crystal form in entry 1btg and the related neurotrophin- 4 deposited as entry 1b98. Remember that, although sophisticated, the PDBePISA calculations have been calibrated for only the most common interactions between macromolecules. As a result it can be incorrect in particular cases. You should always use your own scientific judgement and use other information to assess for yourself its predicted assemblies. The PDB archive contains several structures of NGF family members bound to their receptors. In addition to PDB entry 3buk described above there are examples of NGF family members bound to its tyrosine kinase class of receptors. For example PDB entry 1www which is a crystallised complex of NGF with the ligand-binding domain of the TrkA receptor. Some of these studies have taken advantage of the conservation in structure among mammalian neurotrophin components. When inspecting the source organism in the PDBprints logo you will see many are MULTI source structures - typically a receptor from one species is binding an NGF family member from another. The question of whether these receptors follow the dimeric symmetry of the NGF, as in the example shown in view-5, has turned out to be a complicated one. The best way to read the papers on this is with the structures in front of you. To look in detail at how the proteins are interacting you can browse the PDBePISA output for the complexes. The PISAminitutorial will help you get started on running PDBePISA analyses and interpreting the output. The output from the analyses of the NGF complexed with the receptors is more complicated but should allow you to answer the following quite interesting question: are the binding interfaces of NGF with p75ntr and TrkA likely to be mutually exclusive? A special storage form of NGF, which is a complex with accessory binding proteins was also crystallised and this structure is available as PDB entry 1sgf. Acknowledgement PDBe would like to thank Prof. Tom L. Blundell for advice on the subject of this QUIPS article. References Ref.1 : McDonald et al, New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor, Nature 354 411 1991. Ref.2 : Angeletti and Bradshaw, Nerve Growth Factor from Mouse Submaxillary Gland, PNAS 68 2417 1971.

View-1 Cartoon drawing of an NGF monomer (PDB entry 1bet). The structure is coloured from blue at the N-terminus to red at the C-terminus. Several inter-strand hydrogen bonds are highlighted.

View-2 Cartoon drawing of an NGF monomer (PDB entry 1bet). The location of the six cysteine residues in the structure of NGF is highlighted.

View-3 The cystine knot in NGF. There are cysteine residues at position 15, 58, 68, 80, 108 and 110, which form three disulfides: 58-108, 68-110 and 15-80. The animation shows the construction of the knot in this order (this is not necessarily the order in which they form during protein folding).

View-4 The NGF dimer. This animation explains how the NGF dimer is formed by two identical copies of the NGF monomer that are related by crystallographic symmetry. The deposited monomer is shown with its crystallographic mate in grey. The colours of the monomers then change to red (original) and green (symmetry) to show the complete NGF dimer as it exists under physiological conditions.

View-5 NGF-receptor complex. PDB entry 3buk contains a complex between NGF-family member neurotrophin-3 and the p75-ntr receptor. Neurotrophin-3 is observed to be a dimer of the green and red monomers. The receptor domains are in yellow and orange, while glycosylation sites are shown in blue. Disulfide bonds are shown as thick white sticks.