A fossil species of the primitive mymarid genus Borneomymar (Hymenoptera: Mymaridae) in Eocene Baltic amber

Similar documents
THE BASAL LINEAGES OF MYMARIDAE (HYMENOPTERA)

Journal of Melittology

Polynema (Polynema) dikobraz sp. nov., a remarkable fairyfly (Hymenoptera: Mymaridae) from Madagascar

Novitates Paleoentomologicae

28. Genus Xoanon Semenov Fig. C28.1 (female dorsal habitus) Fig. C28.2 (female lateral habitus) Fig. C28.3 (male dorsal habitus)

Key words. Andes, Anthophila, Apoidea, Augochlorini, Colombia, taxonomy.

The bee genus Chlerogas in Bolivia (Hymenoptera, Halictidae)

Two new Afrotropical Asobara species (Hymenoptera: Braconidae) with complete notauli

Primitive ants (Hymenoptera: Sphecomyrminae) in the Campanian (Late Cretaceous) of North Carolina (USA) 1

Leica EZ4D Scope Training

Marco Selis DESCRIPTION OF ELIMUS CHAPMANI, NEW SPECIES (HYMENOPTERA, VESPIDAE, EUMENINAE)

PSYCHE A NEW GENUS AND SPECIES OF. Vertex with vestiges of ocelli. Antennae with first segment very

RESEARCH ARTICLE. urn:lsid:zoobank.org:author:3714a7ff-e19e-495a-aaf9-98d2f597b757 urn:lsid:zoobank.org:author:f b8df-4a2f-921f-47085a576641

582 Florida Entomologist 79(4) December, 1996

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license,

Five new Dinotrema species from Spain, with mesoscutal pit and medially sculptured propodeum

Description of a new genus of Doryctinae wasps (Hymenoptera: Braconidae) from Brazil

REVISION OF KALOPOLYNEMA, WITH NOTES ON PLATYPOLYNEMA (HYMENOPTERA: MYMARIDAE)

NORTH AMERICAN SCIARIDAE (Diptera). 1. A NEW SPECIES OF SCATOPSCIARA AND LECTOTYPE DESIGNATION OF EUGNORISTE OCCIDENTALIS COQUILLETT 1

FOURTH INTERNATIONAL MEETING ON MESOZOIC FISHES - SYSTEMATICS, HOMOLOGY, AND NOMENCLATURE

Team members (First and Last Names): Fossil lab

Two new species of Cryptophagus HERBST, 1792 (Coleoptera: Cryptophagidae) from New Mexico (United States of America)

Slater & Baranowski: New Amber Thaumastocorid 349

LAGOWSKA, B. Department of Entomology, University of Agriculture ul. K. Leszczyñskiego 7, Lublin, Poland ABSTRACT

THREE NEW SPECIES OF DYSCRITOBAEUS PERKINS (HYMENOPTERA: PLATYGASTROIDEA, SCELIONIDAE) FROM MOZAMBIQUE INTRODUCTION

Amphigomphus somnuki n. sp. from North Thailand (Odonata: Gomphidae) MATTI HAMALAINEN

Ceratophysella michalinae, a new species from Poland (Collembola: Hypogastruridae)

Helicopsyche agnetae, new species (Trichoptera, Helicopsychidae) described from Hong Kong

Journal of Melittology

Number 105: 1-11 ISSN X August 2001 REVIEW OF THE MYMARIDAE (HYMENOPTERA, CHALCIDOIDEA) OF PRIMORSKII KRAI: GENUS ACMOPOLYNEMA OGLOBLIN

NEW RECORDS OF THE GENUS PSILONOTUS WALKER (HYMENOPTERA: PTEROMALIDAE) IN THE CARPATHIAN BASIN

Title. Author(s)Lewvanich, Angoon. Issue Date Doc URL. Type. File Information SCHOENOBIINAE)

How do we learn about ancient life? Fossil- a trace or imprint of a living thing that is preserved by geological processes.

Dinotrema vitobiasi sp. nov., a new Spanish species of the genus Dinotrema

Citation 熱帯医学 Tropical medicine 15(3). p173-

8/23/2014. Introduction to Animal Diversity

' ) ISSN NEW RECORD OF THE GENUS OMICROIDES GIORDANI SOIKA (HYMENOPTERA: VESPIDAE: EUMENINAE) FROM INDIA

JOEL CRACRAFT. N 1913 Shufeldt described a new fossil bird, Palaeophasianus meleagroides,

The first fossil leptofoenine wasp (Hymenoptera, Pteromalidae): A new species of Leptofoenus in Miocene amber from the Dominican Republic

Species of the genus Chrysomalla Förster from Kazakhstan

FOLIA ENTOMOLOGICA HUNGARICA ROVARTANI KÖZLEMÉNYEK Volume pp

A MEGASECOPTERON FROM UPPER CARBONIFEROUS BY F. M. CARPENTER. In I962 Professor F. Stockmans, of the Institut Royal des Sciences STRATA IN SPAIN

Name. Ecology & Evolutionary Biology 245 Exam 1 12 February 2008

Mosquito Systematics Vol. 6(Z) June 1974

5 Time Marches On. TAKE A LOOK 1. Identify What kinds of organisms formed the fossils in the picture?

Ode-to-nata (Aeshna canadensis) productions presents

Paleontological Contributions

Biogeography. An ecological and evolutionary approach SEVENTH EDITION. C. Barry Cox MA, PhD, DSc and Peter D. Moore PhD

Appendix S1: Notes on the measurement of ant traits for the GLAD

Module 9: Earth's History Topic 3 Content: A Tour of Geologic Time Notes

New records of Paracrias

Three Monte Carlo Models. of Faunal Evolution PUBLISHED BY NATURAL HISTORY THE AMERICAN MUSEUM SYDNEY ANDERSON AND CHARLES S.

CLASSIFICATION AND EVOLUTION OF CAMINALCULES:

Mass Extinctions &Their Consequences

Name Class Date. Crossword Puzzle Use the clues below to complete the puzzle.

Stratigraphic correlation. Old Earth, Changing Earth. Plate Tectonics. A105 Fossil Lecture. Cenozoic Era: Age of Mammals. Tuff A. Tuff Q.

Science 20. Unit C: The Changing Earth. Assignment Booklet C3

Rate of Evolution Juliana Senawi

UNIVERSITY OF MICHIGAN PRESS

Where do species names come from?

A new species of Cisaris (Hymenoptera, Ichneumonidae, Cryptinae) with a key to the world species

Fig Wasps in Dominican Amber (Hymenoptera: Agaonidae)

Student Workbook California Education and the Environment Initiative. Science Standard 7.4.g. Extinction: Past and Present

FLOWERS AND POLLINATION. This activity introduces the relationship between flower structures and pollination.

A redescription of Schiodtella laevicollis (MONTANDON) n. comb. (Hemiptera: Heteroptera: Cydnidae)

Zoological Systematics & Taxonomy

Two representatives of the genus Mindarus (Homoptera, Aphidoidea, Mindaridae) in Baltic amber

A Strange New Genus and Species of Mesosini from North Thailand (Coleoptera, Cerambycidae, Lamiinae) [Studies on Asian Mesosini, VII]

Open projects for BSc & MSc

DESCRIPTIONS OF HORSEFLIES FROM MIDDLE AMERICA. I.*

Fossil Journal. Nature in the Classroom. Slater Museum of Natural History University of Puget Sound Tacoma, Washington

Trends in plant-insect interactions in the Cenozoic. Katherine Faye Fornash

The Tempo of Macroevolution: Patterns of Diversification and Extinction

More fossil bryophytes from Baltic amber

Paleontological Contributions

Diversity, Change and Continuity. History of Life

Biology Principles of Ecology Oct. 20 and 27, 2011 Natural Selection on Gall Flies of Goldenrod. Introduction

A new species of the Madagascan genus Censorinus (Heteroptera: Reduviidae: Reduviinae)

Description of a new chrysidid genus from New Caledonia (Hymenoptera, Chrysididae, Amiseginae)

Section 17 1 The Fossil Record (pages )

REDESCRIPTION OF DORYPHORIBIUS VIETNAMENSIS (IHAROS, 1969) (TARDIGRADA) COMB. NOV. ON THE BASIS OF THE HOLOTYPE AND ADDITIONAL MATERIAL FROM CHINA

Spheres of Life. Ecology. Chapter 52. Impact of Ecology as a Science. Ecology. Biotic Factors Competitors Predators / Parasites Food sources

Naturhistorisches Museum Wien, download unter

Connecting Content Information Connections Research SAA Research Forum August

Seasonal Variation in a Hymenopterous Parasitoid, Holcotetrastichus rhosaces

A new braconid genus (Hymenoptera) parasitizing webspinners (Embiidina) in Trinidad

ECOLOGICAL PLANT GEOGRAPHY

Announcements. Today. Chapter 8 primate and hominin origins. Keep in mind. Quiz 2: Wednesday/Thursday May 15/16 (week 14)

Linnean rank. kingdom Animalia Animalia Animalia phylum Arthropoda Chordata Chordata class Insecta Reptilia Mammalia order

The First Description of the Female of Epeolus tarsalis himukanus Hirashima, 1955 (Hymenoptera: Andrenidae) from Kyushu, Japan

Outline. Classification of Living Things

CHAPTER I INTRODUCTION

AMERICAN MUSEUM NOVITATES

EXTERNAL ANATOMY OF INSECTS

INSECTS IN AND AROUND YOUR HOME GARDEN. James N. Hogue

Evidence of Evolution *

The terrestrial rock record

A NEW GENUS, SPECIES, AND SUBTRIBE OF TERMITOPHILOUS STAPHYLINIDAE FROM AUSTRALIA (Coleoptera)

History of Biological Diversity. Evolution: Darwin s travel

First record of the male of the widespread Calliscelio elegans (Perkins) (Hymenoptera, Platygastridae) along with some taxonomic notes on the species

Transcription:

KU ScholarWorks http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. A fossil species of the primitive mymarid genus Borneomymar (Hymenoptera: Mymaridae) in Eocene Baltic amber by Michael Engel, Ryan McKellar, and John Huber 2013 This is the published version of the article, made available with the permission of the publisher. The original published version can be found at the link below. Engel, Michael S. et al. (2013). A fossil species of the primitive mymarid genus Borneomymar (Hymenoptera: Mymaridae) in Eocene Baltic amber. Novitates Paleoentomologicae 5:41647. Published version: https://journals.ku.edu/index.php/paleoent/ article/view/4651 Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml KU ScholarWorks is a service provided by the KU Libraries Office of Scholarly Communication & Copyright.

Novitates Paleoentomologicae No. 5, pp. 1 8 6 December 2013 A fossil species of the primitive mymarid genus Borneomymar (Hymenoptera: Mymaridae) in Eocene Baltic amber Michael S. Engel 1, Ryan C. McKellar 1,2, & John T. Huber 3 Abstract. A new fossil species of fairyfly (Hymenoptera: Chalcidoidea: Mymaridae) is described and figured from a well-preserved female in middle Eocene (Lutetian) Baltic amber as Borneomymar pankowskiorum Engel, McKellar, & Huber, new species. This species represents the fourth genus from Baltic amber whose extant species now occur only in southeastern Asia, Australia, and Madagascar. INTRODUCTION Like most Chalcidoidea, the fossil record of Mymaridae is scant. Huber & Greenwalt (2011) and Poinar & Huber (2011) reviewed the fossil taxa and illustrated the five known Cretaceous genera. Huber (2002) discussed extant taxa purported to occupy relatively basal positions within the family and proposed a hypothesis of their early diversification. Borneomymar Huber was placed almost at the base of the putative phylogeny. The genus is currently known from three species distributed from Malaysian Borneo (Sarawak and Sabah), Sulawesi (Indonesia), and northern Madagascar (Huber, 2002). Like several other extant genera of Mymaridae, species of Borneomymar have 5-segmented tarsi and an 8-segmented funicle. Based on recent discovery of the male, 1 Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Drive Suite 140, University of Kansas, Lawrence, Kansas 66045, USA (msengel@ku.edu; ryan.mckellar@ku.edu). 2 Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alberta, T6G 2E3, Canada (rcm1@ualberta.ca). 3 Natural Resources Canada, c/o Canadian National Collection of Insects, Arachnids and Nematodes, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada (john.huber@agr.gc.ca). Copyright M.S. Engel, R.C. McKellar, & J.T. Huber. Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License (CC BY-NC-ND 3.0). ISSN 2329-5880

2 Novitates Paleoentomologicae No. 5 one of the described species is almost certainly misplaced and will be removed from Borneomymar (Huber, unpubl. data). The other two differ from the other basal genera by having the ovipositor greatly elongate and exserted beyond the apex of the gaster by more than twice the body length. The biology of species of Borneomymar is unknown, but Huber (2002) speculated that they may be parasitoids of Orthoptera eggs oviposited deeply in plant tissue. A specimen of Borneomymar obtained from middle Eocene (Lutetian) Baltic amber is described here and compared to its closest living relative, from Madagascar. Some insight is also provided regarding the climate in the Baltic area of Europe that was likely prevalent during the Eocene. MATERIAL AND METHODS The extinct species described here is known from one specimen preserved in a light yellow piece of Baltic amber, relatively clear of debris and other inclusions. The amber piece was lightly ground and polished along one side to permit a clearer view of the specimen. Morphological terminology and descriptive details follow those of Huber (2002). Measurements were made with an ocular micrometer on an Olympus SZX-12 stereomicroscope and are given in µm. The extant species, Borneomymar madagascar Huber, was photographed with a digital scanning camera attached to a microscope, and the resulting layers combined electronically using Zerene Stacker and retouched as needed with Adobe Photoshop. Institutional abbreviations include: AMNH, American Museum of Natural History, New York, New York, USA; CAS, California Academy of Sciences, San Francisco, California, USA; GMGD, Geowissenschaftliches Museum der Universtät Göttingen, Göttingen, Germany; SEMC, Snow Entomology Museum Collection, Division of Entomology, University of Kansas Natural History Museum, Lawrence, Kansas, USA; UCR, University of California, Riverside, Riverside, California, USA. SYSTEMATIC PALEONTOLOGY Genus Borneomymar Huber Borneomymar pankowskiorum Engel, McKellar, & Huber, new species ZooBank: urn:lsid:zoobank.org:act:41c2b38e-dc7b-4baa-a5d6-e6c590c7074d (Figs. 1 4) Diagnosis: The new species (Figs 1 4) is most similar to the extant species B. madagascar (Fig. 5). It differs by having the legs and scape funicle segment 1 light brown (yellow in B. madagascar) and proportionally shorter marginal setae (ratio of longest marginal setal length/maximum forewing width 0.57 for the fossil species, versus 0.76 0.86 in B. madagascar). The new species differs from the extant species B. discus Huber by its uniformly clear wings (distinctly patterned with brown in B. discus) and shallower gaster (deeper, almost circular in B. discus). Description: : Total body length (excluding ovipositor) 1010; exserted ovipositor ~2540; head length ~230; mesosomal length 430; metasomal length 490 (without hypopygium); forewing length 1040, width ca. 200 (angle precludes accurate width measurement); longest marginal setae 113; hind wing length 670, width ~30; antennal proportions (scape, pedicel, funicular articles, clava) 90, 50, 60, 80, 80, 80, 80, 70, 70, 70, 170; typical flagellar article width 30; width of apical clava 40.

2013 Engel & al.: Borneomymar in Baltic amber 3 Figures 1 2. Photographs of holotype female (SEMC F001019) of Borneomymar pankowskiorum, new species. 1. Left lateral habitus. 2. Right lateral habitus. Color (as preserved) apparently pale brown throughout, with slightly darker regions along dorsal surface of mesosoma; wings uniformly hyaline, without dark markings (Figs. 1 3). Head shape taphonomically distorted, with vertex sunken, but ocelli still visible and arranged approximately in equilateral triangle, with lateral ocellus separated from margin of compound eye by two or more ocellar diameters and all interocellar distances approximately 1.5 ocellar diameters; clypeus rounded and slightly protuberant; mandible narrow, apparently with two blunt teeth on apex (but visibility is poor); toruli within one torular diameter of transverse trabecula; radicle short, much less than one-half length of scape; scape expanded within apical half; pedicel slightly wider than funicular articles; funicle with eight articles of relatively uniform lengths; clava slightly longer than apical two funicle articles. Mesosoma with gentle dorsal convexity; pronotum about one-half length of mesoscutum; mesoscutum 140 long, with low dorsal convexity; mesoscutellum length 120, anteriorly with low dorsal convexity, frenum flat with fine, transverse, anteriorly convex frenal groove near midlength of mesoscutellum; metanotum with dorsellum 70 long, rhomboidal, and nearly flat; propodeum without visible sculpture and with gradual declivity. Forewing membrane with microtrichia apparently uniformly distributed (difficult to be sure due to wing angle but figured as such in figure 4; there may well be regions of membrane that

4 Novitates Paleoentomologicae No. 5 Figure 3. Detail of holotype female (SEMC F001019) of Borneomymar pankowskiorum, new species. are glabrous); venation extending 0.66 forewing length (venation length 690) (Figs. 3, 4); longest marginal setae 0.57 as long as greatest wing width. Metasoma with short petiole, and with total length slightly more than mesosoma; gaster height about 0.4 its length, terga of relatively equal lengths; posterior four terga bear short, inclined setae along posterior margins; hypopygium large, translucent, projecting distinctly beyond gastral apex (Figs. 1 3); ovipositor greatly elongate, much longer than twice entire body length (Figs. 1, 2, 4), without setae along exserted length. : Unknown. Holotype:, SEMC F001019, middle Eocene (Lutetian), Baltic amber; fossil insect collection, Division of Entomology, University of Kansas Natural History Museum, Lawrence, Kansas. Etymology: The specific epithet is a patronym honoring the family of Mark Pankowski of Rockville, MD, who first recognized the significance of the specimen and made the acquisition of the holotype possible.

2013 Engel & al.: Borneomymar in Baltic amber 5 Figure 4. Habitus drawing of holotype female (SEMC F001019) of Borneomymar pankowskiorum, new species. DISCUSSION The new species is almost identical to the extant, basal mymarid B. madagascar (Fig. 5). The strong similarity in morphological details between these two species indicates that they are closely related, and supports interesting biogeographic implications, shared by other, unrelated taxa as well. Moreover, it demonstrates a remarkable degree of bradytely in a lineage of mymarids over a period of at least 45 million years. This morphological stasis suggests some degree of constancy in ecology and habits, perhaps even in terms of the clade of hosts, over a long duration of time and despite considerable climatic and geographic shifts (Simpson, 1944). Obviously, suitable biotic and abiotic conditions have persisted throughout this time, although their

6 Novitates Paleoentomologicae No. 5 Figure 5. Habitus photographs of female of Borneomymar madagascar Huber, from Madagascar: Fianarantsoa, Massif de Andringitra (CAS); lower left inset shows entire specimen; the center of the compound eye is collapsed (scale bars = 500 µm). Top inset shows head, anterior view (scale bar = 100 µm). geographic centers have shifted, and permitted the lineage to avoid strong selection for morphological change, or extinction. This same phenomenon is known in various groups of insects, some of more than twice the geological age (Engel & Grimaldi, 2002; Clarke & Chatzimanolis, 2009; Cognato & Grimaldi, 2009; Chatzimanolis et al., 2013). Borneomymar pankowskiorum represents the most primitive genus of extant Mymaridae that has been found in Tertiary deposits. No Cretaceous species of Mymaridae has yet been found in Tertiary deposits or vice versa. The Eocene climate was the warmest of the Cenozoic and experienced the Paleocene-Eocene Thermal Maximum and Early Eocene Climatic Optimum, the latter comprising a nearly 200,000 year span of elevated global temperatures that began falling by the second half of the epoch. Regions that are cold temperate or even arctic today harbored rich tropical or subtropical floras and faunas (Engel, 2001; Archibald & Farrell, 2003; Grimaldi & Engel, 2005; Wappler & Denk, 2011; Wappler et al., 2013). The specimen of Borneomymar described above is the third or possibly the fourth mymarid

2013 Engel & al.: Borneomymar in Baltic amber 7 genus that shows the Eocene fauna of Mymaridae, as represented in Baltic amber, was quite different from the extant mymarid fauna of the region. Other extant species known only in the Australian and/or Oriental regions but also represented in Baltic amber occur in Mimalaptus Noyes & Valentine (two specimens, GMGD and UCR), possibly Dorya Noyes & Valentine (identification not certain) (one specimen, UCR), and Ceratanaphes Noyes & Valentine (one specimen, Janzen Collection, AMNH). Such biogeographic ties between the Baltic amber fauna and lineages today surviving in the Australasian or sub-saharan regions is relatively common, as shown by many genera present in the Eocene that have disappeared from Europe or the Northern Hemisphere generally and now occur only in the tropics or the Southern Hemisphere, particularly in the Australian and Oriental regions (Grimaldi & Engel, 2005). As the climate of the Polar regions and Northern Hemisphere cooled and dried, particularly following the Eocene-Oligocene transition and through the Miocene, various insect lineages tracked the retraction of tropical environments into more southerly positions. Borneomymar and the aforementioned additional three genera are collectively yet another example demonstrating the resemblance between the Eocene Baltic area and that now found only in the tropics or the Southern Hemisphere. Moreover, evidence from the current distribution of extant species in various taxa (not just insects) suggests that the Earth as a whole was climatically more uniform than today (e.g., Archibald & Farrell, 2003). ACKNOWLEDGEMENTS We are deeply indebted to Mark Pankowski for recognizing the significance of the present specimen and for making its acquisition possible. Mark s admirable dedication toward the advancement of paleoentomological studies is inspiring. We are further grateful to two anonymous reviewers for their comments on an earlier version of the manuscript, and to Jennifer Read for preparing the images of B. madagascar reproduced here. This is a contribution of the Division of Entomology, University of Kansas Natural History Museum. REFERENCES Archibald, B., & B.D. Farrell. 2003. Wheeler s dilemma. Acta Zoologica Cracoviensia 46 (Supplement-Fossil Insects): 17 23. Chatzimanolis, S., A.F. Newton, C. Soriano, & M.S. Engel. 2013. Remarkable stasis in a phloeocharine rove beetle from the Late Cretaceous of New Jersey (Coleoptera, Staphylinidae). Journal of Paleontology 87(2): 177 182. Clarke, D.J., & S. Chatzimanolis. 2009. Antiquity and long-term morphological stasis in a group of rove beetles (Coleoptera: Staphylinidae): Description of the oldest Octavius species from Cretaceous Burmese amber and a review of the Euaesthetine subgroup fossil record. Cretaceous Research 30(6): 1426 1434. Cognato, A.I., & D. Grimaldi. 2009. 100 million years of morphological conservation in bark beetles (Coleoptera: Curculionidae: Scolytinae). Systematic Entomology 34(1): 93 100. Engel, M.S. 2001. A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bulletin of the American Museum of Natural History 259: 1 192. Engel, M.S., & D.A. Grimaldi. 2002. The first Mesozoic Zoraptera (Insecta). American Museum Novitates 3362: 1 20. Grimaldi, D., & M.S. Engel. 2005. Evolution of the Insects. Cambridge University Press; Cambridge, UK; xv+755 pp. Huber, J.T. 2002. The basal lineages of Mymaridae (Hymenoptera) and description of a new genus, Borneomymar. In: Melika, G., & C. Thuróczy (Eds.), Parasitic Wasps: Evolution, Systematics, Biodiversity and Biological Control: 44 53. Agroinform, Kiadó and Nyomda Kft; Budapest, Hungary; xx+480 pp.

8 Novitates Paleoentomologicae No. 5 Huber, J.T., & D. Greenwalt. 2011. Compression fossil Mymaridae (Hymenoptera) from Kishenehn oil shales, with description of two new genera and review of Tertiary amber genera. ZooKeys 130: 473 494. Poinar, G., Jr., & J.T. Huber. 2011. A new genus of fossil Mymaridae (Hymenoptera) from Cretaceous amber and key to Cretaceous mymarid genera. ZooKeys 130: 461 472. Simpson, G.G. 1944. Tempo and Mode in Evolution. Columbia University Press; New York, NY; xviii+237 pp. Wappler, T., & T. Denk. 2011. Herbivory in early Tertiary arctic forests. Palaeogeography, Palaeoclimatology, Palaeoecology 310(3 4): 283 295. Wappler, T., R. Garrouste, M.S. Engel, & A. Nel. 2013. Wasp mimicry among Palaeocene reduviid bugs from Svalbard. Acta Palaeontologica Polonica 58(4): 883 887. ZooBank: urn:lsid:zoobank.org:pub:2f0e6314-2167-41ab-94e0-0f1266e17cc4

Pharciphyzelus lacefieldi Beckemeyer & Engel, 2011 NOVITATES PALEOENTOMOLOGICAE Occasional Contributions to Paleoentomology Novitates Paleoentomologicae is an international, open access journal that seeks to disseminate the results of research conducted on fossil arthropods, particularly fossil insects, at the University of Kansas. The journal covers all aspects of fossil arthropod research including, but not limited to, comparative morphology, paleobiology, paleoecology, phylogenetics, systematics, taphonomy, and taxonomy. Novitates Paleoentomologicae was established at the University of Kansas through the efforts of Michael S. Engel, Jaime Ortega-Blanco, and Ryan C. McKellar in 2013 and each article is published as its own number, with issues appearing online as soon as they are ready. Papers are composed using Microsoft Word and Adobe InDesign in Lawrence, Kansas, USA. Editor-in-Chief Michael S. Engel University of Kansas Ryan C. McKellar University of Alberta Assistant Editors Jaime Ortega-Blanco University of Kansas Novitates Paleoentomologicae is registered in ZooBank (www.zoobank.org), archived at the University of Kansas and in Portico (www.portico.org), and printed on demand by Southwestern Oklahoma State University Press. http://journals.ku.edu/paleoent ISSN 2329-5880