SEISMIC AND PETROPHYSICAL CHARACTERIZATION OF SELECTED WELLS, NIGER DELTA

Similar documents
Evaluation of Hydrocarbon Volume in TRH Field, Onshore Niger Delta, Nigeria

Hydrocarbon Potential of the Marginal Fields in Niger Delta Oza Field, a case study*

STRUCTURAL INTERPRETATION AND HYDROCARBON POTENTIAL OF OBUA FIELD, NIGER DELTA, SOUTHERN NIGERIA

Hydrocarbon Volumetric Analysis Using Seismic and Borehole Data over Umoru Field, Niger Delta-Nigeria

FORMATION EVALUATION OF SIRP FIELD USING WIRELINE LOGS IN WESTERN DEPOBELT OF NIGER DELTA

RESERVOIR CHARACTERIZATION USING SEISMIC AND WELL LOGS DATA (A CASE STUDY OF NIGER DELTA)

Formation Evaluation of an Onshore Oil Field, Niger Delta Nigeria.

Integration of Well Logs and Seismic Data for Prospects Evaluation of an X Field, Onshore Niger Delta, Nigeria

Estimation of Water Saturation Using a Modeled Equation and Archie s Equation from Wire-Line Logs, Niger Delta Nigeria

Reservoir Property Distribution and Structural Styles Analysis of OML D Regional Line, Onshore Niger Delta Basin

Evaluation of Hydrocarbon Prospect of Amu Field, Niger-Delta, Nigeria

Determination of Geothermal Gradient in the Eastern Niger Delta Sedimentary Basin from Bottom Hole Temperatures

International Research Journal of Interdisciplinary & Multidisciplinary Studies (IRJIMS)

Lithofacies Characterization of Sedimentary Succession from Oligocene to Early Miocene Age in X2 Well, Greater Ughelli Depo Belt, Niger Delta, Nigeria

GEOPHYSICAL AND WELL CORELLATION ANALYSIS OF OGO FIELD: A CASE STUDY IN NIGER DELTA BASIN OF NIGERIA

International Journal of Petroleum and Geoscience Engineering Volume 04, Issue 01, Pages 58-65, 2016

Formation evaluation of an onshore appraisal well KG-5, green field, Niger Delta, Nigeria

FIELD DEVELOPMENT PLANS USING SEISMIC RESERVOIR CHARACTERIZATION AND MODELING; A NIGER DELTA 3D CASE STUDY

Bulletin of Earth Sciences of Thailand

EGAS. Ministry of Petroleum

ONLINE FIRST(NOT Peer-Reviewed)

Bulletin of Earth Sciences of Thailand. A study of Reservoir Connectivity in the Platong Field, Pattani Basin, Gulf of Thailand. Hathairat Roenthon

EGAS. Ministry of Petroleum

Hydrocarbon Potentials of Baze Field, Onshore Niger Delta, Nigeria: Petrophysical Analysis and Structural Mapping

Available online Journal of Scientific and Engineering Research, 2018, 5(6): Research Article

SEISMIC ATTRIBUTES AND PETROPHSICAL PROPERTIES OF IBA FIELD, NIGER DELTA, NIGERIA

Overpressure/ Depositional Analysis of Parts of Onshore (X-Field) Niger Delta Basin Nigeria, Based on Well Logs Data.

Rock-Physics and Seismic-Inversion Based Reservoir Characterization of AKOS FIELD, Coastal Swamp Depobelt, Niger Delta, Nigeria

Petrophysical Analysis and Sequence Stratigraphy Appraisal from Well logs of Bobo field, South-Eastern, Niger Delta

Petrophysical Charaterization of the Kwale Field Reservoir Sands (OML 60) from Wire-line Logs, Niger Delta, Nigeria. EKINE, A. S.

Deepwater Niger Delta fold-and-thrust belt modeled as a critical-taper wedge: The influence of a weak detachment on styles of fault-related folds

Reservoir properties and sealing potentials of the Akani Oil Field structures, Eastern Niger Delta, Nigeria

Hydrocarbon reservoir volume estimation using 3-D seismic and well log data over an X-field, Niger Delta Nigeria

Detecting and Predicting Over Pressure Zones in the Niger Delta, Nigeria: A Case Study of Afam Field.

EVALUATION OF SEISMIC ATTRIBUTES OF APO FIELD, ONSHORE NIGER DELTA, SOUTHERN NIGERIA

An Integrated Approach to Volume of Shale Analysis: Niger Delta Example, Orire Field

Keywords: Exploration; reservoir structure; stratigraphic trap; uncertainty; petrophysical property.

Bulletin of Earth Sciences of Thailand. Controls on Reservoir Geometry and Distribution, Tantawan Field, Gulf of Thailand.

Overpressure Prediction In The North-West Niger Delta, Using Porosity Data

Integrated well log and 3-D seismic data interpretation for the Kakinada area of KG PG offshore basin

Sequence Stratigraphic Framework of the Paradise-Field Niger Delta, Nigeria.

Multiattributes and Seismic Interpretation of Offshore Exploratory Block in Bahrain A Case Study

Available online Journal of Scientific and Engineering Research, 2016, 3(6): Research Article

The Stratigraphic Trap in the Benchamas Field Pattani Basin, Gulf of Thailand

Static Reservoir Modeling Using Well Log and 3-D Seismic Data in a KN Field, Offshore Niger Delta, Nigeria

Well Logs 3 D Seismic Sequence Stratigraphy Evaluation of Holu Field, Niger Delta, Nigeria

The Effect of Temperature on Hydrocarbon Types in Bara Oilfield, Niger Delta Basin, Gulf Of Guinea West Africa

Sequence Stratigraphic Analysis from Well Logs of an X- Field, Niger Delta, Nigeria

SEISMIC AND PETROPHYSICAL ATTRIBUTES OF RESERVOIRS IN EBI OIL FIELD, NIGER DELTA

Continuous Wavelet Transform Based Spectral Decomposition of 3d Seismic Data for Reservoir Characterization in Oyi Field, se Niger Delta

LITTLE ABOUT BASIC PETROPHYSICS

SEISMIC ATTRIBUTES ANALYSIS FOR RESERVOIR CHARACTERIZATION; OFFSHORE NIGER DELTA

Derived Rock Attributes Analysis for Enhanced Reservoir Fluid and Lithology Discrimination

Constraining Uncertainty in Static Reservoir Modeling: A Case Study from Namorado Field, Brazil*

RESERVOIR EVALUATION OF T-X FIELD (ONSHORE, NIGER DELTA) FROM WELL LOG PETROPHYSICAL ANALYSIS

REGIONAL GEOLOGY IN KHMER BASIN

Growth Fault History Analysis of an Oil Field, Niger Delta, Nigeria

Shallow Gas Prospect Evaluation in Shahbazpur Structure Using Seismic Attributes Analysis - a Case Study for Bhola Island, Southern Bangladesh

Quantitative Modeling of the Architecture and Connectivity Properties of Reservoirs in Royal Field, Niger-Delta.

Bulletin of Earth Sciences of Thailand. Evaluation of the Petroleum Systems in the Lanta-Similan Area, Northern Pattani Basin, Gulf of Thailand

Strictly as per the compliance and regulations of :

Sedimentary Cycle Best Practice: Potential Eo-Oligocene Sediments in Western Indonesia*

Petrophysical Rock Typing: Enhanced Permeability Prediction and Reservoir Descriptions*

Reservoir Description using Hydraulic Flow Unit and Petrophysical Rock Type of PMT Carbonate Early Miocene of Baturaja Formation, South Sumatra Basin*

Geologic influence on variations in oil and gas production from the Cardium Formation, Ferrier Oilfield, west-central Alberta, Canada

BALOCHISTAN FOLDBELT BASIN

The Effect of Facies Changes on Hydrocarbon Production in Osisioma Field, Onshore, Niger Delta, Nigeria

Plane Versus Elastic Wave AVO Anisotropic Synthetic Modeling in Derby Field, Southeastern Niger Delta

SAND DISTRIBUTION AND RESERVOIR CHARACTERISTICS NORTH JAMJUREE FIELD, PATTANI BASIN, GULF OF THAILAND

PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR

MODEL COMPACTION EQUATION FOR HYDROSTATIC SANDSTONES OF THE NIGER DELTA.

The Integrated Seismic Reservoir Characterization (ISRC), Study in Amboy Field of Niger Delta Oil Field Nigeria

Relinquishment Report

Southern Songkhla Basin, Gulf of Thailand

Integrating rock physics and full elastic modeling for reservoir characterization Mosab Nasser and John B. Sinton*, Maersk Oil Houston Inc.

Reservoir Characterization: Implications From Petrophysical Data of the Paradise-Field, Niger Delta, Nigeria

Downloaded 09/15/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait

SUMMARY INTRODUCTION METHODOLOGY

Rock physics and AVO applications in gas hydrate exploration

Mackenzie Delta: Fresh Look At An Emerging Basinpart 1

Controls on clastic systems in the Angoche basin, Mozambique: tectonics, contourites and petroleum systems

AnalyticalDeterminationofSubsurfaceTemperatureusingTwoLayersModelinPartofNigerDeltaSedimentaryBasinNigeria

Scholars Research Library. Predicting the aquifer characteristic within the major towns in Ndokwa land

Reservoir Rock Properties COPYRIGHT. Sources and Seals Porosity and Permeability. This section will cover the following learning objectives:

The role of tectonics in geopressure compartmentalisation and hydrocarbon leakage in the deep offshore Niger Delta

GEO4270 EXERCISE 2 PROSPECT EVALUATION

The SPE Foundation through member donations and a contribution from Offshore Europe

International Journal of Science and Research (IJSR) ISSN (Online): Index Copernicus Value (2015): Impact Factor (2015): 6.

Imaging complex structure in seismic reflection data using prestack depth migration: case study of Olua area of the Niger Delta, Nigeria

EMEKA M. ILOGHALU, NNAMDI AZIKIWE UNIVERSITY, AWKA, NIGERIA.

Block 43B - Onshore Oman

INT 4.5. SEG/Houston 2005 Annual Meeting 821

Meandering Miocene Deep Sea Channel Systems Offshore Congo, West Africa

A E. SEG/San Antonio 2007 Annual Meeting. exp. a V. a V. Summary

Vail et al., 1977b. AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use.

Process, Zeit Bay Fields - Gulf of Suez, Egypt*

3D Seismic Delineation of Thin Sandstone Reservoirs In Shalelimestone Rich Sequences Of Tapti-Daman Area: A Modelling Aided Approach

Formation evaluation of X7 field in the Niger Delta: evidence from Petrophysical data. Niger Delta, Nigeria.

Transcription:

SEISMIC AND PETROPHYSICAL CHARACTERIZATION OF SELECTED WELLS, NIGER DELTA Oghonyon Rorome 1, Njoku A. Felix 2 and Itiowe Kiamuke 3 1,2,3 Department of Geology, University of Port Harcourt, Port Harcourt, Nigeria. ABSTRACT Integrated 3-D seismic and petrophysical studies were carried out to enhance the characterization of the reservoirs in Hons field in the Lower Niger Delta. Available data include petrophysical logs (such as GR log, SP log, resistivity log, neutron and density logs) to enable appropriate characterization. Seismic data of SEG-Y format provided critical input for velocity analysis and structural seismic interpretations. The faults picked from the seismic section are normal faults which trend NW-SE direction, and can enhance the trapping of hydrocarbon as they serve as good hydrocarbon traps in the Niger Delta.. Synthetic seismogram was produced not only to match possible peak for peak and trough for trough in the area, but also to create a wellto-seismic tie. Petrophysical properties were determined for four wells in Hons field which penetrated two reservoirs of F and L. The average petrophysical properties of reservoir F are pay thickness (137ft), porosity (18.47%), permeability (1085md), Net-to-Gross ratio (0.4371), oil saturation (55.88%) and stooip (65.41mmstb). And the average petrophysical properties of reservoir L are pay thickness (120ft), porosity (21.55%), permeability (1426md), Net-to-Gross ratio (0.7134), oil saturation (62.26%) and stoiip (65.19mmstb) respectively. 54

INTRODUCTION Reservoir characterization is a process of describing various reservoir characteristics using all available data to provide reliable reservoir models for accurate reservoir performance prediction. It must be based on information from seismic reflection times, amplitude versus offset (AVO). Attributes, velocity data, seismic trace analysis and well logs and core analysis data. These subsurface data are integrated to predict the distribution of the reservoir variables. The need for proper integration of 3-D seismic model with petrophysical data to improve exploration success has been in use in the petroleum industry for some time now. In mature petroleum provinces, where exploration and production strategies merge, detailed understanding of petrophysical properties in reservoir systems can be critical to reservoir management practices (AAPG Bulletin, 2005). To develop better models of reservoir properties and their distribution in Hon s field of the Niger Delta province, this study integrates 3-D seismic interpretation, rock petrophysical properties and their distribution to provide reservoir models for predicting reservoir performance. The reality now is that oil-gas reservoir can be subdivided into architectural elements or compartments on the basis of several structural and stratigraphic features. (A) AIM AND OBJECTIVES: The aim of this study is to integrate 3-D seismic and petrophysical data for the characterization of Hon s field, Niger Delta.. (B) LOCATION OF STUDY AREA: Hon s field in Amukpe is within the greater Ughelli depobelt of the Niger Delta oil province, Ogwashi-Asaba formation. It is located within Longitude 05 0 41 27 E to 05 0 42 05 E and latitude 05 0 51 55 N to 05 0 52 03 N (Figure 1) on the Western part of the Niger Delta. This field contains four onshore wells: Gamin 2, Gamin 7, Gamin 9 and Gamin 11. 55

Figure 1: Map of Sapele Local Govt. Area, Delta State showing the Study Area (C) LITERATURE REVIEW: Stonily (1966) and Burke. (1970 and 1972) analyzed and discussed the mega tectonics of the Niger Delta. The sedimentary tectonics of the tertiary delta was extensively described by Merki (1972) and Evamy. (1978). According to Burke (1972), the modern Niger Delta has three well developed submarine channels and numerous smaller gullies which extended from the mouth of the delta to the abyssal 56

plain. Several other paleochannels have been recognized by Murat (1972); Omatsola and Cordey (1976) and Peters, (1984). Clay deposits have been identified in several of the paleochannels as important regional seal within the Niger Delta complex. These clay deposits have been identified as regional seismic marker horizons in the shallow offshore and could be used to correlate stratigraphic events (Beka and Oti, 1995). On the other hand, Bouvier et al. (1989), report on the three dimensional seismic interpretation by employing fault sealing method in the Nun river field of the Niger Delta. He suggested that the complexities of the subsequent sealing of fault structures were clearly observed and are made plain by day. Furthermore, various theories and discussions have been put forward for the Niger Delta. Another for instance, Frank and Cordry (1967); Weber and Daukoru (1975); they all concluded that the major factors that control hydrocarbon distribution within the field were literal spill-point at the termination of discontinuous faults and seals or lack of seal along fault planes. (D) STRATIGRAPHY OF THE NIGER DELTA: The Tertiary Niger Delta was formed as a complex regressive off lap sequence of clastic sediments ranging in thickness from 900 1200 meters (Etu-efetor, 1997). The Niger Delta of Southern Nigeria according to Short and Stauble (1967) is an arcuate shape, wave and tide dominated prograding deltaic system and the sediments range from Eocene to Quaternary. Short and Stable; (1967) further divided the deltaic complex into three (3) major facie unite based on the dominant environmental inference. FORMATION LITHOLOGY AGE THICKNESS(M) BENIN Continental Sands and Gravels. Miocene Recent 0 2,100 AGBADA Paralic Sequence of Sand and Shales Eocene - Recent 300 4,500 AKATA Pro Delta marine Shales and Clays with some turbidite sand bodies Paleocene Recent 600 6,000 Table 1: The Stratigraphical sequence of the Niger Delta. (After Short and Stauble; 1967). These three formations according to Short and Stable (1967), are locally designated from the bottom as Akata, Agbada and Benin formation respectively. Of all these three formations, the Agbada formation constitutes the main reservoir of hydrocarbon in the Niger Delta province. (i) BENIN FORMATION: The Benin formation consists predominantly of massive, highly porous, fresh water sandstones with shale/ clay interbeds. These sediments represent upper Delta Plain deposits, so that the gravels and sandstones represent braided streams, point bar channel fills, while shales and clays may represent back swamp deposits (Weber, 1971). The thickness is variable but generally exceeds 2,000 meters 57

in thickness. (Fig. 2.1) (Weber and Daukoru, 1973) while Merki in his own, attributed that, the formation records 4,000 ft in thickness (Merki, 1970). (ii) AGBADA FORMATION: Weber and Daukoru (1973); explained the Agbada formation to the consisted of inter bedded sand shales with a thickness of about 300-4,500 meters (Table 2.1), (Fig. 2.2); Merki, (1976), suggests that the interbedded sand and shales have a thickness of about 10,000 ft (in the center of the Delta). The sandy parts constituted the main hydrocarbon reservoirs, and the shales, the cap rock, Weber, (1971). (iii) AKATA FORMATION: The Akata Formation is mainly composed of marine shales with locally sandy and silty beds thought to have been laid down as turbidites and continental slope channel fills. The formation is said to be the main source rock for the Niger Delta complex. Its thickness depends on shale diaprism and flowage which the formation has been subjected to. METHODOLOGY (a) DATA BASE: The following data set were used for this work: 3-D Seismic data of SEG-Y format Well log data Checkshot data. (b) 3-D SEISMIC DATA: Using the in lines and cross lines, the horizon of interest was mapped across the field. Within an inline, all the cross lines that intersected it can be seen, the same holds for all cross lines. Seismic grids were developed as the continuous reflections where picked along the in lines and cross lines. Using the T-Z function, two way times at the tops and bottoms of the horizon were converted into depth. The tops and bottoms of T-Z depths were used to tie log depths to the top and bottom of horizon F-top at various wells as well as L-top. (c) 3-D SEISMIC DATA PROCESSING: The field data were recorded in a multiplexed mode using the SEG-Y format, the data were de-multiplexed in transposing a big matrix seismic traces recorded at different offsets with a common hotpoint. The transposing stage is the point in which data are converted to a convenient format used throughout the processing. Also involved is the trace editing where noise is traced with transient glitches or mono-frequency signals are deleted. Finally, the gain recovery function applied on the data to correct for the amplitude effects of wave front divergence. This was carried out on the travel time and processing sample period of 4msec. and re-sampling from 2msec to 4msec was analyzed. (e) SEISMIC INTERPRETATION: 3-D Seismic data of SEG-Y format was interpreted using Petrel software, where a total of seven (7) normal faults and two (2) seismic horizons were picked across the seismic section. Five (5) normal faults trend in the NW-SE direction, typical to the type of faults in the Niger Delta Province. While the other two (2) trend in the NE-SW direction See figure 3 58

The major faults are clearly seen from the discontinuities of the reflectors on the seismic section which could be as a result of tectonic or subsurface activities in the area over geologic time. The interpretation of the seismic horizons was done with the in lines and cross lines of the section. 3- D grid lines were being formed as the seismic horizons were picked. These grids show the displacement of the faults across the section and their trends. After the picking of the seismic horizons, time surface map was produced which was later converted to depth surface map (i.e T-Z conversion) (d) WELL LOGS: The well log data consisted principally of a set of wire-line logs gotten from four (4) drilled wells in the field of study.the logs were produced with the use of Petrel software after the data was compiled by Shell Petroleum Development Company of Nigeria (SPDC). Each of these wells constitute the Gamma-ray logs, Resistivity logs, SP logs, Bulk density and Neutron porosity logs. The Gamma-ray logs were measured in American Petroleum Institute (API) units on a scale of 0-150 API from left to right, the density log measures in g/cc and increases from left to right. The Neutron log is reversed and increases from right to left. The SP and Resistivity logs also increase from left to right. The Gamma-ray log run in this well (Gamin 7 of reservoir F) penetrated highly porous sand up to a depth of 2985.68m. This shows a deflection to the left of the Gamma-ray curve due to the presence of sand. The Gamma-ray log was used to record formations radioactivity of naturally occurring elements (such as Uranium, Thorium and Potassium-40). This log can be used to calculate the volume of shale (Vsh) in a reservoir sand; to determine porous from non porous beds (i.e to distinguish sand and shale sequences); to determine bed boundaries within the formation and to determine environment of deposition. Spontaneous potential (SP) log measures the potential difference down the wellbore, with a reference electrode placed at the surface (in a mud pit) and another electrode down the wellbore. A difference in potential, gives the SP log readings. The SP log penetrated a sand body in Gamin 2 of reservoir L at a depth of 3400-3438m. At this depth, the SP log was seen to deflect to the left which is a reducing SP value due to the presence of sand. The sand body was seen to contain shale intercalations. The SP curve reflects the lithology of the rock as depth increases down the subsurface. It can be used to determine possible environment of deposition from funnel, bell, cylindrical or blocky shape of the SP curve. The log can be use for reservoir correlation of reservoir sands between several wells. SP logs can be used to show areas within the formation with low or high potential difference, as 59

shales show very low a potential difference compared to sand which shows a high potential difference. The Resistivity log run in the various wells is the Induction Lateral Log Deep (ILD). The ILD measures the formation s resistivity deep into the formation (possibly the uninvaded zone). This log is used to determine formation water resistivity, Rw deep into the formation. It shows a deflection to the right (an increased resistivity value) at a depth of 3380-3410m (in Gamin 7 of reservoir L ) which is a possible indication of the presence of oil and gas accumulation within the reservoir formation. The Bulk density and Neutron porosity logs were utilize to create possible gas balloon structure within the reservoir formation, to show gas-oil contact and oil-water contact. The Bulk density log measures the density of a given formation when the formation is bombarded artificially with a radioactive material while Neutron porosity log measures the concentration of hydrogen index in a formation PRESENTATION OF RESULT (d) STRATIGRAPHIC MODELING: In this part, the well logs were produced and read to understand the behavior of the different log signatures which yielded possible interpretations of bed boundaries between the sand and shale sequences, the log shapes which can be used to interpret environment of deposition, distinguish porous and non porous beds, determine areas within the sedimentary units where good resistivity kick can be observed and to give clue about hydrocarbon accumulation and a reasonable well correlation was done for both reservoirs. (e) WELL TO WELL CORRELATION: This is the determination of structural or stratigraphic units that may be equivalent in time, age or stratigraphic position. It involves pattern recognition on well logs and the matching of such pattern of curves from one well to another. Accurate correlations of well logs are very important for reliable geologic interpretations. This provides subsurface information such as lithology, reservoir thickness, formation tops and bases, porosity and permeability of production zone, etc. (Tearpock and Bishke, 1991). The correlation of wells serves as excellent correlation aid in determining the lateral and vertical continuity of sands within the study area. Major sandstone units and depositional sequences were reviewed using Gamma-ray signatures from four (4) wells. The Gamma-ray, SP and the resistivity logs aided the correlation of these reservoirs across the wells. Reservoir F was correlated at a depth of 2985m across the wells, which shows good thickness of sand units and resistivity kick while reservoir L was correlated at a depth of 3423m (.See figure 2) 60

Figure 2: Showing Well Correlation of Reservoir L. 61

NORMAL LEVEL F-TOP LEVEL L-TOP Figure 3: Seismic section showing wells, interpreted Horizons and (f) STRUCTURAL MODELING: Modeling of the subsurface structural features in reservoir F and L of this study, involves the modeling of fault pillars which are done from fault polygons, producing horizon architecture and pillar gridding of the fault pillars, i.e. a 3-D grid of the fault pillars. Figure 4 62

LEVEL F LEVEL L RESERVOIR L Figure 4: Fault modeling of reservoir F and L. 63

Figure 5: Well section showing zones across the wells in reservoir L. 64

ZONE LOG ɸ UPSCALED ɸ LOG SW UPSCALED SW LOG NTG UPSCALED NTG 1 0.2006 0.1989 0.5088 0.4998 0.4242 0.4025 2 0.1868 0.1831 0.4655 0.4695 0.3557 0.2800 3 0.1723 0.1667 0.4968 0.5119 0.2500 0.2032 4 0.1953 0.1881 0.4461 0.4621 0.3930 0.3303 5 0.2569 0.2511 0.3600 0.3663 0.6887 0.6685 6 0.2932 0.2574 0.2889 0.3435 0.9408 0.7500 7 0.2018 0.2029 0.4563 0.4525 0.6072 0.6095 Table 2: Showing a comparison between the mean upscale petrophysical parameters and well logs for reservoir F. DISCUSSION OF RESULT The interpretation on Hon s field located in Amukpe, is an attempt to review the subsurface structural features and the characterization of reservoirs of the Ogwashi-Asaba formation. The interpretation involved an understanding of the existing knowledge in the areas as well as the geological hypothesis within the overall framework of the Niger Delta geology in which this field lies. The existing information put as attributedly based. In addition, this field is known to have seven (7) growth faults, five (5) of them trend in the NW-SE direction and the others trend in the NE-SW direction. The results from this study showed that 3-D seismic data in SEG-Y format and well log data were properly integrated for the characterization of F and L reservoirs. The well logs were analysed to produce stratigraphic models from which reservoir sands, bed boundaries, porous and non porous beds as well as other geologic properties were determined for accurate well correlations. Faults and seismic horizons were interpreted from the seismic section produced from the seismic data. Most of the faults trend in the NW-SE direction and some in the NE-SE direction. Synthetic seismogram was produced (using checkshot data) not only to match possible peak for peak and trough for trough in the area, but also to create a well-to-seismic tie. PETROPHYSICAL EVALUATION / CALCULATION: Porosity and permeability are the main petrophysical 65

properties of a reservoir rock and have a vital impact on the evaluation processes at all stages. This project involved the analysis of well logs 3-D seismic data from a field in the Southern part of the Niger Delta by identifying candidate sand formations in each well and then calculating petrophysical parameters for these potential reservoirs. As a result of this study, two (2) different units were identified in the Formation by using the gamma ray log data. Properties such as porosity, permeability, water saturation, facies, Net-to-Gross, etc. were modeled for both reservoirs during property modeling. Computation of cumulative flow capacity and cumulative storage capacity of the hydrocarbon pore fluid were done using certain formulae mentioned above in order to obtain the amount of hydrocarbon in plac. (Table 2). The horizons were mapped which composed mainly of sand bodies and a few intercalation of shale beds as was revealed in the well log information. The composition of this intercalation of marine shale and continental sand is known to be of Agbada formation. The similarities of the geologic and petrophysical properties of certain depth of interest across the reservoir provide the opportunity for accurate well-to-well correlation. Hon s field is known to have an average petrophysical properties of F reservoir are pay thickness (137ft), porosity (18.47%), permeability (1085md), Net-to-Gross ratio (0.4371), oil saturation (55.88%) and stoiip (65.41mmstb). And the average petrophysical properties of L reservoir are pay thickness (120ft), porosity (21.55%), permeability (1426md), Net-to-Gross ratio (0.7134), oil saturation (62.26%) and stoiip (65.19mmstb) respectively. In summary, it is necessary to say that based on the existing characteristics of this field, the reservoir rock units are prolific for hydrocarbon exploration. REFERENCES 1. Adeogba, A. A., T. R. McHargue and A. Graham, 2005. Transient fan architecture and depositional control from near-surface 3-D seismic data. Niger Delta continental slope. AAPG Bulletin, v. 89, no. 5, p.627-643. 2. Ajakaiye, D. B., and A. W. Bally, 2002, Some structural styles on reflection profiles from offshore Niger Delta: Search and Discovery Article, No. 10031. 3. Alistair R. Brown (1996): Interpretation of three-dimensional Seismic Data Fourth Edition: AAPG Memoir 42, p.397-402 4. Amaefule, J.O., Altunbay, M., Tiab, J., Kersey, D.G., Keelan, D.K., (1993): Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals 66

/ Wells: SPE Annual Technical Conference and Exhibition, SPE 26436. 5. Barnes.A. (1998). The Complex Seismic Trace made simple. The Leading Edge, 17, p.473-486. 6. Beka, F.T., and M. N. Oti, (1995): The distal offshore Niger Delta: frontier prospects of a mature petroleum province, in Oti, M. N., and Postima. G., Ed, Geology of Deltas: Rotterdam. A. A. Bulkema. P.237-24. 7. Bilotti F. D., and J. H. Shaw (2001): Modeling the compressive toe of the Niger Delta as a critical taper wedge, AAPG Annual Meeting Program, v.10, p.1903. 8. Bilottii F. D., and J. H. Shaw, 2005, Deep-water Niger Delta fold and thrust belt modeled as a critical-taper wedge: The influence of elevated basal fluid pressure on structural styles. AAPG Bulletin, v. 89, No. 11, p.1475-1491. 9. Brown A. and Michele H., (1999): Interpretation of three-dimensional seismic data: AAPG Memoir 42, p.514. 10. Bryman, A. and Bell, E. (2007): Business Research methods. 2nd edition. Oxford: Oxford University. 11. Civan, F. (2002): Fractal Formulation of the Porosity and Permeability Relationships Resulting in a Power-Law Flow Units Equation A Leaky Tube Model: SPE International Symposium and Exhibition of Formation Damage Control, SPE 73785. 12. Cramez, F., J. H. Shaw, Evamy H. and Bilotti (2005): Structural styles in the deep-water fold and thrust belt of the Niger Delta: AAPG Bulletin, v. 89, p.753-780. 13. De Ruig, J. M., and S. M. Hubbard (2006): Seismic facies and reservoir characteristics of a deep-marine channel belt in the Mollase foreland basin, Puchkirchen formation, Austra: AAPG Bulletin, v. 90, No. 5, p.735-752. 67