INEQUALITIES. Ozgur Kircak

Similar documents
INEQUALITIES THROUGH PROBLEMS. 1. Heuristics of problem solving

TOPICS IN INEQUALITIES. Hojoo Lee

How many proofs of the Nebitt s Inequality?

Introduction to Olympiad Inequalities

Basics of Olympiad Inequalities. Samin Riasat

Inequalities Marathon version 1.00

Inequalities of Olympiad Caliber. RSME Olympiad Committee BARCELONA TECH

The Law of Averages. MARK FLANAGAN School of Electrical, Electronic and Communications Engineering University College Dublin

Topics in Inequalities - Theorems and Techniques

Number 12 Spring 2019

Topics in Inequalities - Theorems and Techniques. Hojoo Lee

Algebraic Expressions

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Lecture notes. Fundamental inequalities: techniques and applications

A Study on the Properties of Rational Triangles

CIRCULAR COLOURING THE PLANE

Quadratic reciprocity

REVIEW Chapter 1 The Real Number System

Section 3.1: Exponent Properties

Homework 1/Solutions. Graded Exercises

More Properties of the Riemann Integral

MATH 423 Linear Algebra II Lecture 28: Inner product spaces.

Factorising FACTORISING.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Bridging the gap: GCSE AS Level

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

set is not closed under matrix [ multiplication, ] and does not form a group.

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Problem Set 3

QUADRATIC EQUATION. Contents

Relativistic Electrodynamics

Can one hear the shape of a drum?

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Computing data with spreadsheets. Enter the following into the corresponding cells: A1: n B1: triangle C1: sqrt

Surface maps into free groups

Coimisiún na Scrúduithe Stáit State Examinations Commission

AT100 - Introductory Algebra. Section 2.7: Inequalities. x a. x a. x < a

Theoretical foundations of Gaussian quadrature

Polynomials and Division Theory

Math 554 Integration

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

(4.1) D r v(t) ω(t, v(t))

Class 8 Factorisation

The Intouch Triangle and the OI-line

Contents. Preface 3. Chapter 1. Problems 7. Chapter 2. Solutions 25. Glossary 121. Further reading 127

A Note on Feng Qi Type Integral Inequalities

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

Algebraic Inequalities in Mathematical Olympiads: Problems and Solutions

378 Relations Solutions for Chapter 16. Section 16.1 Exercises. 3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses on A.

1. A polynomial p(x) in one variable x is an algebraic expression in x of the form

Section 1.3 Triangles

HW3, Math 307. CSUF. Spring 2007.

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam

Absolute values of real numbers. Rational Numbers vs Real Numbers. 1. Definition. Absolute value α of a real

Logic Synthesis and Verification

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

PARABOLA EXERCISE 3(B)

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

A METHOD FOR SOLVING SYMMETRIC INEQUALITIES.

4.4 Areas, Integrals and Antiderivatives

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

4 VECTORS. 4.0 Introduction. Objectives. Activity 1

Probability. b a b. a b 32.

Lecture 1 - Introduction and Basic Facts about PDEs

Deriving (9.21) in Walsh (1998)

#A29 INTEGERS 17 (2017) EQUALITY OF DEDEKIND SUMS MODULO 24Z

Question: 1. Use suitable identities to find the following products:

CHENG Chun Chor Litwin The Hong Kong Institute of Education

(6.5) Length and area in polar coordinates

Happy New Year 2008 Chuc Mung Nam Moi 2008

Section 3.2 Maximum Principle and Uniqueness

Algebraic Expressions and Identities

AMC Lecture Notes. Justin Stevens. Cybermath Academy

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

Chapter 1: Fundamentals

PYTHAGORAS THEOREM,TRIGONOMETRY,BEARINGS AND THREE DIMENSIONAL PROBLEMS

Some Basic Logic. Henry Liu, 25 October 2010

CS 275 Automata and Formal Language Theory

For the percentage of full time students at RCC the symbols would be:

Convex Sets and Functions

Linear Algebra Introduction

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral.

1.) King invests $11000 in an account that pays 3.5% interest compounded continuously.

CHM Physical Chemistry I Chapter 1 - Supplementary Material

Orthogonal Polynomials and Least-Squares Approximations to Functions

Discrete Least-squares Approximations

Answers and Solutions to (Some Even Numbered) Suggested Exercises in Chapter 11 of Grimaldi s Discrete and Combinatorial Mathematics

Math 42 Chapter 7 Practice Problems Set B


IOAN ŞERDEAN, DANIEL SITARU

Polynomials. Polynomials. Curriculum Ready ACMNA:

Best Approximation. Chapter The General Case

MA123, Chapter 10: Formulas for integrals: integrals, antiderivatives, and the Fundamental Theorem of Calculus (pp.

Lecture 3. Limits of Functions and Continuity

Math 4310 Solutions to homework 1 Due 9/1/16

Transcription:

INEQUALITIES Ozgur Kirk Septemer 27, 2009

2

Contents MEANS INEQUALITIES 5. EXERCISES............................. 7 2 CAUCHY-SCHWARZ INEQUALITY 2. EXERCISES............................. REARRANGEMENT INEQUALITY 7. EXERCISES............................. 8 4 CHEBYSHEV S INEQUALITY 2 4. EXERCISES............................. 22 5 MIXED PROBLEMS 25 6 PROBLEMS FROM OLYMPIADS 29 6. Yers 996 2000.......................... 6 6.2 Yers 990 995.......................... 42 6. Supplementry Prolems....................... 44

4 CONTENTS

Chpter MEANS INEQUALITIES Definition Arithmeti men of, 2,..., n is AM = +2+...+n n Definition 2 Geometri men of, 2,..., n is GM = n 2... n Definition Hrmoni men of, 2,..., n is HM = Definition 4 Qudrti men of, 2,..., n is QM = n + +...+ 2 n 2 +2 2 +...+2 n n Definition 5 The rth power men of, 2,..., n is P r = r r + r 2 +...+r n n Theorem Let i R + QM(, 2,..., n ) AM(, 2,..., n ) GM(, 2,..., n ) HM(, 2,..., n ) nd equlity holds if nd only if = 2 =... = n. Theorem 2 Let i R + then P r P r2 whenever r r 2. Exmple Let,, > 0, prove tht 2 + 2 + 2 + +. Solution: By AM-GM inequlity we hve 2 + 2 2. Similrly, 2 + 2 2 nd 2 + 2 2. Adding these three inequlities we get 2( 2 + 2 + 2 ) 2( + + ) = 2 + 2 + 2 + +. Let s link this result sine we will use it in mny prolems. 2 + 2 + 2 + + (.) 5

6 CHAPTER. MEANS INEQUALITIES Exmple 2 Prove tht if,, > 0, then + +. Solution: By AM-GM we hve + + =. So, + +. Exmple Prove tht for ny positive rel numers,, we hve + + + + + 9 2( + + ). Solution: By AM-HM inequlity, we hve + + + + + + + + + + = 2( + + ). Therefore, + + + + + 9 2( + + ). Exmple 4 Prove tht if,, > 0 then + + + + Solution: By the previous exmple we hve, + 2. (.2) ( + + )[ + + + + + ] 9 2 + + + + + + + + 9 + + + 2 + + + + + + + + 9 2 + + + + + 2. This inequlity is lled Nesitt s inequlity. Exmple 5 Prove tht + + < 2. Solution: By AM P we hve, + + 2 ( + ) + ( ) 2 =. Sine the terms re not equl we hve strit inequlity. So, + + < 2.

.. EXERCISES 7. EXERCISES. Prove tht for ny positive rel numers,, we hve ( + 2)( + )( + 6) 48. 2. Prove tht if,, > 0, then ( + )( + )( + ) 8.. Prove tht if,, > 0, then 4. Prove tht if,, > 0, then 5. Prove tht if x, y > 0 then, 2 + 2 + 2. + + + +. x x 4 + y 2 + y x 2 + y 4 xy. 6. Prove tht ( + )( + )( + ) if (),, re sides of tringle (),, re positive rel numers. 7. Prove tht if,, > 0 nd 2 + 2 + 2 =, then + + + + + 2. 8. Prove tht if x, y, z re rel numers with z > 0, then x 2 + y 2 + 2z 2 + 4z x + y +. 9. Prove tht the inequlity ( + + ) 2 2( + ) holds for ny rel numers,,. 0. Prove tht if x, y, z > 0, then () xy + yz + zx x + y + z. () x2 y + y2 2 z + z2 2 x x 2 z + z y + y x. () x2 y + y2 z + z2 x x y z + y z x + z x y. (d) x 4 + y 4 + z 4 xyz( xy + yz + zx).

8 CHAPTER. MEANS INEQUALITIES. Prove tht if x, y > 0, then x + y 4x + 4y. 2. Let,, 0 nd + +. Prove tht + 2 + + 2 + + 2 2 + + + + +.. Prove the inequlity x 4 + y 4 + 8 8xy for positive rel numers x, y. 4. Prove tht if nd re positive rel numers, then ( + )n + ( + )n 2 n+. 5. Prove tht if p, q > 0 nd p + q =, then (p + p )2 + (q + q )2 25 2. 6. Prove tht if x + y + z = then, 8( ( ) 2 xy yz zx) (x + y) 2 + (y + z) 2 + (z + x) 2 9. 7. Prove tht if, 2,..., n re distint positive rel numers nd + 2 +... + n = S, then S S + 8. Find the minimum vlue of S S 2 +... + 2 S S n > n2 n. 2009 + +...+ + 2 + +... + 2009 + +... + 2009 + + 2 +... + 2008 where, 2,..., 2009 > 0 nd + 2 +... + 2009 =. 9. Prove tht for ny x R we hve x 2 +x 4 2. 20. Let x, y. Prove tht x y + y x xy. 2. Prove the inequlity x2 +2 x2 2 for ny x R. + 22. Let x > y > 0 nd xy =. Prove tht x2 +y 2 x y > 2 2. 2. Prove tht if x > y 0, then x + 4 (x y)(y+) 2.

.. EXERCISES 9 24. Prove tht if,, > 0 then + + + +. 25. Prove tht if + + =, then 2 + 2 + 2. 26. Prove tht if + + =, then 2 + 2 + 2 + +. 27. Let,, e positive rel numers suh tht 2 + 2 + 2 =. Prove tht 28. Prove tht the inequlity + + + + + + + +. 2 + 2 + 2 holds for ny rel numers,,. 29. Prove tht if x, y, z > 0, then ( + + )2 + + x 2 y 2 + y2 z 2 + z2 x 2 x y + y z + z x. 0. Prove tht if x + y = 2, then x + y 2.. Let,, e positive rel numers with + + = 24. Prove tht + + 6. 2. Prove tht if,, > 0, then ++d +. Prove tht if +, then 4 + 4 8. 4. Let,, > 0. Prove tht + 2 + + + 2 + ++d + ++d + + + 2 + 5. Prove tht for positive rel numers x, y, z we hve x x + 2y + 2z + 6. Prove tht if,, > 0, then 4 2 2 + y y + 2z + 2x + 4 2 2 +. z z + 2x + 2y 5. 4 2 2 2 + 2 + 2. d ++ 4. 7. Prove the inequlity 2 x + 2 x < x < 2 x 2 x for x. 8. Prove tht if,, > 0 then ( + ) + ( + ) + ( + ) 27 2( + + ) 2.

0 CHAPTER. MEANS INEQUALITIES 9. Prove tht for x, y > 0, ( + x) + 2 ( + y) 2 2 x + y + 2. 40. Prove tht if,, > 0 then 4. Prove tht if,, > 0, then 42. Solve the system in R + + 2 + + + 2 + + + 2 + 2. + + + 6 + +. + + + d = 2 d = 27 + + + d + + d + d. 4. Solve the system in the set of rel numers 44. Solve the system where x, y, z R 4x 2 4x 2 + = y, 4y 2 4y 2 + = z, 4z 2 4z 2 + = x. x + 2 x = 2y, y + 2 y = 2z, z + 2 z = 2x. 45. Find the positive rel numers x, y, z, t stisfying the system 6xyzt = (x 2 + y 2 + z 2 + t 2 )(xyz + xyt + xzt + yzt), 8 = 2xy + 2zt + xz + xt + yz + yt.

Chpter 2 CAUCHY-SCHWARZ INEQUALITY Theorem (Cuhy-Shwrz)If x i, y i re rel numers, then (x 2 + x 2 2 +... + x 2 n)(y 2 + y 2 2 +... + y 2 n) (x y + x 2 y 2 +... + x n y n ) 2 nd equlity holds if nd only if x y = x2 y 2 =... = xn y n. Exmple 6 Prove tht 2 + 2 + 2 (++)2 for ny rel numers,,. Solution: By Cuhy-Shwrz we hve tht ( 2 + 2 + 2 )( 2 + 2 + 2 ) ( + + ) 2 = ( + + ) 2. Therefore, 2 + 2 + 2 (++)2. Exmple 7 Let x, y, z e positive rel numers. Prove tht x 2 x + y + y2 y + z + z2 z + x x + y + z 2 Solution: By Cuhy-Shwrz inequlity we hve [( x + y) 2 + ( y + z) 2 + ( ( ) z + x) 2 x ] ( ) 2 y + ( ) 2 z + ( ) 2 x + y y + z z + x ( x + y x x + y + y + z y y + z + z + x. z z + x ) 2 = (x + y + z) 2 ( ) x So, wht we got is (2x + 2y + 2z) 2 x+y + y2 y+z + z2 z+x x Therefore, 2 x+y + y2 y+z + z2 z+x x+y+z 2. (x + y + z) 2.

2 CHAPTER 2. CAUCHY-SCHWARZ INEQUALITY This is very useful trik tht n e pplied to mny prolems. We n generlize this result s: x 2 y + x2 2 y 2 +... + x2 n y n (x + x 2 +... + x n ) 2 y + y 2 +... + y n (2.) Exmple 8 Let,, > 0. Prove tht + + + + + 2 + 2 + 2 2. Solution: We n write + = 4 +. So y (2.) we hve + = 4 + nd similrly + = 4 + nd LHS = 4 + + y (.) s desired. 4 + + 4 + (2 + 2 + 2 ) 2 2( + + ) 2 + 2 + 2 2

2.. EXERCISES 2. EXERCISES 46. Prove tht the inequlity x 2 +y 2 +z 2 (x+2y+z)2 4 holds for ny x, y, z R. 47. Prove tht if,, > 0, then ( + + )( + + ) 9. 48. Prove tht if x, y > 0 nd x + y = then x 2 + y 2 0. 49.,,, x, y, z re rel numers nd 2 + 2 + 2 = 6, x 2 + y 2 + z 2 = 25 nd x + y + z = 20. Compute ++ x+y+z. 50. Prove tht if, > 0, then + 5. Solve the system where x i R +. 2 + 2. x + x 2 +... + x k = 9 x + x 2 +... + x k = 52. Prove tht if,, re positive rel numers with =, then 2 + + 2 + + 2 + 2. 5. Prove tht if x, y, z > 0 nd x + y + z =, then 8( ( ) 2 xy yz zx) (x + y) 2 + (y + z) 2 + (z + x) 2 9. 54. Prove tht if,, > 0 then ( + ) 2 + ( + ) 2 + ( + ) 2 9 4( + + ). 55. Prove tht if,,, d re positive rel numers, then + + 4 + 6 d 64 + + + d. 56. Let,,, d e positive rel numers. Prove tht ( + )( + d) + d. 57. Let > > 0 nd > > 0. Prove tht ( ) + ( ).

4 CHAPTER 2. CAUCHY-SCHWARZ INEQUALITY 58. Let,, > 0 with + + =. Prove tht 2 + + + 2 + + + 2 + +. 59. Let,, > 0 with =. Prove tht 2 + + + 2 + + + 2 + +. 60. Let,, e positive rel numers suh tht 2 + 2 + 2 =. Prove tht + 2 + + 2 + + 2. 6. Let,,, x, y, z e positive rel numers suh tht x + y + z =. Prove tht x + y + z + 2 (xy + yz + zx)( + + ) + +. 62. Let,, e positive rel numers. Prove tht 6. Prove tht if,,, x, y, z > 0, then 2 + 2 + 2 2 + 2 + 2. x 4 + y4 + z4 (x + y + z)4 ( + + ). 64. Prove tht if,, re positive rel numers, then + 2 + + 2 + + 2. 65. Prove tht if,, re positive rel numers, then + 2 + 66. Prove tht if,, > 0, then 2 + + + 2 + 2 + + + 2. 2 +. 67. Let,,, d e positive rel numers suh tht ( 2 + 2 ) = 2 + d 2. Prove tht + d.

2.. EXERCISES 5 68. Let, e positive rel numers. Prove tht 4 + 4 + 2 + 2 +. 69. Let,, > 0 with =. Prove tht 2 + 2 + + + + 2 + 2 + + + + 2 + 2 + + +. 70. Prove tht if,,, x, y, z > 0 nd ( 2 + 2 + 2 ) = x 2 + y 2 + z 2, then x + y + z. 7. Prove tht if,, re positive rel numers, then 27 2 + ( + )2 2. 72. Let,,, d 0 with + + d + d =. Prove tht + + d + + + d + + + d + d + +. 7. Let, 2,..., n ;, 2,..., n e positive rel numers suh tht + 2 +... + n = + 2 +... + n. Show tht 2 + + 2 2 2 + 2 +... + 74. Let,, > 0. Prove tht ( + ) 2 + ( + ) 2 + 75. Let,, > 0 with + + =. Prove tht 2 n + 2 +... + n n + n 2 ( + ) 2 9 4( 2 + 2 + 2 ). 2 ( + ) + + + 2 ( + ) + + + 2 ( + ) + + 2..

6 CHAPTER 2. CAUCHY-SCHWARZ INEQUALITY

Chpter REARRANGEMENT INEQUALITY Definition 6 Let 2... n nd 2... n. The numer A = + 2 2 +... + n n is lled ordered sum nd the numer B = n + 2 n +... + n is lled reversed sum. And if x, x 2,..., x n is permuttion of, 2,..., n then X = x + 2 x 2 +...+ n x n is lled mixed sum. Theorem 4 Let 2... n nd 2... n e given. For ny mixed sum X we hve B X A. Exmple 9 Prove tht for positive rel numers,, the inequlity 2 + 2 + 2 + + holds. Solution: Sine the inequlity is symmetri, WLOG we n ssume tht. So y Rerrngement inequlity, eing the ordered sum 2 + 2 + 2 = + + + +. Exmple 0 Prove tht if,, re positive rel numers, then + + + +. Solution: WLOG, we n ssume tht. Then nd. By Rerrngement inequlity we hve, LHS = + + + + = + +. 7

8 CHAPTER. REARRANGEMENT INEQUALITY Exmple Prove tht if,, re positive rel numers, then + + + +. Solution: By symmetry ssume tht then nd. By Rerrngement inequlity we hve tht LHS = + + + + = 2 + 2 + 2 And gin y Rerrngement inequlity, eing the reversed sum + + = 2 + 2 + 2 2 + 2 + 2 Comining these two inequlities we get tht. EXERCISES + + + +. 76. Let,, e positive rel numers. Prove tht () + ( + ) () 5 + 5 ( + ) () + + 2 + 2 + 2 (d) + + + + (e) 2 + 2 + 2 + + (f) 2 + 2 2 + 2 2 2 + + (g) ( + + ) 2 + 2 + 2 (h) + + + + + + + + + +. 77. Prove tht if,, re positive rel numers, then + + + + + 2. 78. Let x i R + nd y, y 2,..., y n e permuttion of x, x 2,..., x n. Prove tht x 2 y + x2 2 y 2 +... + x2 n y n x + x 2 +... + x n. 79. Let x, x 2,..., x n e positive rel numers. Prove tht x 2 x 2 + x2 2 x +... + x2 n x x + x 2 +... + x n.

.. EXERCISES 9 80. Let, 2,..., n e distint positive integers. Prove tht 8. Prove tht if for ny,, we hve 2 + + 2 + + then = =. 2 + 2 2 2 +... + n n 2 + 2 +... + n. 2 + 2 + + 2 + + 2 + 82. Let 2 nd 2. Prove tht 2 + + + 2 2 + ( + 2 + )( + 2 + ) 2 + + 2 +

20 CHAPTER. REARRANGEMENT INEQUALITY

Chpter 4 CHEBYSHEV S INEQUALITY Theorem 5 Let 2... n nd 2... n. Then + 2 2 +...+ n n n ( + 2 +...+ n )( + 2 +...+ n ) n + 2 n +...+ n. Exmple 2 Prove tht 2 + 2 + 2 ( + + )2. Solution: By Cheyshev s inequlity, 2 + 2 + 2 = + + ( + + )( + + ) = ( + + )2. Exmple Let,, > 0. Prove tht + + + + + 2. Solution: Due to symmetry, we n ssume tht then + + +. So y Cheyshev s inequlity we hve + + + + And y AM-HM we hve + ( + + )( + + + + + ) (4.) ( + + + + + ) + + + + + = 2( + + ) Comining (4.) nd (4.2) we get, + + + + 2 + 2. (4.2)

22 CHAPTER 4. CHEBYSHEV S INEQUALITY Exmple 4 Prove tht if,, > 0 nd =, then 2 + + 2 + + 2 + 2. Solution: WLOG, suppose tht. Then 2 2 2 nd + + +. So y Cheyshev s inequlity we hve, 2 + + 2 + + 2 + (2 + 2 + 2 )( + + + + + ) By Exmple nd (4.2) we hve tht (2 + 2 + 2 )( + + + + ( + + )2 ) + 4. EXERCISES 8. Prove tht if,, > 0. then () + (+)(2 + 2 ) 2 () n+ + n+ n + n + 2 () 4 + 4 + 4 ( + + ) (d) + + (++) 9 84. Prove tht if,, > 0, then + 2 + 2 + 85. Prove tht if,, > 0, then + + + + 2 + 2 + + + + 86. Prove tht if,, > 0 nd =, then 87. Prove tht if,, > 0, then = + + 2 + 2 + 2 5. + + 7. 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 5. + + + + + + +. 2 2( + + ) = 2

4.. EXERCISES 2 88. Prove tht if,, > 0 with =, then + + + + + + + +. 89. Let,,, d 0 with + + d + d =. Prove tht + + d + + + d + + + d + d 90. Prove tht if,, > 0, then + + + + 9. Prove tht if,, > 0, then + + 2 + 2 + + + + + + + 2 + 2 + 92. Prove tht if,, > 0 nd = then + + + + + + + +. + + + 6 7. + + 2 + 2 6 5. + +. 9. Let x, y, z e positive rel numers with xyz = nd. Prove tht x y + z + y z + x + z x + y 2. 94. Prove tht if,, > 0 with + + =, then 2 + 2 + 95. Prove tht if,, > 0 then 5 + + 96. Let,, > 0. Prove tht 2 + 2 + 5 + + 5 + 2 + 2 2. ( + + )2. 6 + 2 + 2 + + 2 + 2 + + 2 + 2 + +.

24 CHAPTER 4. CHEBYSHEV S INEQUALITY

Chpter 5 MIXED PROBLEMS 97. Prove tht if,, > 0 nd =, then + + + + + + + +. 98. Prove tht if,, > 0 nd =, then 99. Prove tht if x, y, z > 0 then + + + + + + + +. xy x 2 + xy + yz + 00. Prove tht if x, y, z > 0 then xy x 2 + 2y 2 + z 2 + yz y 2 + yz + zx + yz y 2 + 2z 2 + x 2 + 0. Prove tht if,, > 0 nd =, then 5 + 5 + + 5 + 5 + + zx z 2 + zx + xy. zx z 2 + 2x 2 + y 2 2. 5 + 5 +. 02. Let,, e rel numers suh tht 2 + 2 + 2 =. Prove tht 2 + 2 + 2 + 2 + 2 + 2 5. 0. (IMO95/2) Let,, nd e positive rel numers suh tht =. Prove tht ( + ) + ( + ) + ( + ) 2. 25

26 CHAPTER 5. MIXED PROBLEMS 04. Let,, > 0 with + + =. Prove tht 2 + 2 + 2 + 2 + 2 + 2 2. 05. (IMO2000/2) Let,, e positive rel numers with produt. Prove tht ( + )( + )( + ). 06. Prove tht if,, > 0 nd =, then + + + 6 + +. 07. Let,, e positive rel numers suh tht. Prove tht + + + +. 08. Let,, e positive rel numers suh tht =. Prove tht + + + + + + + +. 09. If,, (0, ), then prove tht + ( )( )( ) <. 0. Prove tht 2 + ( ) 2 + 2 + ( ) 2 + 2 + ( ) 2 2 2 for ritrry rel numers,,.. Prove tht ( 2 + 2 ) 2 + + 2 for ny rel numers nd. 2. (Russi2002) Let x, y, z e positive rel numers with sum. Prove tht x + y + z xy + yz + zx.. Let,, e positive rel numers. Prove tht 4. Prove tht + + 2 + + + 2 + + + 2 + +. 4 2 + + 2 + 2 + + 2 + 2 + + 2 + + for positive rel numers,,.

27 5. Prove tht if,, > 0, then 2 + 2 + 2 + 2 + ( + + ) 2. + 2 + + 6. (IMO200/2)Let,, e positive rel numers. Prove tht 2 + 8 + 2 + 8 + 2 + 8. 7. Prove tht if,, re positive, then + 2 + 2 + + 2 + 2 + + 2 + 2 + +. 8. Prove tht for positive rel numers,,, d the inequlity holds + d ( + + )( + + d). 9. Let x, y, z e positive rels with x + y + z = nd let = x 2 + xy + y 2, = y 2 + yz + z 2, = z 2 + zx + x 2. Prove tht + +. 20. Let,, > 0. Prove tht + + + + + 9 + + + ( + + ). 2. Let,, > 0 with =. Prove tht + + + 2 + + + + + 2 + + + + ( + )( + )( + ) + + 2. + + + 22. If x, y > 0 nd x 2 + y x + y 4. Prove tht x + y 2. 2. Let,, e positive rel numers. Prove tht + + + 2(2 + 2 + 2 ). 24. Prove tht if,, re positive rel numers with + + =, then 5 4 + 4 + 5 4 + 4 + 25. Let,, > 0 with =. Prove tht 2 + 2 + 2 + 2 + 5 4 + 4 2. 2 + 2.

28 CHAPTER 5. MIXED PROBLEMS 26. (Mthemtil Exliur) Let x, y, z >. Prove tht x 4 (y ) 2 + y 4 (z ) 2 + z 4 (x ) 2 48. 27. (MMO/2009) Let,, > 0 suh tht + + =. Prove tht 2 + + 2 + + 28. Prove tht x, y, z R + we hve: x 5 29. Let x, y, z > 0. Prove tht 0. Prove tht if,, > 0, then 2 + + +. x yz + yz 4 2. x y(x 2 + 2y 2 ) + y z(y 2 + 2z 2 ) + z x(z 2 + 2x 2 ). 2 + + + 2 + + +. Prove tht if,, > 0 with =, then + + 2 + 2 +. 2 + +. 2. Prove tht if x, y, z > 0, then x 2 z 2 + y 4 + y 2 z 2 yz(xz + y 2 + yz).. Let,, > 0 with ( + )( + )( + ) = 8. Prove tht + + 4. Let x, y, z e positive rels. Prove tht yz 2x 2 + yz + 27 + +. zx 2y 2 + zx + 5. Let x, y, z e positive rels. Prove tht 6. Let,, x, y, z R +. Prove tht xy 2z 2 + xy. x 2 2x 2 + yz + y 2 2y 2 + zx + z 2 2z 2 + xy. x y + z + y z + x + z x + y +.

Chpter 6 PROBLEMS FROM OLYMPIADS (From Inequlities Through Prolems -Hojoo Lee) (BMO 2005, Proposed y Seri nd Montenegro) (,, > 0) 2 + 2 + 2 + + + 4( )2 + + 2 (Romni 2005, Cezr Lupu) (,, > 0) + 2 + + 2 + + 2 + + (Romni 2005, Trin Tmin) (,, > 0) + 2 + d + + 2d + + d + 2 + + d + 2 + 4 (Romni 2005, Cezr Lupu) ( + + + +,,, > 0) + + 5 (Romni 2005, Cezr Lupu) ( = ( + )( + )( + ),,, > 0) + + 4 29

0 CHAPTER 6. PROBLEMS FROM OLYMPIADS 6 (Romni 2005, Roert Szsz) ( + + =,,, > 0) 2 2 2 ( 2)( 2)( 2) 7 (Romni 2005) (,,, > 0) + + + + + + + + 8 (Romni 2005, Unused) ( =,,, > 0) 2 ( + ) + 2 ( + ) + 2 ( + ) 2 9 (Romni 2005, Unused) ( + + + +,,, > 0) ( + ) + ( + ) + ( + ) 2 0 (Romni 2005, Unused) ( + + =,,, > 0) + + + + + 2 (Romni 2005, Unused) ( + + + 2 =,,, > 0) + + 2 2 (Chzeh nd Solvk 2005) ( =,,, > 0) ( + )( + ) + ( + )( + ) + ( + )( + ) 4 (Jpn 2005) ( + + =,,, > 0) ( + ) + ( + ) + ( + )

4 (Germny 2005) ( + + =,,, > 0) ( 2 + + ) + + + + + 5 (Vietnm 2005) (,, > 0) ( ) ( ) ( ) + + + + + 8 6 (Chin 2005) ( + + =,,, > 0) 0( + + ) 9( 5 + 5 + 5 ) 7 (Chin 2005) (d =,,,, d > 0) ( + ) 2 + ( + ) 2 + ( + ) 2 + ( + d) 2 8 (Chin 2005) ( + + =,,, 0) 2 + + 2 + + 2 + 9 (Polnd 2005) (0,, ) + + + + + 2 20 (Polnd 2005) ( + + =,,, > 0) + + + 6 9 2 (Blti Wy 2005) ( =,,, > 0) 2 + 2 + 2 + 2 + 2 + 2

2 CHAPTER 6. PROBLEMS FROM OLYMPIADS 22 (Seri nd Montenegro 2005) (,, > 0) + + + + + ( + + ) 2 2 (Seri nd Montenegro 2005) ( + + =,,, > 0) + + + + 24 (Bosni nd Heregovin 2005) ( + + =,,, > 0) + + 25 (Irn 2005) (,, > 0) ( + + ) 2 ( ( + + ) + + ) 26 (Austri 2005) (,,, d > 0) + + + d + + + d d 27 (Moldov 2005) ( 4 + 4 + 4 =,,, > 0) 4 + 4 + 4 28 (APMO 2005) ( = 8,,, > 0) 2 ( + )( + ) + 2 ( + )( + ) + 2 ( + )( + ) 4 29 (IMO 2005) (xyz, x, y, z > 0) x 5 x 2 x 5 + y 2 + z 2 + y5 y 2 y 5 + z 2 + x 2 + z5 z 2 z 5 + x 2 + y 2 0

0 (Polnd 2004) ( + + = 0,,, R) 2 2 + 2 2 + 2 2 + 6 (Blti Wy 2004) ( =,,, > 0, n N) n + n + + n + n + + n + n + 2 (Junior Blkn 2004) ((x, y) R 2 {(0, 0)}) 2 2 x 2 + y 2 x + y x 2 xy + y 2 (IMO Short List 2004) ( + + =,,, > 0) + 6 + + 6 + + 6 4 (APMO 2004) (,, > 0) ( 2 + 2)( 2 + 2)( 2 + 2) 9( + + ) 5 (USA 2004) (,, > 0) ( 5 2 + )( 5 2 + )( 5 2 + ) ( + + ) 6 (Junior BMO 200) (x, y, z > ) + x 2 + y + z 2 + + y2 + z + x 2 + + z2 + x + y 2 2 7 (USA 200) (,, > 0) (2 + + ) 2 (2 + + )2 (2 + + )2 2 2 + + ( + ) 2 2 2 + + ( + ) 2 2 2 + ( + ) 2 8

4 CHAPTER 6. PROBLEMS FROM OLYMPIADS 8 (Russi 2002) (x + y + z =, x, y, z > 0) x + y + z xy + yz + zx ( ) 9 (Ltvi 2002) + + 4 + + 4 + + 4 +d =,,,, d > 0 4 d 40 (Alni 2002) (,, > 0) + ( (2 + 2 + 2 ) + + ) + + + 2 + 2 + 2 4 (Belrus 2002) (,,, d > 0) ( + )2 + ( + d) 2 2 d + ( + )2 + ( + d) 2 + 2 + 2 + d 2 ( + ) 2 + ( + d) 2 2 42 (Cnd 2002) (,, > 0) + + + + 4 (Vietnm 2002, Dung Trn Nm) ( 2 + 2 + 2 = 9,,, R) 2( + + ) 0 44 (Bosni nd Heregovin 2002) ( 2 + 2 + 2 =,,, R) 2 + 2 + 2 + 2 + 2 + 2 5 45 (Junior BMO 2002) (,, > 0) ( + ) + ( + ) + ( + ) 27 2( + + ) 2

5 46 (Greee 2002) ( 2 + 2 + 2 =,,, > 0) 2 + + 2 + + 2 + ( + + ) 2 4 47 (Greee 2002) ( 0, 2 0,,, R) 0( 2 + 2 + 2 ) 2 + 5 48 (Tiwn 2002) (,,, d ( 0, 2 ]) d ( )( )( )( d) 4 + 4 + 4 + d 4 ( ) 4 + ( ) 4 + ( ) 4 + ( d) 4 49 (APMO 2002) ( x + y + z =, x, y, z > 0) x + yz + y + zx + z + xy xyz + x + y + z 50 (Irelnd 200) (x + y = 2, x, y 0) x 2 y 2 (x 2 + y 2 ) 2. 5 (BMO 200) ( + +,,, 0) 2 + 2 + 2 52 (USA 200) ( 2 + 2 + 2 + = 4,,, 0) 0 + + 2 5 (Columi 200) (x, y R) (x + y + ) 2 + xy

6 CHAPTER 6. PROBLEMS FROM OLYMPIADS 54 (KMO Winter Progrm Test 200) (,, > 0) (2 + 2 + 2 ) ( 2 + 2 + 2 ) + ( + ) ( + ) ( + ) 55 (KMO Summer Progrm Test 200) (,, > 0) 4 + 4 + 4 + 2 2 + 2 2 + 2 2 + + + + + 56 (IMO 200) (,, > 0) 2 + 8 + 2 + 8 + 2 + 8 6. Yers 996 2000 57 (IMO 2000, Titu Andreesu) ( =,,, > 0) ( + ) ( + ) ( + ) 58 (Czeh nd Slovki 2000) (, > 0) ( 2( + ) + ) + 59 (Hong Kong 2000) ( =,,, > 0) + 2 + + 2 + + 2 8 + + 60 (Czeh Repuli 2000) (m, n N, x [0, ]) ( x n ) m + ( ( x) m ) n

6.. YEARS 996 2000 7 6 (Medoni 2000) (x, y, z > 0) x 2 + y 2 + z 2 2 (xy + yz) 62 (Russi 999) (,, > 0) 2 + 2 2 + 2 + 2 + 2 2 + 2 + 2 + 2 2 + 2 > 6 (Belrus 999) ( 2 + 2 + 2 =,,, > 0) + + + + + 2 64 (Czeh-Slovk Mth 999) (,, > 0) + 2 + + 2 + + 2 65 (Moldov 999) (,, > 0) ( + ) + ( + ) + ( + ) + + + + + 66 (United Kingdom 999) (p + q + r =, p, q, r > 0) 7(pq + qr + rp) 2 + 9pqr 67 (Cnd 999) (x + y + z =, x, y, z 0) x 2 y + y 2 z + z 2 x 4 27 68 (Proposed for 999 USAMO, [AB, pp.25]) (x, y, z > ) x x2 +2yz y y2 +2zx z z2 +2xy (xyz) xy+yz+zx

8 CHAPTER 6. PROBLEMS FROM OLYMPIADS 69 (Turkey, 999) ( 0) ( + )( + 4)( + 2) 60 70 (Medoni 999) ( 2 + 2 + 2 =,,, > 0) + + + 4 7 (Polnd 999) ( + + =,,, > 0) 2 + 2 + 2 + 2 72 (Cnd 999) (x + y + z =, x, y, z 0) x 2 y + y 2 z + z 2 x 4 27 7 (Irn 998) ( x + y + z = 2, x, y, z > ) x + y + z x + y + z 74 (Belrus 998, I. Gorodnin) (,, > 0) + + + + + + + + 75 (APMO 998) (,, > 0) ( + ) ( + ) ( + ) 2 ( + + + ) 76 (Polnd 998) ( + + + d + e + f =, e + df 08,,, d, e, f > 0) + d + de + def + ef + f 6

6.. YEARS 996 2000 9 77 (Kore 998) (x + y + z = xyz, x, y, z > 0) + + + x 2 + y 2 + z 2 2 78 (Hong Kong 998) (,, ) + + ( + ) 79 (IMO Short List 998) (xyz =, x, y, z > 0) x ( + y)( + z) + y ( + z)( + x) + z ( + x)( + y) 4 80 (Belrus 997) (, x, y, z > 0) + y + x x + + z + x y + + x + y z x + y + z + z + z x + + x + y y + + y + z z 8 (Irelnd 997) ( + +,,, 0) 2 + 2 + 2 82 (Irn 997) (x x 2 x x 4 =, x, x 2, x, x 4 > 0) ) x + x 2 + x + x 4 mx (x + x 2 + x + x 4, x + x2 + x + x4 8 (Hong Kong 997) (x, y, z > 0) + 9 xyz(x + y + z + x 2 + y 2 + z 2 ) (x 2 + y 2 + z 2 )(xy + yz + zx) 84 (Belrus 997) (,, > 0) + + + + + + + + + +

40 CHAPTER 6. PROBLEMS FROM OLYMPIADS 85 (Bulgri 997) ( =,,, > 0) + + + + + + + + 2 + + 2 + + 2 + 86 (Romni 997) (xyz =, x, y, z > 0) x 9 + y 9 x 6 + x y + y 6 + y 9 + z 9 y 6 + y z + z 6 + z 9 + x 9 z 6 + z x + x 6 2 87 (Romni 997) (,, > 0) 2 2 + 2 + 2 2 + 2 + 2 2 + 2 2 + 2 + 2 + 2 + 2 + 2 88 (USA 997) (,, > 0) + + + + + + + +. 89 (Jpn 997) (,, > 0) ( + ) 2 ( + )2 ( + )2 ( + ) 2 + + 2 ( + ) 2 + + 2 ( + ) 2 + 2 5 90 (Estoni 997) (x, y R) x 2 + y 2 + > x y 2 + + y x 2 + 9 (APMC 996) (x + y + z + t = 0, x 2 + y 2 + z 2 + t 2 =, x, y, z, t R) xy + yz + zt + tx 0 92 (Spin 996) (,, > 0) 2 + 2 + 2 ( )( )

6.. YEARS 996 2000 4 9 (IMO Short List 996) ( =,,, > 0) 5 + 5 + + 5 + 5 + + 5 + 5 + 94 (Polnd 996) ( + + =,,, 4 2 + + 2 + + ) 2 + 9 0 95 (Hungry 996) ( + =,, > 0) 2 + + 2 + 96 (Vietnm 996) (,, R) ( + ) 4 + ( + ) 4 + ( + ) 4 4 7 ( 4 + 4 + 4) 97 (Berus 996) (x + y + z = xyz, x, y, z > 0) xy + yz + zx 9(x + y + z) 98 (Irn 996) (,, > 0) ( ) ( + + ) ( + ) 2 + ( + ) 2 + ( + ) 2 9 4 99 (Vietnm 996) (2( + + d + + d + d) + + d + d + d = 6,,,, d 0) + + + d 2 ( + + d + + d + d)

42 CHAPTER 6. PROBLEMS FROM OLYMPIADS 6.2 Yers 990 995 Any good ide n e stted in fifty words or less. S. M. Ulm 00 (Blti Wy 995) (,,, d > 0) + + + + d + + + + d + d + d + 4 0 (Cnd 995) (,, > 0) ++ 02 (IMO 995, Nzr Agkhnov) ( =,,, > 0) ( + ) + ( + ) + ( + ) 2 0 (Russi 995) (x, y > 0) xy x x 4 + y 2 + y y 4 + x 2 04 (Medoni 995) (,, > 0) + + + + + 2 05 (APMC 995) (m, n N, x, y > 0) (n )(m )(x n+m +y n+m )+(n+m )(x n y m +x m y n ) nm(x n+m y+xy n+m ) 06 (Hong Kong 994) (xy + yz + zx =, x, y, z > 0) x( y 2 )( z 2 ) + y( z 2 )( x 2 ) + z( x 2 )( y 2 ) 4 9

6.2. YEARS 990 995 4 07 (IMO Short List 99) (,,, d > 0) + 2 + d + + 2d + + 08 (APMC 99) (, 0) ( ) 2 + + 2 + 2 + 2 4 d + 2 + + + + d + 2 + 2 ( 2 + 2 2 ) 09 (Polnd 99) (x, y, u, v > 0) xy + xv + uy + uv x + y + u + v xy x + y + uv u + v 0 (IMO Short List 99) ( + + + d =,,,, d > 0) (Itly 99) (0,, ) + d + d + d 27 + 76 27 d 2 + 2 + 2 2 + 2 + 2 + 2 (Polnd 992) (,, R) ( + ) 2 ( + ) 2 ( + ) 2 ( 2 + 2 2 )( 2 + 2 2 )( 2 + 2 2 ) (Vietnm 99) (x y z > 0) x 2 y z + y2 z x + z2 x y x2 + y 2 + z 2 4 (Polnd 99) (x 2 + y 2 + z 2 = 2, x, y, z R) x + y + z 2 + xyz 5 (Mongoli 99) ( 2 + 2 + 2 = 2,,, R) + + 2 2 6 (IMO Short List 990) ( + + d + d =,,,, d > 0) + + d + + d + + d + + + d + +

44 CHAPTER 6. PROBLEMS FROM OLYMPIADS 6. Supplementry Prolems 7 (Lithuni 987) (x, y, z > 0) x x 2 + xy + y 2 + y y 2 + yz + z 2 + z z 2 + zx + x 2 x + y + z 8 (Yugoslvi 987) (, > 0) 2 ( + )2 + 4 ( + ) + 9 (Yugoslvi 984) (,,, d > 0) + + + d + d + + d + 2 20 (IMO 984) (x + y + z =, x, y, z 0) 0 xy + yz + zx 2xyz 7 27 2 (USA 980) (,, [0, ]) + + + + + + + ( )( )( ). + + 22 (USA 979) (x + y + z =, x, y, z > 0) x + y + z + 6xyz 4. 2 (IMO 974) (,,, d > 0) < + + d + + + + + + d + d + + d < 2

6.. SUPPLEMENTARY PROBLEMS 45 24 (IMO 968) (x, x 2 > 0, y, y 2, z, z 2 R, x y > z 2, x 2 y 2 > z 2 2 ) x y z 2 + x 2 y 2 z 2 8 2 (x + x 2 )(y + y 2 ) (z + z 2 ) 2 25 (Nesitt s inequlity) (,, > 0) + + + + + 2 26 (Poly s inequlity) (,, > 0) ( 2 + + ) ln ln 2 27 (Klmkin s inequlity) ( < x, y, z < ) ( x)( y)( z) + ( + x)( + y)( + z) 2 28 (Crlson s inequlity) (,, > 0) ( + )( + )( + ) + + 8 29 ([ONI], Vsile Cirtoje) (,, > 0) ( + ) ( + ) + ( + ) ( + ) + ( + ) ( + ) 0 ([ONI], Vsile Cirtoje) (,,, d > 0) + + + d + d d + + d + 0

46 CHAPTER 6. PROBLEMS FROM OLYMPIADS (Elemente der Mthemtik, Prolem 207, Sefket Arslngić) (x, y, z > 0) x y + y z + z x x + y + z xyz 2 ( W URZEL, Wlther Jnous) (x + y + z =, x, y, z > 0) ( + x)( + y)( + z) ( x 2 ) 2 + ( y 2 ) 2 + ( z 2 ) 2 ( W URZEL, Heinz-Jürgen Seiffert) (xy > 0, x, y R) 2xy x + y + x2 + y 2 xy + x + y 2 2 4 ( W URZEL, Šefket Arslngić) (,, > 0) x + y + ( + + ) z (x + y + z) 5 ( W URZEL, Šefket Arslngić) ( =,,, > 0) 2 ( + ) + 2 ( + ) + 2 ( + ) 2. 6 ( W URZEL, Peter Strek, Donuwörth) ( =,,, > 0) + + ( + ) ( + ) ( + ). 2 7 ( W URZEL, Peter Strek, Donuwörth) (x+y+z =, x 2 +y 2 +z 2 = 7, x, y, z > 0) + 6 xyz ( x z + y x + z ) y

6.. SUPPLEMENTARY PROBLEMS 47 8 ( W URZEL, Šefket Arslngić) (,, > 0) + + + + ( + + ) + + + +. 9 (, 0) ( + ) + ( + ) 2 ( + 2 ) + 2 ( + 2 ) 40 (Ltvi 997) (n N,,, > 0) + + + 2 + + + n < n ( + n) 4 ([ONI], Griel Dospinesu, Mire Lsu, Mrin Tetiv) (,, > 0) 2 + 2 + 2 + 2 + ( + )( + )( + ) 42 (Gzet Mtemtiã) (,, > 0) 4 + 2 2 + 4 + 4 + 2 2 + 4 + 4 + 2 2 + 4 2 2 + + 2 2 + + 2 2 + 4 (C 262, Mohmmed Assil) (,, > 0) + + + + + + 44 (C2580) (,, > 0) + + + 2 + + + 2 + + + 2 + 45 (C258) (,, > 0) 2 + + CRUX with MAYHEM + 2 + + + 2 + + + +

48 CHAPTER 6. PROBLEMS FROM OLYMPIADS 46 (C252) ( 2 + 2 + 2 =,,, > 0) 2 + 2 + 2 + 2( + + ) 47 (C02, Vsile Cirtoje) ( 2 + 2 + 2 =,,, > 0) + + 9 2 48 (C2645) (,, > 0) 2( + + ) + 9( + + )2 ( 2 + 2 + 2 ) 49 (x, y R) 2 (x + y)( xy) ( + x 2 )( + y 2 ) 2 50 (0 < x, y < ) x y + y x > 5 (x, y, z > 0) xyz + x y + y z + z x x + y + z 52 (,,, x, y, z > 0) ( + x)( + y)( + z) + xyz 5 (x, y, z > 0) x x + (x + y)(x + z) + y y + (y + z)(y + x) + z z + (z + x)(z + y)

6.. SUPPLEMENTARY PROBLEMS 49 54 (x + y + z =, x, y, z > 0) x x + y y + z z 2 55 (,, R) 2 + ( ) 2 + 2 + ( ) 2 + 2 + ( ) 2 2 2 56 (,, > 0) 2 + 2 + 2 + 2 2 + + 2 57 (xy + yz + zx =, x, y, z > 0) x + x 2 + y + y 2 + z + z 2 2x( x2 ) ( + x 2 ) 2 + 2y( y2 ) ( + y 2 ) 2 + 2z( z2 ) ( + z 2 ) 2 58 (x, y, z 0) xyz (y + z x)(z + x y)(x + y z) 59 (,, > 0) ( + ) + ( + ) + ( + ) 4 + ( + )( + )( + ) 60 (Drij Grinerg) (x, y, z 0) ( x (y + z) + y (z + x) + z (x + y) ) x + y + z 2 (y + z) (z + x) (x + y). 6 (Drij Grinerg) (x, y, z > 0) y + z z + x x + y + + x y z 4 (x + y + z) (y + z) (z + x) (x + y).

50 CHAPTER 6. PROBLEMS FROM OLYMPIADS 62 (Drij Grinerg) (,, > 0) 2 ( + ) ( 2 + 2 ) (2 + + ) + 2 ( + ) ( 2 + 2 ) (2 + + ) + 2 ( + ) ( 2 + 2 ) (2 + + ) > 2. 6 (Drij Grinerg) (,, > 0) 2 2 2 + ( + ) 2 + 2 2 2 + ( + ) 2 + 2 2 2 + ( + ) 2 < 2. 64 (Vsile Cirtoje) (,, R) ( 2 + 2 + 2 ) 2 ( + + )