A NEW CLASS OF INTEGRALS INVOLVING EXTENDED MITTAG-LEFFLER FUNCTIONS

Similar documents
A NEW CLASS OF INTEGRALS INVOLVING EXTENDED MITTAG-LEFFLER FUNCTIONS

ON A NEW CLASS OF INTEGRALS INVOLVING PRODUCT OF GENERALIZED BESSEL FUNCTION OF THE FIRST KIND AND GENERAL CLASS OF POLYNOMIALS

Certain Generating Functions Involving Generalized Mittag-Leffler Function

arxiv: v1 [math.ca] 27 May 2016

Definition 1. The extended fractional derivative operator defined by: (z t)t

( ) ( ) Page 339 Research Guru: Online Journal of Multidisciplinary Subjects (Peer Reviewed)

Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Boundary Conditions

FRACTIONAL FOURIER TRANSFORM AND FRACTIONAL DIFFUSION-WAVE EQUATIONS

Fractional and operational calculus with generalized fractional derivative operators and Mittag Leffler type functions

Certain inequalities involving the k-struve function

Integral Transforms and Fractional Integral Operators Associated with S-Generalized Gauss Hypergeometric Function

Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions

CertainFractionalDerivativeFormulaeInvolvingtheProductofaGeneralClassofPolynomialsandtheMultivariableGimelFunction

SOME UNIFIED AND GENERALIZED KUMMER S FIRST SUMMATION THEOREMS WITH APPLICATIONS IN LAPLACE TRANSFORM TECHNIQUE

Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function

Nina Virchenko. Abstract

OnaGeneralClassofMultipleEulerianIntegralswithMultivariableAlephFunctions

Integrals Involving H-function of Several Complex Variables

Fractional Calculus for Solving Abel s Integral Equations Using Chebyshev Polynomials

arxiv:math/ v1 [math.ca] 8 Nov 2003

Solution of fractional oxygen diffusion problem having without singular kernel

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm. Abstract

Some Summation Theorems for Generalized Hypergeometric Functions

Certain Fractional Integral Operators and Generalized Struve s Function

Strictly as per the compliance and regulations of:

Nonlocal problems for the generalized Bagley-Torvik fractional differential equation

International Journal of Engineering Research and Generic Science (IJERGS) Available Online at

The extended Srivastava s triple hypergeometric functions and their integral representations

An extension of Caputo fractional derivative operator and its applications

On some Summation Formulae for the I-Function of Two Variables

A Fractional Spline Collocation Method for the Fractional-order Logistic Equation

DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL DIFFUSION EQUATION

NEW RHEOLOGICAL PROBLEMS INVOLVING GENERAL FRACTIONAL DERIVATIVES WITH NONSINGULAR POWER-LAW KERNELS

Picard s Iterative Method for Caputo Fractional Differential Equations with Numerical Results

Available online through

India

arxiv: v1 [math.ca] 28 Feb 2014

International Journal of Mathematics Trends and Technology (IJMTT) Volume 48 Number 4 August 2017

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions

NEW GENERAL FRACTIONAL-ORDER RHEOLOGICAL MODELS WITH KERNELS OF MITTAG-LEFFLER FUNCTIONS

Generalized Extended Whittaker Function and Its Properties

Applicable Analysis and Discrete Mathematics available online at

Some Results Based on Generalized Mittag-Leffler Function

On the Finite Caputo and Finite Riesz Derivatives

arxiv:math/ v1 [math.ca] 23 Jun 2002

Local Polynomial Smoother for Solving Bagley-Torvik Fractional Differential Equations

FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY

Solutions of Fractional Diffusion-Wave Equations in Terms of H-functions

Certain integrals associated with the generalized Bessel-Maitland function

arxiv: v1 [math-ph] 9 Mar 2018

MEASURE OF NONCOMPACTNESS AND FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

THE ZEROS OF THE SOLUTIONS OF THE FRACTIONAL OSCILLATION EQUATION

k -Fractional Integrals and Application

Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuş-Srivastava Polynomials

Research Article A New Fractional Integral Inequality with Singularity and Its Application

A NEW CLASS OF MEROMORPHIC FUNCTIONS RELATED TO CHO-KWON-SRIVASTAVA OPERATOR. F. Ghanim and M. Darus. 1. Introduction

Certain fractional integral operators and the generalized multi-index Mittag-Leffler functions

ANALYSIS AND APPLICATION OF DIFFUSION EQUATIONS INVOLVING A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL

Bull. Math. Soc. Sci. Math. Roumanie Tome 60 (108) No. 1, 2017, 3 18

arxiv: v3 [physics.class-ph] 23 Jul 2011

ON GENERALIZED WEYL FRACTIONAL q-integral OPERATOR INVOLVING GENERALIZED BASIC HYPERGEOMETRIC FUNCTIONS. Abstract

The Mittag-Leffler (M-L) function [13] is defined as. z k Γ(kα + 1) (α > 0). A further, two-index generalization of this function is given as

On a class of generalized Meijer Laplace transforms of Fox function type kernels and their extension to a class of Boehmians

On a perturbed functional integral equation of Urysohn type. Mohamed Abdalla Darwish

ON THE C-LAGUERRE FUNCTIONS

SERIES IN MITTAG-LEFFLER FUNCTIONS: INEQUALITIES AND CONVERGENT THEOREMS. Jordanka Paneva-Konovska

A Note on Hadamard Fractional Differential Equations with Varying Coefficients and Their Applications in Probability

The Expansion of the Confluent Hypergeometric Function on the Positive Real Axis

An Iterative Method for Solving a Class of Fractional Functional Differential Equations with Maxima

SOME RESULTS FOR BOUNDARY VALUE PROBLEM OF AN INTEGRO DIFFERENTIAL EQUATIONS WITH FRACTIONAL ORDER

International Journal of Pure and Applied Sciences and Technology

MAPPING BETWEEN SOLUTIONS OF FRACTIONAL DIFFUSION-WAVE EQUATIONS. Abstract

A NOTE ON MODIFIED DEGENERATE GAMMA AND LAPLACE TRANSFORMATION. 1. Introduction. It is well known that gamma function is defied by

Cubic B-spline collocation method for solving time fractional gas dynamics equation

arxiv: v1 [math.ca] 25 Jan 2011

Research Article New Method for Solving Linear Fractional Differential Equations

Fractional Schrödinger Wave Equation and Fractional Uncertainty Principle

Fractional order Pettis integral equations with multiple time delay in Banach spaces

Properties of a New Fractional Derivative without Singular Kernel

Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators

Time Fractional Wave Equation: Caputo Sense

On Local Asymptotic Stability of q-fractional Nonlinear Dynamical Systems

Elena Gogovcheva, Lyubomir Boyadjiev 1 Dedicated to Professor H.M. Srivastava, on the occasion of his 65th Birth Anniversary Abstract

On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions

NUMERICAL SOLUTION OF FRACTIONAL DIFFUSION-WAVE EQUATION WITH TWO SPACE VARIABLES BY MATRIX METHOD. Mridula Garg, Pratibha Manohar.

Existence of solutions for multi-point boundary value problem of fractional q-difference equation

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACES

Long and Short Memory in Economics: Fractional-Order Difference and Differentiation

Existence of Minimizers for Fractional Variational Problems Containing Caputo Derivatives

Existence, Uniqueness and Stability of Hilfer Type Neutral Pantograph Differential Equations with Nonlocal Conditions

Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform. 1 Introduction. 2 Preliminaries and notations

Equilibrium points, stability and numerical solutions of fractional-order predator prey and rabies models

SIGNALING PROBLEM FOR TIME-FRACTIONAL DIFFUSION-WAVE EQUATION IN A HALF-PLANE. Yuriy Povstenko. Abstract

A generalized Gronwall inequality and its application to a fractional differential equation

SOME INCLUSION PROPERTIES OF STARLIKE AND CONVEX FUNCTIONS ASSOCIATED WITH HOHLOV OPERATOR. II

Weighted hypergeometric functions and fractional derivative

Double Dirichlet Average of M-series and Fractional Derivative

THE TIME FRACTIONAL DIFFUSION EQUATION AND THE ADVECTION-DISPERSION EQUATION

SOLUTION OF SPACE-TIME FRACTIONAL SCHRÖDINGER EQUATION OCCURRING IN QUANTUM MECHANICS. Abstract

Transcription:

Preprints www.preprints.org) NOT PR-RVIWD Posted: 1 May 217 doi:1.29/preprints2175.222.v1 A NW CLASS OF INTGRALS INVOLVING XTNDD MITTAG-LFFLR FUNCTIONS G. RAHMAN, A. GHAFFAR, K.S. NISAR* AND S. MUBN Abstract. The main aim of this paper is to establish two generalized integral formulas involving the extended Mittag-Leffler function based on the well known Lavoie and Trottier integral formula and the obtain results are express in term of extended Wright-type function. Also, we establish certain special cases of our main result. and 1. introduction The Mittag-Leffler functions α z) and z) are defined by the following series: z n α z), z C, Rα) >, 1.1) Γαn + 1) z) z n, z, β C, Rα) >, 1.2) Γαn + β) respectively. For the generalizations and applications of Mittag-Leffler function, the readers can refer to the recent work of researchers [, 5, 6, 7, 8, 1, 2, 22, ]), Kilbas et al. [11], Chapter 1) and Saigo and Kilbas [12]. In recent years, the Mittag-Leffler function and some of its variety generalizations have been numerically established in the complex plane [9, 2]). A new generalization of the Mittag-Leffler functions z) of 1.2) have defined by Prabhakar [21] as follows: γ z) γ) n z n, z, β C, Rα) >, 1.) Γαn + β) where γ) n denote the well known Pochhammer Symbol which is defined by: { 1, n, γ C), γ) n γγ + 1)γ + 2)...γ + n 1) n N, γ C). 21 Mathematics Subject Classification. B2, C2, C5, C6, B15, C5. Key words and phrases. extended Mittag-Leffler function; Wright-type hypergeometric functions; extended Wright-type hypergeometric functions. Corresponding author. 1 217 by the authors). Distributed under a Creative Commons CC BY license.

Preprints www.preprints.org) NOT PR-RVIWD Posted: 1 May 217 doi:1.29/preprints2175.222.v1 2 G. RAHMAN, A. GHAFFAR, K.S. NISAR AND S. MUBN In fact, the following special cases are satisfied: 1 z) z), 1 α,1z) z). 1.) Recently, many researchers have established the significance and great consideration of Mittag-Leffler functions in the theory of special functions for exploring the generalizations and some applications. Various extensions for these functions are found in [8],[25, 26, 27]). Srivastava and Tomovski [29] have defined further generalization of the Mittag-Leffler function 1 z) of ), which is defined as: γ,k z) γ) nk z n Γαn + β), 1.5) where z, α, β C; Rα) > max{, Rk) 1}; Rk) >. Very recently, Ozarslan and Yilmaz [19] have investigated an extended Mittag-Leffler function γ,c z : p) which is defined as: γ;c z) B p γ + n, c γ)c) n z n Bγ, c γ)γαn + β), 1.6) where p >, Rc) > Rγ) > and B p x, y) is extended beta function defined in Mainardi as follows: B p x, y) t t x 1) 1 t) y 1) e p/t1 t)) dt, 1.7) where Rp) >, Rx) > and Ry) >. If p, then B p x, y) reduces to the following beta function: Bx, y) The gamma function is defined by: Γz) t t By inspection, we conclude the following relation t x 1) 1 t) y 1) dt, 1.8) t z 1) e t) dt; Rz) >. 1.9) Γz + 1) zγz). 1.1) The generalized hypergeometric function p F q z) is defined in [6] as: a 1 ), a 2 ),..., a p ); pf q z) p F q z, p b 1 ), b 2 ),..., b q ); a 1 ) n a 2 ) n...a q ) n z n b 1 ) n b 2 ) n...b p ) n 1.11)

Preprints www.preprints.org) NOT PR-RVIWD Posted: 1 May 217 doi:1.29/preprints2175.222.v1 A NW CLASS OF INTGRALS INVOLVING XTNDD MITTAG-LFFLR FUNCTIONS where α i, β i C; i 1, 2,..., p; j 1, 2,..., qand b j, 1, 2,... and z) n is the Pochhammer symbols. Sharma and Devi [2] defined extended Wright type function in the following series: p+1f q+1 z; p) p+1 F q+1 a i, A i ) 1,p, γ, 1); b j, β j ) 1,p, c, 1); z Γa 1 + A 1 n)...γa p + A p n)b p γ + n, c γ)z n Γb 1 + β 1 n)...γb q + β q n)γc γ) 1.12) where i 1, 2,..., p, j 1, 2,..., q, Rp) >, Rc) > Rγ) > and p. Recently, Mittal et al. [15] defined an extended generalized Mittag-Leffer function as: γ,q;c z; p) B p γ + nq, c γ)c) nq z n Bγ, c γ)γαn + β), 1.1) where α, β, γ C, Rα) >, Rβ) >, Rγ) >, q > and B p x, y) is an extended beta function defined in 1.7). In this paper, we derive new integral formulas involving the Mittag-Leffler function 1.6) and 1.1). For the present investigation, we need the following result of Lavoie and Trottier [1] x a 1) 1 x) 2b 1) 1 x ) 2a 1) 1 x ) ) b 1) 2a 2 Γa)Γb) Γa + b), 1.1) where Ra) >, Rb) >. For more details about the recent works in the field of dynamical systems theory, stochastic systems, non-equilibrium statistical mechanics and quantum mechanics, the readers may refer to the recent work of the researchers[1, 2,, 1, 16, 17, 18] and the references cited therein. 2. Main Result In this section, the generalized integral formulas involving the Mittag-Leffler function 1.6) and 1.1), are established here by inserting with the suitable argument in the integrand of 1.1). Theorem 1. Let y, c, ρ, j, α, β, γ C; with Rα) > max{, Rc) 1}; Rc) >. Rγ) >, R2ρ + j) > and x >. Then the following formula holds true: x ρ+j 1) 1 x) 2ρ 1) 1 x ) 2ρ+j) 1) 1 x ) ρ 1) γ;c y 1 x ) ) 1 x) 2

Preprints www.preprints.org) NOT PR-RVIWD Posted: 1 May 217 doi:1.29/preprints2175.222.v1 G. RAHMAN, A. GHAFFAR, K.S. NISAR AND S. MUBN ) 2ρ+j) 2 Γρ + j) Γγ) ψ ρ, 1), c, 1), γ, 1); β, α), 2ρ + j, 1), c, 1); y; p.2.1) Proof. Let S 1 be the left-hand side of 2.1). Now applying the series representation of the Mittag-Leffler function 1.6) to the integrand of 1.1) and by interchanging the order of integration and summation under the given condition in Theorem 1), we have S 1 x ρ+j 1) 1 x) 2ρ 1) 1 x ) 2ρ+j) 1) 1 x ) ρ 1) γ;c x ρ+j 1) 1 x) 2ρ 1) 1 x ) 2ρ+j) 1) 1 x ) ρ 1) B p γ + n, c γ)c) n Bγ, c γ)γαn + β) x ρ+j 1) 1 x) 2ρ+n) 1 1 x B p γ + n, c γ)c) n y n Bγ, c γ)γαn + β). Now using 1.6) and 1.1), we get S 1 ) 2ρ+j) 2 Γρ + j)γρ + n) Γ2ρ + j + n) ) 2ρ+j) 2 Γρ + j) Γγ) which upon using 1.12), we get ) 2ρ+j) 2 Γρ + j) S 1 ψ Γγ) ) ) y 1 x 1 x) 2 n ) 2ρ+j) 1) 1 x ) ρ+n 1) y 1 x B p γ + n, c γ)c) n y n Bγ, c γ)γαn + β) B p γ + n, c γ)γρ + n)γc + n) y n Γc γ)γαn + β)γ2ρ + j + n), ρ, 1), c, 1), γ, 1) β, α), 2ρ + j, 1), c, 1) ; y; p. ) 1 x) 2 ) Theorem 2. Let y, c, ρ, j, α, β, γ C; with Rα) > max{, Rc) 1}; Rc) >. Rγ) >, R2ρ + j) > and x >. Then the following formula holds true: x ρ 1) 1 x) 2ρ+j) 1 1 x ) 2ρ 1) 1 x ) ρ+j 1) γ;c ; p ) 2ρ) 2 Γρ + j) Γγ) ψ ρ, 1), c, 1), γ, 1); β, α), 2ρ + j, 1), c, 1); ; 9 y; p. 2.2)

Preprints www.preprints.org) NOT PR-RVIWD Posted: 1 May 217 doi:1.29/preprints2175.222.v1 A NW CLASS OF INTGRALS INVOLVING XTNDD MITTAG-LFFLR FUNCTIONS 5 Proof. Let S 2 be the left-hand side of 2.2). Now applying the series representation of the Mittag-Leffler function 1.6) to the integrand of 1.1), we have S 2 ; p x ρ 1) 1 x) 2ρ+j) 1 1 x ) 2ρ 1) 1 x ) ρ+j 1) γ;c x ρ 1) 1 x) 2ρ+j) 1 B p γ + n, c γ)c) n Bγ, c γ)γαn + β) 1 x x ρ+n 1) 1 x) 2ρ+j) 1 1 x B p γ + n, c γ)c) n y n Bγ, c γ)γαn + β). ) 2ρ 1) 1 x ) ρ+j 1) y ) ) 1 x 2 n Now using 1.6) and 1.1), we get S 2 ) 2ρ+n) 2 Γρ + j)γρ + n) Γ2ρ + j + n) ) 2ρ 2 Γρ + j) Γγ) which upon using 1.12), we get ) 2ρ 2 Γρ + j) S 2 ψ Γγ) ) 2ρ+n) 1 1 x ) ρ+j 1) B p γ + n, c γ)c) n y n Bγ, c γ)γαn + β) B p γ + n, c γ)γρ + n)γc + n) Γc γ)γαn + β)γ2ρ + j + n) ρ, 1), c, 1), γ, 1); β, α), 2ρ + j, 1), c, 1); ; 9 y; p. 9 y)n, Theorem. Let y, c, ρ, j, α, β, γ C; with Rα) > max{, Rc) 1}; Rc) >. Rγ) >, R2ρ + j) > and x >. Then the following formula holds true: x ρ+j 1) 1 x) 2ρ 1) 1 x ) 2ρ+j) 1) ) 2ρ+j) 2 Γρ + j) ψ Γγ) 1 x ) ρ 1) γ,q;c y 1 x ) ) 1 x) 2 ; p ρ, 1), c, q), γ, 1); β, α), 2ρ + j, 1), c, 1); ; y; p 2.) Proof. Let S be the left-hand side of 2.). Now applying the series representation of the Mittag-Leffler function 1.6) to the integrand of 1.1) and by interchanging the order of

Preprints www.preprints.org) NOT PR-RVIWD Posted: 1 May 217 doi:1.29/preprints2175.222.v1 6 G. RAHMAN, A. GHAFFAR, K.S. NISAR AND S. MUBN integration and summation under the given condition in Theorem 1), we have S x ρ+j 1) 1 x) 2ρ 1) 1 x ) 2ρ+j) 1) 1 x ) ρ 1) γ,q;c y 1 x x ρ+j 1) 1 x) 2ρ 1) 1 x ) 2ρ+j) 1) 1 x ) ρ 1) B p γ + nq, c γ)c) nq Bγ, c γ)γαn + β) x ρ+j 1) 1 x) 2ρ+n) 1 1 x B p γ + nq, c γ)c) nq y n Bγ, c γ)γαn + β). Now using 1.6) and 1.1), we get S 1 ) 2ρ+j) 2 Γρ + j)γρ + n) Γ2ρ + j + n) ) 2ρ+j) 2 Γρ + j) Γγ) which upon using 1.12), we get ) 2ρ+j) 2 Γρ + j) S ψ Γγ) ) ) y 1 x 1 x) 2 n ) 2ρ+j) 1) 1 x ) ρ+n 1) B p γ + nq, c γ)c) nq y n Bγ, c γ)γαn + β) B p γ + nq, c γ)γρ + n)γc + nq) y n Γc γ)γαn + β)γ2ρ + j + n), ρ, 1), c, 1), γ, 1); β, α), 2ρ + j, 1), c, 1); ; y; p. ) 1 x) 2 ; p Theorem. Let ρ, j, α, β, γ C; with Rα) >, Rc) > Rγ) >, R2ρ + j) > and x >. Then the following formula holds true: x ρ 1) 1 x) 2ρ+j) 1 1 x ) 2ρ 1) 1 x ) ρ+j 1) γ,q;c ; p ) 2ρ) 2 Γρ + j) Γρ) ψ ρ, 1), c, q), γ, 1); β, α), 2ρ + j, 1), c, 1); ; 9 y; p. 2.) Proof. Let S be the left-hand side of 2.). Now applying the series representation of the Mittag-Leffler function 1.6) to the integrand of 1.1), we have S x ρ 1) 1 x) 2ρ+j) 1 1 x ) 2ρ 1) 1 x ) ρ+j 1) γ,q;c ; p )

Preprints www.preprints.org) NOT PR-RVIWD Posted: 1 May 217 doi:1.29/preprints2175.222.v1 A NW CLASS OF INTGRALS INVOLVING XTNDD MITTAG-LFFLR FUNCTIONS 7 x ρ 1) 1 x) 2ρ+j) 1 1 x B p γ + nq, c γ)c) nq Bγ, c γ)γαn + β) x ρ+n 1) 1 x) 2ρ+j) 1 1 x B p γ + nq, c γ)c) n y n Bγ, c γ)γαn + β) ) 2ρ 1) 1 x ) ρ+j 1) y ) ) 1 x 2 n Now using 1.1) and 1.1), we get S ) 2ρ+n) 2 Γρ + j)γρ + n) Γ2ρ + j + n) ) 2ρ 2 Γρ + j) Γγ) which upon using 1.12), we get S ) 2ρ 2 Γρ + j) Γγ) ψ ) 2ρ+n) 1 1 x ) ρ+j 1) B p γ + nq, c γ)c) nq y n Bγ, c γ)γαn + β) B p γ + nq, c γ)γρ + n)γc + nq) Γc γ)γαn + β)γ2ρ + j + n) ρ, 1), c, q), γ, 1); β, α), 2ρ + j, 1), c, 1); 9 y; p 9 y)n,.. Particular cases In this section, we obtained some particular cases of Theorems 1-. Setting p in 1.6) and 1.1), then we get the following well known Mittag-Leffler functions. and γ,c z) B p γ + n, c γ)c) n z n Bγ, c γ)γαn + β),.1) γ,q;c z) B p γ + nq, c γ)c) nq z n Bγ, c γ)γαn + β)..2) Corollary.1. Let y, c, ρ, j, α, β, γ C; with Rα) > max{, Rc) 1}; Rc) >. Rγ) >, R2ρ + j) > and x >. Then the following formula holds true: x ρ+j 1) 1 x) 2ρ 1) 1 x ) 2ρ+j) 1) 1 x ) ρ 1) γ y 1 x ) ) 1 x) 2

Preprints www.preprints.org) NOT PR-RVIWD Posted: 1 May 217 doi:1.29/preprints2175.222.v1 8 G. RAHMAN, A. GHAFFAR, K.S. NISAR AND S. MUBN ) 2ρ+j) 2 Γρ + j) Γγ) 2ψ 2 ρ, 1), γ, 1); β, α), 2ρ + j, 1); y..) Corollary.2. Let y, c, ρ, j, α, β, γ C; with Rα) > max{, Rc) 1}; Rc) >. Rγ) >, R2ρ + j) > and x >. Then the following formula holds true: x ρ 1) 1 x) 2ρ+j) 1 1 x ) 2ρ 1) 1 x ) ρ+j 1) γ ) 2ρ) 2 Γρ + j) Γγ) 2ψ 2 ρ, 1), γ, 1); β, α), 2ρ + j, 1); ; 9 y..) Corollary.. Let y, c, ρ, j, α, β, γ C; with Rα) > max{, Rc) 1}; Rc) >. Rγ) >, R2ρ + j) > and x >. Then the following formula holds true: x ρ+j 1) 1 x) 2ρ 1) 1 x ) 2ρ+j) 1) ) 2ρ+j) 2 Γρ + j) 2ψ 2 Γγ) 1 x ρ, 1), γ, q); ) ρ 1) γ,q y 1 x ) ) 1 x) 2 β, α), 2ρ + j, 1); ; y.5) Corollary.. Let ρ, j, α, β, γ C; with Rα) >, Rc) > Rγ) >, R2ρ + j) > and x >. Then the following formula holds true: x ρ 1) 1 x) 2ρ+j) 1 1 x ) 2ρ 1) 1 x ) ρ+j 1) γ,q ) 2ρ) 2 Γρ + j) Γρ) 2ψ 2 ρ, 1), γ, q); β, α), 2ρ + j, 1); References ; 9 y..6) [1] D. Baleanu, K. Diethelm,. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Sci., 212), 1-16. [2] J. Choi and P. Agarwal, Certain unified integrals associated with Bessel functions, Boundary Value Problems 21 21), 95. [] J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc. 51 21), 995-1. [] M.M. Dzrbasjan, Integral Transforms and Representations of Functions in the Complex Domain, Nauka, Moscow, in Russian), 1966).

Preprints www.preprints.org) NOT PR-RVIWD Posted: 1 May 217 doi:1.29/preprints2175.222.v1 A NW CLASS OF INTGRALS INVOLVING XTNDD MITTAG-LFFLR FUNCTIONS 9 [5] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, in: A. Carpinteri, F. Mainardi ds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer Series on CSM Courses and Lectures, vol. 78, Springer-Verlag, Wien, 1997), 22276. [6] R. Gorenflo, F. Mainardi, H.M. Srivastava, Special functions in fractional relaxationoscillation and fractional diffusion-wave phenomena, in: D. Bainov d.), Proceedings of the ighth International Colloquium on Differential quations Plovdiv, Bulgaria; August 182, 1997), VSP Publishers, Utrecht and Tokyo, 1998), 19522. [7] R. Gorenflo, A.A. Kilbas, S.V. Rogosin, On the generalized MittagLeffler type functions, Integral Transform. Spec. Funct. 7, 1998) 21522. [8] R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scale-invariant solutions of the diffusionwave equation, J. Comput. Appl. Math. 118 2), 175191. [9] R. Hilfer, H. Seybold, Computation of the generalized MittagLeffler function and its inverse in the complex plane, Integral Transform. Spec. Funct. 17 26), 67652. [1] A.A. Kilbas, M. Saigo, On MittagLeffler type function, fractional calculus operators and solutions of integral equations, Integral Transform. Spec. Funct. 1996) 557. [11] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential quations, North-Holland Mathematical Studies, vol. 2, lsevier North-Holland) Science Publishers, Amsterdam, 26). [12] M. Saigo, A.A. Kilbas, On MittagLeffler type function and applications, Integral Transform. Spec. Funct. 7 1998), 97112. [1] J. L. Lavoie and G. Trottier, On the sum of certain Appells series, Ganita 21) 1969), 1-2. [1] N. Menaria, S. D. Purohit and R. K. Parmar, On a new class of integrals involving generalized Mittag-Lefler function, Surveys in Mathematics and its Applications 11 216), 1-9. [15]. Mittal, R. M. Pandey, S. Joshi, On extension of Mittag-Leffler function, Appl. Appl. Math. Vol. 11, 1 216), pp. 7-16. [16] K. S. Nisar, S. D. Purohit, S. R. Mondal, Generalized fractional kinetic equations involving generalized Struve function of the first kind, J. King Saud Univ. Sci., 28 216), 167-171. [17] K. S. Nisar and S. R. Mondal, Certain unified integral formulas involving the generalized modified k-bessel function of first kind, Commun. Korean Math. Soc. 2 217), No. 1, pp. 75. [18] K. S. Nisar, P. Agarwal and S. Jain, Some unified integrals associated with Bessel-Struve kernel function, arxiv:162.196v1 [math.ca]. [19] M. A. Ozarslan, B. Ylmaz, The extended Mittag-Leffler function and its properties, J. Inequal. Appl., 21:85, 21). [2] I. Podlubny, Fractional Differential quations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, CA, 1999). [21] T.R. Prabhakar, A singular integral equation with a generalized MittagLeffler function in the kernel, Yokohama Math. J. 19 1971), 715. [22] S. D. Purohit, Solutions of fractional partial differential equations of quantum mechanics, Adv. Appl. Math. Mech., 5 21), 69-651. [2] S. C. Sharma and Menu Devi, Certain Properties of xtended Wright Generalized Hypergeometric Function, Annals of Pure and Applied Mathematics Vol. 9, No. 1, 215, 5-51

Preprints www.preprints.org) NOT PR-RVIWD Posted: 1 May 217 doi:1.29/preprints2175.222.v1 1 G. RAHMAN, A. GHAFFAR, K.S. NISAR AND S. MUBN [2] H.J. Seybold, R. Hilfer, Numerical results for the generalized MittagLeffler function, Fract. Calc. Appl. Anal. 8 25), 12719. [25] H.M. Srivastava, A contour integral involving Foxs H-function, Indian J. Math. 1 1972), 16. [26] H.M. Srivastava, A note on the integral representation for the product of two generalized Rice polynomials, Collect. Math. 2 197), 117121. [27] H.M. Srivastava, K.C. Gupta, S.P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras, 1982). [28] H.M. Srivastava, C.M. Joshi, Integral Representation For The Product Of A Class Of Generalized Hypergeometric Polynomials, Acad. Roy. Belg. Bull. Cl. Sci. Ser. 5) 6 197), 919926. [29] H.M. Srivastava, Z. Tomovski,? Fractional calculus with an integral operator containing a generalized MittagLeffler function in the kernel, Appl. Math. Comput. 211 29), 189-21. [] V. V. Uchaikin, Fractional Derivatives for Physicists and ngineers, Volume I, Background and Theory Volume II Applications, Nonlinear Physical Science, Springer-Verlag, BerlinHeidelberg, 21). Gauhar Rahman: Department of Mathematics, International Islamic University, Islamabad, Pakistan -mail address: gauhar55uom@gmail.com A. Ghaffar: Department of Mathematical Science, BUITMS Quetta, Pakistan -mail address: abdulghaffar.jaffar@gmail.com Kottakkaran Sooppy Nisar: Department of Mathematics, College of Arts and Science- Wadi Al-dawaser, 11991, Prince Sattam bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia -mail address: ksnisar1@gmail.com, n.sooppy@psau.edu.sa Shahid Mubeen: Department of Mathematics, University of Sargodha, Sargodha, Pakistan -mail address: smjhanda@gmail.com