Lecture 7. Properties of Materials

Similar documents
Continuum Mechanics. Continuum Mechanics and Constitutive Equations

Stress/Strain. Outline. Lecture 1. Stress. Strain. Plane Stress and Plane Strain. Materials. ME EN 372 Andrew Ning

Lecture 6. Energy and Work

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Introduction to Seismology Spring 2008

Basic Equations of Elasticity

3.22 Mechanical Properties of Materials Spring 2008

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

ELASTICITY (MDM 10203)

Lecture 8: Tissue Mechanics

3D Elasticity Theory

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

Mechanics of Earthquakes and Faulting

Lecture 8. Stress Strain in Multi-dimension

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Constitutive Equations

3 Constitutive Relations: Macroscopic Properties of Matter

Solid State Theory Physics 545

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

Continuum mechanism: Stress and strain

Tensor Visualization. CSC 7443: Scientific Information Visualization

A short review of continuum mechanics

Finite Element Method in Geotechnical Engineering

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

NIELINIOWA OPTYKA MOLEKULARNA

1 Hooke s law, stiffness, and compliance

Mechanics of Earthquakes and Faulting

Math Review: Vectors and Tensors for Rheological Applications

Constitutive Relations

M E 320 Professor John M. Cimbala Lecture 10

Chem8028(1314) - Spin Dynamics: Spin Interactions

Elements of Rock Mechanics

Macroscopic theory Rock as 'elastic continuum'

Maxwell s Equations:

Dynamics of Glaciers

3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

Elasticity in two dimensions 1

Linearized Theory: Sound Waves

EE C247B ME C218 Introduction to MEMS Design Spring 2017

Mechanics PhD Preliminary Spring 2017

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

Chapter 1 Fluid Characteristics

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

Introduction to Condensed Matter Physics

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

Numerical Modelling in Geosciences. Lecture 6 Deformation

Supporting Information:

Useful Formulae ( )

12. Stresses and Strains

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Introduction, Basic Mechanics 2

MAE 323: Lecture 1. Review

Strain Transformation equations

Unit IV State of stress in Three Dimensions

Effective mass: from Newton s law. Effective mass. I.2. Bandgap of semiconductors: the «Physicist s approach» - k.p method

Spin Interactions. Giuseppe Pileio 24/10/2006

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

A Brief Revision of Vector Calculus and Maxwell s Equations

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems

1 Stress and Strain. Introduction

Stress, Strain, Mohr s Circle

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Constitutive Relations

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

Lecture 21 Reminder/Introduction to Wave Optics

3D and Planar Constitutive Relations

Fundamentals of Linear Elasticity

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

A Cu-Zn-Cu-Zn heterometallomacrocycle shows significant antiferromagnetic coupling between paramagnetic centres mediated by diamagnetic metal

Chapter 6: Momentum Analysis

Understand basic stress-strain response of engineering materials.

Mechanics of Earthquakes and Faulting

Variational principles in mechanics

General Physics I. Lecture 10: Rolling Motion and Angular Momentum.

Rubber Elasticity (Indented text follows Strobl, other follows Doi)

Exercise: concepts from chapter 8

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

Rotational & Rigid-Body Mechanics. Lectures 3+4

Classical Mechanics. Luis Anchordoqui

Strain distributions in group IV and III-V semiconductor quantum dots

Surface force on a volume element.

Stress transformation and Mohr s circle for stresses

PIEZOELECTRIC TECHNOLOGY PRIMER

Mechanical Properties of Materials

PHYSICAL PROPERTIES OF CRYSTALS

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction

Summary of Fourier Optics

Chapter 2 Governing Equations

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

6. SCALARS, VECTORS, AND TENSORS (FOR ORTHOGONAL COORDINATE SYSTEMS)

Basic Concepts of Strain and Tilt. Evelyn Roeloffs, USGS June 2008

Transcription:

MIT 3.00 Fall 2002 c W.C Carter 55 Lecture 7 Properties of Materials Last Time Types of Systems and Types of Processes Division of Total Energy into Kinetic, Potential, and Internal Types of Work: Polarization Linear Isotropic Polarizable Materials Types of Work: Magnetization Linear Isotropic Non-Ferromagnetic Materials

MIT 3.00 Fall 2002 c W.C Carter 56 Chemical Work If we consider an open chemical system, then we can change the internal energy of a body by alterations of the composition. For instance, we know that salt has a maximum solubility in water (it is about 300 g/l). If a salt crystal is placed in contact of an open system of water of fixed volume, then chemical work is performed by the dissolution of the salt crystal (or precipitation of salt if the water system is supersaturated). We will discuss chemical work at length later in the course but it may be useful to ask yourself the following: Question: What is the natural force against which one must to work to add molecules to a system? Should this force depend on the type of molecule being added to the system? Should the value of the force depend on the chemical composition of the system to which the molecules are being added? βphase, composed of N 1 β, N 2 β,n 3 β...,nc β Chemical compoment 1 Chemical compoment 2 Chemical compoment 3 αphase, composed of N 1 α, N 2 α,n 3 α...,nc α Chemical compoment i Chemical compoment C Figure 7-1: Illustration of the concept of chemical work. Each syringe contains one chemical component, to change the composition of the system work must be performed on the sytem that is proportional to the extensive quantity dn i where i represents the i-th chemical component. It may be useful to think of a particular case. Consider a regular kitchen sponge that has been dried out in the oven for a few days and then exposed to a humid environment. Is there a force driving water molecules from the vapor into the sponge? When does the force disappear?

MIT 3.00 Fall 2002 c W.C Carter 57 Consider a sponge that has been soaking in liquid water and then placed in the desert is there a force on the water molecules driving them one way or another? Elastic Work A spring is an example of a one-dimensional material it resists or exerts force in one direction only. A volume of material can exert forces in all three directions simultaneously and the forces need not be the same in all directions. A volume of material can also be squeezed in many different ways: it can be squeezed in only one or in only two directions 13 All the ways that a force can be applied to small element of material is illustrated below. A force divided by an area is a stress think of it the area density of force. σ ij = F i A j (i.e., σ xz = F x F = σ xz = î ) (7-1) A z A ˆk A j is a plane with normal in ĵ-direction (or the projection of the area of a plane A in the direction parallel to the ĵ) σ zz σ 33 x z y σ yz σ xz σ σ zx zy σ yx σ xy σ xx σ yy σ 23 σ 13 σ σ 31 32 σ 21 σ 12 σ 11 σ 22 Figure 7-2: Illustration of stress on an oriented volume element. σ ij = σ xx σ xy σ xz σ yx σ yy σ yz σ zx σ zy σ zz (7-2) 13 Consider a blob modeling clay you can deform it by placing between one of your opposable thumbs and a finger; you can deform it by simultaneously squeezing with two sets of opposable digits; you can smear it by pushing and pulling in opposite directions. These are examples of uniaxial, biaxial, and shear stress.

MIT 3.00 Fall 2002 c W.C Carter 58 There is one special and very simple case of elastic stress, and that is called the hydrostatic stress. It is the case of pure pressure and there are no shear (off-diagonal) stresses. (i.e., all σ ij = 0 for i j, and σ 11 = σ 22 = σ 33 ). An equilibrium system composed of a body in a fluid environment is always in hydrostatic stress: σ ij = And the pure hydrostatic pressure is given by P P 0 0 0 P 0 0 0 P (7-3) If the body that is being stressed hydrostatically is isotropic, then its response is pure dilation (in other words, it expands or shrinks uniformly and without shear): /3 0 0 ɛ ij = 0 /3 0 (7-4) 0 0 /3 = dv V (7-5) So, for the case of hydrostatic stress, the work term has a particularly simple form: V σ ij dɛ ij = P dv V 3 3 σ ij dɛ ij = P dv i=1 j=1 summation convention (7-6) This expression is the same as the rate of work performed on a compressible fluid, such as an ideal gas.

MIT 3.00 Fall 2002 c W.C Carter 59 Models for Anisotropic materials As part of our discussion of different ways that the internal energy of a body U could be changed, we considered what would happen to a material if it is held in an electric field. In an electric field, charges of opposite sign move in opposite directions, so one side of the material takes on a different charge than another side in other words, it becomes polarized. Question: Do you think the internal energy of the material increases or decreases as it gets polarized? What about the energy associated with the device that creates the electric field? Models for Anisotropic Polarizable Materials We discussed a model for isotropic polarizable materials we wrote down an expression for the work of polarizing a material in an electric field and then assumed linear isotropic behavior to find an expression for the polarization energy in such an idealized material. We introduced a material parameter χ that quantifies how much internal polarization develops for an applied electric field: P = κ χ E. In an isotropic material, therefore, the underlying material cannot influence the material response and the induced polarization, total polarization, and applied field are all parallel. D P D P κ ο E isotropic response κ ο E anisotropic response Figure 7-3: For an isotropic material, the vectors E, P, and D are parallel; in an anisotropic material the ions or electron clouds may be constrained to move in particular directions due to the underlying lattice or symmetry. In an anisotropic material, the material response depends on the relative direction of the applied field and the crystal orientation physically, the internal dipoles are constrained to lie in particular directions with respect to the underlying material.

MIT 3.00 Fall 2002 c W.C Carter 60 E P Figure 7-4: Model of an internal dipole in a crystalline material The polarization is not necessarily in the direction of the field. The polarization is linearly related to the field direction. Such linear relationships can be written as follows: P x P y P z =κ P =κ χe 3 P i = κ χ ij E j j=1 P i =κ χ ij E j χ xx χ xy χ xz χ yx χ yy χ yz χ zx χ zy χ zz where χ is called the the dielectric susceptibility tensor. E x E y E z summation convention (7-7) You won t be tested or otherwise asked whether you understand what a tensor is in this course, but I will tell you what they are because they are important. They are representations

MIT 3.00 Fall 2002 c W.C Carter 61 of materials properties that may depend on the underlying symmetry of the material or any measurable quantity that can depend on the orientation of the measuring device with respect to some laboratory coordinate system. Tensors Extraneous but Potentially Instructive Material A tensor expresses the relation between material response or force with respect to the axes of its underlying symmetry to the axes of response or force in a laboratory frame. A first rank tensor is a spatial vector: its three components refer to the axes of some reference frame. A second rank tensor has 9 components, like a matrix. Each component is associated with two axes: one from the set of the reference frame axes and one from the material frame axes. You can think of the second rank tensor as a linear relationship between two vectors (or equivalently, two first rank tensors). A third rank tensor is a relationship between a first rank tensor and a second rank tensor, and so on. An N-rank tensor will have 3 N components, but there may be symmetry relations that reduce the number of independent components considerably. When a material property is a tensor, there are constraints on the form of the tensor that follow from the symmetry of the underlying material. We will discuss this constraint, called Neumann s Principle, in a later lecture. Models for Diamagnetic and Paramagnetic Anisotropic Materials Because the equations for magnetization and polarization are so similar, it is not surprising that the anisotropic material properties will have a similar form. The general (anisotropic) relationship between the induced magnetization density and the applied field is I x I y I z =µ I =µ ψh 3 I i = µ ψ ij H j j=1 I i =µ ψ ij H j ψ xx ψ xy ψ xz ψ yx ψ yy ψ yz ψ zx ψ zy ψ zz H x H y H z summation convention (7-8)

MIT 3.00 Fall 2002 c W.C Carter 62 where ψ is the magnetic susceptibility tensor. Therefore Eq. 6-11 becomes: B x µ xx µ xy µ xz B y = µ yx µ yy µ yz B z µ zx µ zy µ zz B =µ H 3 B i = µ µ ij H j j=1 B i =µ ij H j H x H y H z summation convention (7-9) where µ ij = µ (δ ij ψ ij ) is the the magnetic permeability tensor. δ ij is the identity matrix and is also called Kronecker-delta tensor which is 1 if i = j and zero otherwise. Models for Anisotropic Elastic Materials: Advanced Material An elastic material is one that responds to an applied stress by deforming and then pops back to its original shape when the stress is returned to its original value. The resistance to deformation or material stiffness is ultimately related to the bonds between the atoms or molecules that comprise a solid. Weak bonds in a particular direction would result in a material that is not very stiff in other words, highly compliant when a force is applied in the direction of the weak bonds. σ zz strong covalent bonds within planes σ xx σ xx weak Van der Waals bonds between planes σ zz Figure 7-5: Illustration of the effect of applying a stress in two different directions in graphite. Because the deformation will depend on the direction that a particular stress is applied, the elasticity properties will be anisotropic.

MIT 3.00 Fall 2002 c W.C Carter 63 Because the stress is a rank-2 tensor (i.e., it has two components i and j) and the strain ɛ ij is also a rank-2 tensor, the most general linear relationship between the two is: ɛ ij = 3 3 S ijkl σ kl (7-10) l=1 l=1 where S is the elastic compliance tensor a rank-4 tensor. The inverse of S is related to the elastic modulus or stiffness tensor. For example, the shear strain associated with twisting around the y-axis is: ɛ xz =S xzxx σ xx S xzxy σ xy S xzxz σ xz S xzyx σ yx.... (7-11)... S xzzz σ zz and is related to all nine possible applied stresses. 14 14 There are actually only six independent stresses in elastic equilibrium it can be shown that σ ij = σ ji, i.e., the stress is symmetric.