The Ramsey/Cass-Koopmans (RCK) Model

Similar documents
Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path

Generic Analysis of Endogenous Growth Models

Advanced Macroeconomics

Cointegration and the Ramsey Model

Advanced Macroeconomics

Lecture notes on modern growth theory

Lecture 2 The Centralized Economy: Basic features

Econ 204A: Section 3

Macroeconomics I, UPF Professor Antonio Ciccone SOLUTIONS PS 5, preliminary version

On the Dynamic Implications of the Cobb- Douglas Production Function

The Ramsey Model. (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 2013)

Economic Growth: Lecture 9, Neoclassical Endogenous Growth

The Ramsey Model. Alessandra Pelloni. October TEI Lecture. Alessandra Pelloni (TEI Lecture) Economic Growth October / 61

Endogenous Growth: AK Model

Chapter 12 Ramsey Cass Koopmans model

Assumption 5. The technology is represented by a production function, F : R 3 + R +, F (K t, N t, A t )

Economic Growth: Lecture 8, Overlapping Generations

Economics 202A Lecture Outline #3 (version 1.0)

The Growth Model in Continuous Time (Ramsey Model)

A Note on the Ramsey Growth Model with the von Bertalanffy Population Law

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

Lecture 1: The Classical Optimal Growth Model

Economic Growth: Lectures 5-7, Neoclassical Growth

Economic Growth (Continued) The Ramsey-Cass-Koopmans Model. 1 Literature. Ramsey (1928) Cass (1965) and Koopmans (1965) 2 Households (Preferences)

Neoclassical Models of Endogenous Growth

Practice Questions for Mid-Term I. Question 1: Consider the Cobb-Douglas production function in intensive form:

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

Solution to Homework 2 - Exogeneous Growth Models

Topic 2. Consumption/Saving and Productivity shocks

Suggested Solutions to Problem Set 2

Monetary Economics: Solutions Problem Set 1

The basic representative agent model: Ramsey

Introduction to Recursive Methods

ECON 581: Growth with Overlapping Generations. Instructor: Dmytro Hryshko

The Neoclassical Growth Model

Economic Growth: Lecture 7, Overlapping Generations

The Solow Model in Discrete Time Allan Drazen October 2017

On the dynamics of an endogenous growth model with learning by doing. Alfred Greiner

1. Money in the utility function (start)

On the dynamics of basic growth models: Ratio stability versus convergence and divergence in state space

DEPARTMENT OF ECONOMICS Fall 2015 P. Gourinchas/D. Romer MIDTERM EXAM

Lecture 6: Discrete-Time Dynamic Optimization

Lecture 2 The Centralized Economy

A simple macro dynamic model with endogenous saving rate: the representative agent model

New Notes on the Solow Growth Model

ECON 582: The Neoclassical Growth Model (Chapter 8, Acemoglu)

The economy is populated by a unit mass of infinitely lived households with preferences given by. β t u(c Mt, c Ht ) t=0

Endogenous Growth. Lecture 17 & 18. Topics in Macroeconomics. December 8 & 9, 2008

Public Economics The Macroeconomic Perspective Chapter 2: The Ramsey Model. Burkhard Heer University of Augsburg, Germany

14.452: Introduction to Economic Growth Problem Set 4

Problem 1 (30 points)

TOBB-ETU - Econ 532 Practice Problems II (Solutions)

From Difference to Differential Equations I

Growth: Facts and Theories

HOMEWORK #3 This homework assignment is due at NOON on Friday, November 17 in Marnix Amand s mailbox.

Part A: Answer question A1 (required), plus either question A2 or A3.

Chapter 3 Task 1-4. Growth and Innovation Fridtjof Zimmermann

Economic Growth Theory. Vahagn Jerbashian. Lecture notes

Fluctuations. Shocks, Uncertainty, and the Consumption/Saving Choice

A t = B A F (φ A t K t, N A t X t ) S t = B S F (φ S t K t, N S t X t ) M t + δk + K = B M F (φ M t K t, N M t X t )

2008/73. On the Golden Rule of Capital Accumulation Under Endogenous Longevity. David DE LA CROIX Grégory PONTHIERE

One-Sector Models of Endogenous Growth. Instructor: Dmytro Hryshko

The Real Business Cycle Model

Indeterminacy with No-Income-Effect Preferences and Sector-Specific Externalities

Time-varying Consumption Tax, Productive Government Spending, and Aggregate Instability.

Growth Theory: Review

ADVANCED MACROECONOMICS I

Introduction to Real Business Cycles: The Solow Model and Dynamic Optimization

Growth Theory: Review

14.05: Section Handout #1 Solow Model

EC9A2 Advanced Macro Analysis - Class #1

Advanced Macroeconomics

Economic Growth

Lecture 5 Dynamics of the Growth Model. Noah Williams

Macroeconomics Field Exam. August 2007

Overlapping Generation Models

Advanced Economic Growth: Lecture 3, Review of Endogenous Growth: Schumpeterian Models

News Driven Business Cycles in Heterogenous Agents Economies

Problem Set #4 Answer Key

Solving a Dynamic (Stochastic) General Equilibrium Model under the Discrete Time Framework

"0". Doing the stuff on SVARs from the February 28 slides

Leigh Tesfatsion (Prof. of Econ, Iowa State University, Ames, IA ) Last Updated: 1 January 2018

How much should the nation save?

Macroeconomics Theory II

Permanent Income Hypothesis Intro to the Ramsey Model

Schumpeterian Growth Models

Optimal Taxation with Capital Accumulation and Wage Bargaining

Economic Growth: Lecture 13, Directed Technological Change

Macroeconomics Theory II

Markov Perfect Equilibria in the Ramsey Model

Analysis of the speed of convergence

Dynamic Optimization: An Introduction

ECON 5118 Macroeconomic Theory

The Solow Model. Prof. Lutz Hendricks. January 26, Econ520

The representative agent model

ECON 402: Advanced Macroeconomics 1. Advanced Macroeconomics, ECON 402. New Growth Theories

UNIVERSITY OF VIENNA

The Quest for Status and Endogenous Labor Supply: the Relative Wealth Framework

Macroeconomic Theory and Analysis V Suggested Solutions for the First Midterm. max

4- Current Method of Explaining Business Cycles: DSGE Models. Basic Economic Models

Transcription:

c November 2, 217, Christopher D. Carroll RamseyCassKoopmans The Ramsey/Cass-Koopmans (RCK) Model Ramsey (1928), followed much later by Cass (1965) and Koopmans (1965), formulated the canonical model of optimal growth in continuous time for an economy with exogenous labor-augmenting technological progress. 1 The Budget Constraint The economy has a perfectly competitive production sector that uses a Cobb-Douglas aggregate production function to produce output using capital and labor. 1 increases exogenously at a constant rate 2 Y = F(K, L) = K α (AL) 1 α (1) and A is an index of labor productivity that grows at rate Labor supply (the same as population) L/L = ξ (2) Ȧ/A = φ. (3) Thus, technological progress allows each worker to produce perpetually more as time goes by with the same amount of physical capital. 3 The quantity AL is known as the number of efficiency units of labor in the economy. Aggregate capital accumulates according to K = Y C δk. (4) Lower case variables are the upper case version divided by efficiency units, i.e. y = Y/(AL) (5) = K α (AL) 1 α /(AL) (6) = (K/AL) α (7) = k α. (8) 1 All Roman variables are implicitly assumed to be functions of time, but putting time subscripts on everything would clutter the notation, so we do it only where necessary for clarity. 2 The ancient Greek philosophers captured eternal truths; therefore, Greek letters represent constants whose value never changes. 3 This is the definition of labor-augmenting (Harrod-neutral) productivity growth; with a Cobb-Douglas production function, it turns out to be essentially the same as capital-augmenting productivity growth, also known as Hicks-neutral, as well as output-neutral ( Solow-neutral ) progress.

Note that k ( ) dk dt = ( KAL K( AL + A L) ) (AL) 2 which means that (4) can be divided by AL and becomes (9) = K/AL k(ȧ/a + L/L) (1) = K/AL (φ + ξ)k (11) K/AL = y c δk (12) k + (φ + ξ)k = f(k) c δk (13) k = f(k) c (φ + ξ + δ)k. (14) This equation yields a first candidate for an optimal steady-state of the growth model. A steady-state will be a point where k =, and it seems plausible to argue that the best possible steady-state is the one that maximizes c. This is the golden rule optimality condition of Phelps (1961), an article well worth reading; this is one of the chief contributions for which Phelps won the Nobel prize. 2 The Social Planner s Problem Now suppose that there is a social planner whose goal is to maximize the discounted sum of CRRA utility from per-capita consumption: ( ) (C/L) 1 ρ max e ϑt. (15) 1 ρ But C/L = A(C/AL) = Ac. Recall that for a variable growing at rate φ, A t = A e φt (16) so if the economy started off in period with productivity A, by date t we can rewrite C/L = ca (17) = ca e φt. (18) Using (18) and the other results above, we can rewrite the social planner s objective function as ( ) (Ac) 1 ρ ( ) c e ϑt = A 1 ρ 1 ρ e ϑt e (1 ρ)φt (19) 1 ρ 1 ρ = A 1 ρ u(c)e ((1 ρ)φ ϑ)t. (2) Thus, defining ν = ϑ (1 ρ)φ and normalizing the initial level of productivity to 2

A = 1, the complete optimization problem can be formulated as subject to max which has a discounted Hamiltonian representation u(c)e νt (21) k = k α c (ξ + φ + δ)k, (22) H(k, c, λ) = u(c) + (k α c (ξ + φ + δ)k)λ. (23) The first discounted Hamiltonian optimization condition requires H/ c = : c ρ = λ (24) ρc ρ 1 ċ = λ. (25) The second discounted Hamiltonian optimization condition requires: λ = νλ H/ k (26) = νλ λ(f (k) (ξ + φ + δ)) (27) λ/λ = (ν + (ξ + φ + δ) f (k)) (28) ( ρc ρ 1ċ) = (ν + (ξ + φ + δ) f (k)) (29) c ρ ρċ/c = (f (k) ν (ξ + φ + δ)) (3) ċ/c = ρ 1 (f (k) (ξ + φ + δ) ν) (31) }{{} ŕ where the definition of ŕ is motivated by thinking of f (k) (ξ + φ + δ) as the interest rate net of depreciation and dilution. This is called the modified golden rule (or sometimes the Keynes-Ramsey rule because it was originally derived by Ramsey with an explanation attributed to Keynes). Thus, we end up with an Euler equation for consumption growth that is just like the Euler equation in the perfect foresight partial equilibrium consumption model, except that now the relevant interest rate can vary over time as f (k) varies. Substituting in the modified time preference rate gives ċ/c = ρ 1 (f (k) (ξ + δ + φ) ϑ + (1 ρ)φ) (32) = ρ 1 (f (k) (ξ + δ) ϑ ρφ), (33) and finally note that defining per capita consumption χ = C/L so that c = χa 1, ) ċ = (χa 1 = χa 1 (χa 1 ) A/A (34) 3

ċ/c = ) (χa 1 /(χa 1 ) = χ/χ φ (35) and since (33) can be written we have ċ/c = ρ 1 (f (k) (ξ + δ) ϑ) φ, (36) χ/χ = ρ 1 (f (k) (ξ + δ) ϑ) (37) so the formula for per capita consumption growth (as a function of k) is identical to the model with no growth (equation (33) with φ = ). Any important differences between the no-growth model and the model with growth therefore must come through the channel of differences in k. 3 The Steady State The assumption of labor augmenting technological progress was made because it implies that in steady-state, per-capita consumption, income, and capital all grow at rate φ. 4 ċ/c = implies that at the steady-state value of ǩ, f (ǩ) = ϑ + ξ + δ + ρφ (38) αǩα 1 = ϑ + ξ + δ + ρφ (39) ( ) 1 ϑ + ξ + δ + ρφ α 1 ǩ = (4) α ( ) 1 α 1 α ǩ = (41) ϑ + ξ + δ + ρφ Thus, the steady-state k will be higher if capital is more productive (α is higher), and will be lower if consumers are more impatient, population growth is faster, depreciation is greater, or technological progress occurs more rapidly. 4 A Phase Diagram While the RCK model has an analytical solution for its steady-state, it does not have an analytical solution for the transition to the steady-state. The usual method for analyzing models of this kind is a phase diagram in c and k. The first step in constructing the phase diagram is to take the differential equations that describe the system and find the points where they are zero. Thus, from (14) we 4 See (216) for a discussion of the realism of this requirement. 4

have that k = implies c = f(k) (φ + ξ + δ)k (42) and we have already solved for the (constant) ǩ that characterizes the ċ/c = locus. These can be combined to generate the borders between the phases in the phase diagram, as illustrated in figure 1. 5 Transition Actually, as stated so far, the solution to the problem is very simple: The consumer should spend an infinite amount in every period. This solution is not ruled out by anything we have yet assumed (except possibly the fact that once k becomes negative the production function is undefined). Obviously, this is not the solution we are looking for. The problem is that we have not imposed anything corresponding to the intertemporal budget constraint. In this context, the IBC takes the form of a transversality condition, lim λ te (φ+ξ)t t rτ dτ k t =. (43) t The intuitive purpose of this unintuitive equation is basically to prevent the capital stock from becoming negative or infinity as time goes by. Obviously a capital stock that was negative for the entire future could not satisfy the equation. And a capital stock that is too large will have an arbitrarily small interest rate, which will result in the LHS of the TVC being a positive number, again failing to satisfy the TVC. Figure 2 shows three paths for c and k that satisfy (33) and (14). The topmost path, however, is clearly on a trajectory toward zero then negative k, while the bottommost path is heading toward an infinite k. Only the middle path, labelled the saddle path, satisfies both (33) and (14) as well as the TVC (43). 5

References Cass, David (1965): Optimum growth in an aggregative model of capital accumulation, Review of Economic Studies, 32, 233 24. Grossman, Gene M., Elhanan Helpman, Ezra Oberfield, and Thomas Sampson (216): Balanced Growth Despite Uzawa, Working Paper 21861, National Bureau of Economic Research. Koopmans, Tjalling C. (1965): On the concept of optimal economic growth, in (Study Week on the) Econometric Approach to Development Planning, chap. 4, pp. 225 87. North-Holland Publishing Co., Amsterdam. Phelps, Edmund S. (1961): The Golden Rule of Accumulation, American Economic Review, pp. 638 642, Available at http: //teaching.ust.hk/~econ343/papers/edmundphelps-thegoldenruleofaccumulation-afablefo Ramsey, Frank (1928): A Mathematical Theory of Saving, Economic Journal, 38(152), 543 559. 6

Appendix: Numerical Solution The RCK model does not have an analytical solution, which means that numerical methods must be used to find out the model s quantitative implications for transition paths. The method of solution of these kinds of models is not important for the purposes of first year graduate macroeconomics; this appendix has been written as a reference for more advanced students who might be beginning their research on growth models. The most straightforward method of numerical solution for perfect foresight models of this kind is called the time elimination method. It starts from the fact that ( ) dc/dt = dc/dk. (44) dk/dt Note from (33) that we can write so we can obtain ċ = ρ 1 (f (k) ϑ (ξ + δ) ρφ)c, (45) dc/dk = ( ) (αk α 1 ϑ (ξ + δ) ρφ)c ρ(k α c (φ + ξ + δ)k) which is a differential equation with no analytical solution. However, many numerical math packages can solve differential equations numerically, yielding a numerical version of the c(k) function. There is one problem, however, which is that at the steady-state values of c and k both numerator and denominator of this equation are zero. We could use L Hopital s rule to derive an expression in this neighborhood, but that gets very messy. The alternative is to solve the differential equation twice: Once for a domain extending from k = to ǩ ɛ, yielding c (k), and once for a domain from ǩ + ɛ to some large value of k, yielding c + (k). The true consumption policy function can then be approximated by interpolating between the upper endpoint of c (k) and the lower endpoint of c + (k). (46) 7

c Figure 1 ċ/c = and k = Loci k, g low k, g high c, g high c, g low k 8

c Figure 2 Transition to the Steady State c c Saddle Path k k 9