Multilevel ensemble Kalman filtering

Similar documents
Nonlinear Stability of Ensemble Kalman filter

3/8/2016. Contents in latter part PATTERN RECOGNITION AND MACHINE LEARNING. Dynamical Systems. Dynamical Systems. Linear Dynamical Systems

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data

Sequential Monte Carlo Methods - A Review. Arnaud Doucet. Engineering Department, Cambridge University, UK

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

MA Advanced Econometrics: Properties of Least Squares Estimators

STA Object Data Analysis - A List of Projects. January 18, 2018

Data Assimilation. Alan O Neill University of Reading, UK

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

Lecture 20: Multivariate convergence and the Central Limit Theorem

Gamma Distribution and Gamma Approximation

Sieve Estimators: Consistency and Rates of Convergence

THE KALMAN FILTER RAUL ROJAS

Lecture 33: Bootstrap

Chapter 10: Power Series

Non-Gaussian Estimation and Observer-Based Feedback using the Gaussian Mixture Kalman and Extended Kalman Filters

Lecture 19: Convergence

Exponential Families and Bayesian Inference

Random Variables, Sampling and Estimation

Notes 19 : Martingale CLT

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

A Simplified Derivation of Scalar Kalman Filter using Bayesian Probability Theory

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

Asymptotic Properties of MLE in Stochastic. Differential Equations with Random Effects in. the Diffusion Coefficient

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

Research Article A New Second-Order Iteration Method for Solving Nonlinear Equations

Monte Carlo Integration

Entropy Rates and Asymptotic Equipartition

A Risk Comparison of Ordinary Least Squares vs Ridge Regression

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Stochastic Simulation

Statistical Inference Based on Extremum Estimators

Berry-Esseen bounds for self-normalized martingales

Regression and generalization

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS

Lecture 3. Properties of Summary Statistics: Sampling Distribution

6.3 Testing Series With Positive Terms

Linear Regression Models

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise)

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1

Math 312 Lecture Notes One Dimensional Maps

Solutions to HW Assignment 1

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

ESTIMATION AND PREDICTION BASED ON K-RECORD VALUES FROM NORMAL DISTRIBUTION

Law of the sum of Bernoulli random variables

An Introduction to Asymptotic Theory

1 Review and Overview

Lecture 27: Optimal Estimators and Functional Delta Method

Regression with an Evaporating Logarithmic Trend

LECTURE 11 LINEAR PROCESSES III: ASYMPTOTIC RESULTS

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 6 9/23/2013. Brownian motion. Introduction

Lectures on Stochastic System Analysis and Bayesian Updating

On forward improvement iteration for stopping problems

Lecture 3 The Lebesgue Integral

A Note on Effi cient Conditional Simulation of Gaussian Distributions. April 2010

Lainiotis filter implementation. via Chandrasekhar type algorithm

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector

ON BLEIMANN, BUTZER AND HAHN TYPE GENERALIZATION OF BALÁZS OPERATORS

Statistical Pattern Recognition

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution

Convergence of random variables. (telegram style notes) P.J.C. Spreij

CS537. Numerical Analysis and Computing

Asymptotic Coupling and Its Applications in Information Theory

Basics of Probability Theory (for Theory of Computation courses)

Advanced Stochastic Processes.

7.1 Convergence of sequences of random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture Chapter 6: Convergence of Random Sequences

Summary. Recap ... Last Lecture. Summary. Theorem

MODEL CHANGE DETECTION WITH APPLICATION TO MACHINE LEARNING. University of Illinois at Urbana-Champaign

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

7.1 Convergence of sequences of random variables

Quantile regression with multilayer perceptrons.

Random Signals and Noise Winter Semester 2017 Problem Set 12 Wiener Filter Continuation

A REMARK ON A PROBLEM OF KLEE

Quick Review of Probability

Chandrasekhar Type Algorithms. for the Riccati Equation of Lainiotis Filter

ADVANCED DIGITAL SIGNAL PROCESSING

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 2 9/9/2013. Large Deviations for i.i.d. Random Variables

LECTURE 8: ASYMPTOTICS I

The Numerical Solution of Singular Fredholm Integral Equations of the Second Kind

On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

Approximations and more PMFs and PDFs

Estimation of the Mean and the ACVF

A Hilbert Space Central Limit Theorem for Geometrically Ergodic Markov Chains

Modified Decomposition Method by Adomian and. Rach for Solving Nonlinear Volterra Integro- Differential Equations

Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution

Stochastic Nerve Axon Equations

A NOTE ON BOUNDARY BLOW-UP PROBLEM OF u = u p

Chapter 7 Isoperimetric problem

1 Lecture 2: Sequence, Series and power series (8/14/2012)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

CS321. Numerical Analysis and Computing

Transcription:

Multilevel esemble Kalma filterig Håko Hoel 1 Kody Law 2 Raúl Tempoe 3 1 Departmet of Mathematics, Uiversity of Oslo, Norway 2 Oak Ridge Natioal Laboratory, TN, USA 3 Applied Mathematics ad Computatioal Scieces, KAUST uiversity, Saudi Arabia UQAW 2016, Thuwal 1 / 27

Overview 1 Problem descriptio 2 Kalma filterig 3 Esemble Kalma filterig 4 Multilevel esemble Kalma filterig 5 Extesio of MLEKF ad Coclusio 2 / 27

Problem descriptio Cosider the uderlyig ad uobservable dyamics u +1 = u + a(u t ) dt + b(u t ) dw (t) } 1 {{ 1 } =:Ψ(u ) with u R d, ad Lipschitz cotiuous a : R d R d ad b : R d Rd ˆd. Ad oisy observatios y = Hv + γ, with i.i.d. γ N(0, Γ) ad H R k d. Objective: Let Y := (y 1, y 2,..., y ) ad let Y obs be a sequece of fixed observatios. Costruct a efficiet method for trackig u (Y = Y obs ). That is, approximate [ ] E φ(u ) Y = Y obs for a observable φ : R d R. Abuse of otatio: will write u Y obs to represet u (Y = Y obs ). 3 / 27

Problem descriptio Cosider the uderlyig ad uobservable dyamics u +1 = u + a(u t ) dt + b(u t ) dw (t) } 1 {{ 1 } =:Ψ(u ) with u R d, ad Lipschitz cotiuous a : R d R d ad b : R d Rd ˆd. Ad oisy observatios y = Hv + γ, with i.i.d. γ N(0, Γ) ad H R k d. Objective: Let Y := (y 1, y 2,..., y ) ad let Y obs be a sequece of fixed observatios. Costruct a efficiet method for trackig u (Y = Y obs ). That is, approximate [ ] E φ(u ) Y = Y obs for a observable φ : R d R. Abuse of otatio: will write u Y obs to represet u (Y = Y obs ). 3 / 27

Problem descriptio Cosider the uderlyig ad uobservable dyamics u +1 = u + a(u t ) dt + b(u t ) dw (t) } 1 {{ 1 } =:Ψ(u ) with u R d, ad Lipschitz cotiuous a : R d R d ad b : R d Rd ˆd. Ad oisy observatios y = Hv + γ, with i.i.d. γ N(0, Γ) ad H R k d. Objective: Let Y := (y 1, y 2,..., y ) ad let Y obs be a sequece of fixed observatios. Costruct a efficiet method for trackig u (Y = Y obs ). That is, approximate [ ] E φ(u ) Y = Y obs for a observable φ : R d R. Abuse of otatio: will write u Y obs to represet u (Y = Y obs ). 3 / 27

Overview 1 Problem descriptio 2 Kalma filterig 3 Esemble Kalma filterig 4 Multilevel esemble Kalma filterig 5 Extesio of MLEKF ad Coclusio 4 / 27

Kalma filterig Cosider the liear settig u +1 = Au + ξ +1, y +1 = Hu +1 + γ +1, ξ +1 N(0, Σ), γ +1 N(0, Γ). (1) Gaussiaity of the filterig distributio If u Y obs N(m, C ), the uder (1) both u +1 Y obs will also be Gaussias. ad u +1 Y obs +1 u +1 Y obs = (Au +ξ +1 ) Y obs = A(u Y obs )+ξ +1 N( Am }{{}, AC A T + Σ), }{{} =: m +1 =:Ĉ+1 Ca use Bayesia iferece to show u +1 Y obs +1 N(m +1, C +1 ), where m +1 = (I K +1 H) m +1 + K +1 y obs +1, C +1 = (I K +1 H)Ĉ+1, K +1 = Ĉ+1H T (Γ + HĈ+1H T ) 1. 5 / 27

Kalma filterig Cosider the liear settig u +1 = Au + ξ +1, y +1 = Hu +1 + γ +1, ξ +1 N(0, Σ), γ +1 N(0, Γ). (1) Gaussiaity of the filterig distributio If u Y obs N(m, C ), the uder (1) both u +1 Y obs will also be Gaussias. ad u +1 Y obs +1 u +1 Y obs = (Au +ξ +1 ) Y obs = A(u Y obs )+ξ +1 N( Am }{{}, AC A T + Σ), }{{} =: m +1 =:Ĉ+1 Ca use Bayesia iferece to show u +1 Y obs +1 N(m +1, C +1 ), where m +1 = (I K +1 H) m +1 + K +1 y obs +1, C +1 = (I K +1 H)Ĉ+1, K +1 = Ĉ+1H T (Γ + HĈ+1H T ) 1. 5 / 27

Kalma filterig Cosider the liear settig u +1 = Au + ξ +1, y +1 = Hu +1 + γ +1, ξ +1 N(0, Σ), γ +1 N(0, Γ). (1) Gaussiaity of the filterig distributio If u Y obs N(m, C ), the uder (1) both u +1 Y obs will also be Gaussias. ad u +1 Y obs +1 u +1 Y obs = (Au +ξ +1 ) Y obs = A(u Y obs )+ξ +1 N( Am }{{}, AC A T + Σ), }{{} =: m +1 =:Ĉ+1 Ca use Bayesia iferece to show u +1 Y obs +1 N(m +1, C +1 ), where m +1 = (I K +1 H) m +1 + K +1 y obs +1, C +1 = (I K +1 H)Ĉ+1, K +1 = Ĉ+1H T (Γ + HĈ+1H T ) 1. 5 / 27

Kalma filterig formulas 1 The predictio step for u +1 Y obs Predictio N( m +1, Ĉ+1): m +1 = Am Ĉ +1 = AC A T + Σ. 2 The update step. Update the predictio with the latest observatio y +1 ito u +1 Y +1 N(m +1, C +1 ): Update m +1 = (I K +1 H) m +1 + K +1 y obs +1, C +1 = (I K +1 H)Ĉ+1, K +1 = Ĉ+1H T (Γ + HĈ+1H T ) 1. 6 / 27

Overview 1 Problem descriptio 2 Kalma filterig 3 Esemble Kalma filterig 4 Multilevel esemble Kalma filterig 5 Extesio of MLEKF ad Coclusio 7 / 27

Esemble Kalma filterig (Evese 94) I more complex settigs, Kalma filterig has major drawbacks: I high dimesios, d 1, storage ad evolutio of the full d d covariace matrix C is very costly. Kalma filterig is ot desiged for oliear dyamics u +1 = Ψ(u ); liearizatio is the eeded, ad it is hard to estimate the errors from liearizatio. Esemble Kalma filterig (EKF) may overcome these drawbacks by propagatig a esemble of particles {v (ω i )} M i=1 {v +1(ω i )} M i=1 ad usig their sample momets i the predict ad update steps. 8 / 27

Esemble Kalma Filterig II Predict 1 Compute (umerical solutios of) M particle paths oe step forward v +1,i = Ψ(v,i, ω i ) for i = 1, 2,..., M. 2 Compute sample mea ad covariace m MC +1 = E M [ v +1 ] Ĉ MC +1 = Cov M [ v +1 ] where E M [ v +1 ] := 1 M M i=1 v +1,i ad Cov M [ v +1 ] := E M [ v +1 v T +1] E M [ v +1 ](E M [ v +1 ]) T. 9 / 27

Esemble Kalma Filterig III Update 1 Geerate sigal observatios for the esemble of particles ỹ +1,i = y obs +1 + γ +1,i for i = 1, 2..., M, with i.i.d. γ +1,1 N(0, Γ). 2 Use sigal observatios to update particle paths where v +1,i = (I K MC +1H) v +1,i + K MC +1ỹ +1,i, K MC +1 = Ĉ MC +1H T (HĈ MC +1H T + Γ) 1. Note: After the first step, all particles are correlated due to K MC +1. 10 / 27

From EKF to mea field EKF For studyig covergece properties of EKF it is useful to itroduce the mea field EKF (MFEKF) v +1,i MF = Ψ(v,i MF, ω i ) ] K+1 Pr m +1 MF MF = E [ v MF = Ĉ +1 MFHT (HĈ +1 MFHT + Γ) 1 +1,i Up ỹ +1,i = y +1 + γ +1,i Ĉ+1 MF = Cov[ v +1,i MF ], v+1,i MF = (I K+1 MF MF H)v+1,i + K +1ỹ+1,i. MF ad i compariso, EKF v +1,i = Ψ(v,i, ω i ) Pr m +1 MC = E M [ v +1 ] Up Ĉ+1 MC = Cov M [ v +1 ] K MC ỹ +1,i v +1,i +1 = Ĉ MC +1 HT (HĈ MC +1 HT + Γ) 1 = y +1 + γ +1,i = (I K+1 MCH) v +1,i + K+1ỹ+1,i. MC Whe uderlyig dyamics is liear with Gaussia additive oise ad u 0 Gaussia, it holds that µ MF (dx) = P ( u dx Y obs ), where µ MF = Law(v,i MF ). I oliear settigs, we use as approximatio goal φ(x)µ MF R d [ (dx)( E φ(u ) Y obs ] ) 11 / 27

From EKF to mea field EKF For studyig covergece properties of EKF it is useful to itroduce the mea field EKF (MFEKF) v +1,i MF = Ψ(v,i MF, ω i ) ] K+1 Pr m +1 MF MF = E [ v MF = Ĉ +1 MFHT (HĈ +1 MFHT + Γ) 1 +1,i Up ỹ +1,i = y +1 + γ +1,i Ĉ+1 MF = Cov[ v +1,i MF ], v+1,i MF = (I K+1 MF MF H)v+1,i + K +1ỹ+1,i. MF ad i compariso, EKF v +1,i = Ψ(v,i, ω i ) Pr m +1 MC = E M [ v +1 ] Up Ĉ+1 MC = Cov M [ v +1 ] K MC ỹ +1,i v +1,i +1 = Ĉ MC +1 HT (HĈ MC +1 HT + Γ) 1 = y +1 + γ +1,i = (I K+1 MCH) v +1,i + K+1ỹ+1,i. MC Whe uderlyig dyamics is liear with Gaussia additive oise ad u 0 Gaussia, it holds that µ MF (dx) = P ( u dx Y obs ), where µ MF = Law(v,i MF ). I oliear settigs, we use as approximatio goal φ(x)µ MF R d [ (dx)( E φ(u ) Y obs ] ) 11 / 27

Covergece of EKF Theorem 1 (Le Glad et al. (2009)) Cosider the dyamics ad observatios, u +1 = f (u ) + ξ +1, y +1 = Hu +1 + γ +1, ξ +1 N(0, Σ), γ +1 N(0, Γ), ad assume u 0 L p (Ω) for ay p 1, ad that max( f (x) f (x ), φ(x) φ(x ) ) C x x (1+ x s + x s ), for a s 0. The, for the EKF update esemble {v,i } M i=1, ( sup M E[ M 1 M i=1 φ(v,i ) M for ay order p 1 ad fiite. φ(x)µ MF R d p]) 1/p (dx) <. Extesio to further oliear settigs i [Law et al. (2014)]. 12 / 27

Cetral step i proof: M φ(v,i ) M φ(x)µ MF M (dx) i=1 R d p i=1 M + i=1 φ(v,i ) M φ(v,i MF ) M M φ(v,i MF ) M i=1 p φ(x)µ MF R d = O( v,i v MF,i ˆp + M 1/2 ) (dx) p 13 / 27

Computatioal cost of EKF To meet the costrait ( M E[ i=1 φ(v,i ) M φ(x)µ MF R d oe thus eeds esemble of size M = O(ɛ 2 ). p]) 1/p (dx) = O(ɛ), How does the computatioal cost icrease if the EKF dyamics has to be sampled usig a umerical solver for which E [ Ψ Ψ ] = O( t α )? Short aswer (uder additioal assumptios): the cost icreases to O(ɛ (2+1/α) ). 14 / 27

Overview 1 Problem descriptio 2 Kalma filterig 3 Esemble Kalma filterig 4 Multilevel esemble Kalma filterig 5 Extesio of MLEKF ad Coclusio 15 / 27

Multilevel EKF (MLEKF) Predictio Compute a esemble of particle paths o a hierarchy of accuracy levels v l 1 +1,i = Ψ l 1 (v l 1,i, ω l,i ), v l +1,i = Ψ l (v l,i, ω l,i ), for the levels l = 0, 1,..., L ad i = 1, 2,..., M l. Multilevel approximatio of mea ad covariace matrices: m ML +1 = Ĉ ML +1 = L l=0 L l=0 E Ml [ v l +1 v l 1 +1 ], Cov Ml [ v l +1] Cov Ml [ v l 1 +1 ] Notice the telescopig properties E [ m +1] ML ] = E [ v L ] +1 ad = Cov( v +1 L ) + O(1/M L). E[Ĉ ML +1 16 / 27

MLEKF update step Update For l = 0, 1,..., L ad i = 1, 2,..., M l, ỹ l +1,i = y obs +1 + γ l +1,i, i.i.d. γ l +1,i N(0, Γ) v+1 l 1 ML = (I K+1H) v l 1 +1,i + K +1ỹ ML +1,i, l v+1,i l = (I K+1H) v ML +1,i l + K+1ỹ ML +1,i, l where K ML +1 = Ĉ ML +1H T (HĈ ML +1H T + Γ) 1. 17 / 27

Covergece of MLEKF For observables φ : R d R, itroduce otatio µ ML (φ) := L 1 M l M l l=0 i=1 φ(v l,i) φ(v l 1,i ). ad µ MF (φ) := φ(x)µ MF (dx). R d Questio: Uder what assumptios ad at what cost ca oe achieve µ ML (φ) µ MF (φ) L p (Ω) = O(ɛ)? 18 / 27

Assumptio 1 Cosider the dyamics u +1 = Ψ(u ) = u + +1 a(u t )dt + +1 b(u t )dw (t), = 0, 1,... with u 0 L p (Ω) for all p 1 ad a hierarchy of umerical solvers {Ψ l } L l=0. For ay p 2, l N, ad u, v L p (Ω), we assume that Ψ l (u) Ψ l (v) p C u v p, Ψ l (u) p C(1 + u p ). 19 / 27

Assumptio 2 Assume the observable φ : R d R satisfies φ(x) φ(x ) C x x (1 + x s + x s ), for a s 0. ad there exists costats α, β > 0 such that for u, v L p (Ω), (i) [ E φ(ψ l (u)) φ(ψ(v)) ] N α l, provided that E[u v] N α l, (ii) φ(ψ l (v)) φ(ψ l 1 (v)) p N β/2 l, for all p 2, (iii) Cost ( Ψ l (v) ) N l. Assume further (i) ad (ii) hold for that all moomials φ of degree 2. 20 / 27

Theorem 2 (MLEKF accuracy vs. cost) Suppose Assumptios 1 ad 2 hold. The, for ay ɛ > 0 ad p 2, there exists a L > 0 ad {M l } L l=0 such that µ ML (φ; (M l )) µ MF (φ) p ɛ. Ad ( log(ɛ) 1 ɛ) 2, if β > 1, Cost (MLEKF) ( log(ɛ) 1 ɛ) 2 log(ɛ) 3, if β = 1, (2) ( log(ɛ) 1 1 β (2+ ɛ) α ), if β < 1. I compariso, is achieved at cost O µ EKF ( ɛ (2+ 1 α) ). (φ) µ MF (φ) p ɛ, 21 / 27

Theorem 2 (MLEKF accuracy vs. cost) Suppose Assumptios 1 ad 2 hold. The, for ay ɛ > 0 ad p 2, there exists a L > 0 ad {M l } L l=0 such that µ ML (φ; (M l )) µ MF (φ) p ɛ. Ad ( log(ɛ) 1 ɛ) 2, if β > 1, Cost (MLEKF) ( log(ɛ) 1 ɛ) 2 log(ɛ) 3, if β = 1, (2) ( log(ɛ) 1 1 β (2+ ɛ) α ), if β < 1. I compariso, is achieved at cost O µ EKF ( ɛ (2+ 1 α) ). (φ) µ MF (φ) p ɛ, 21 / 27

Cetral idea i the proof Itroduce µ MLMF (φ) := µ MF,L (φ) := E L 1 M l M l l=0 i=1 [ φ(v MF,L ad boud MLEKF error by µ ML φ(v MF,l (ω i,l )) φ(v MF,l 1 (ω i,l )) ) Y obs ], (φ) µ MF (φ) p µ ML (φ) µ MLMF (φ) p + µ MLMF (φ) µ MF,L [ L c v l v MF,l ˆp + c l=0 ( ɛ + L l=0 (φ) p + µ MF,L v MF,l M 1/2 l N β/2 l + N α L v MF,l 1 M 1/2 l ) (φ) µ MF (φ) p ] ˆp + E [ φ(v MF,L ) φ(v MF ) Y obs ] 22 / 27

Numerical example Uderlyig dyamics Orstei Uhlebeck SDE with a set of observatios du = udt + 0.5dW (t), y = u + γ, i.i.d. γ N(0, 0.04) Solvers: Hierarchy of Milstei solutio operators {Ψ l } L l=0 with t l = O ( 2 l). Compare the approximatio errors for the observable φ(x) = x i terms of the RMSE 100 µ ML (φ) µ MF (φ) 2. =1 23 / 27

Numerical example Uderlyig dyamics Orstei Uhlebeck SDE du = udt + 0.5dW (t), with a set of observatios y = u + γ, i.i.d. γ N(0, 0.04) 10 1 10 2 RMSE 10 3 10 4 EKF MLEKF cs 1/3 cs 1/2 10 1 10 0 10 1 10 2 10 3 10 4 Rutime [s] 23 / 27

Overview 1 Problem descriptio 2 Kalma filterig 3 Esemble Kalma filterig 4 Multilevel esemble Kalma filterig 5 Extesio of MLEKF ad Coclusio 24 / 27

Extesio of MLEKF to ifiite dimesioal state spaces Work i progress, together with Alexey Cherov, Law, Nobile ad Tempoe. Ifiite dimesioal stochastic dyamics: u +1 = Ψ(u ) where u L p (Ω; H) with H = Spa({ν i } i=1 ), ad Ψ : L p (Ω; H) L p (Ω; H). Ad fiite dimesioal observatios y = Hu + γ, with liear H : H R m Itroduce ested hierarchy of Hilbert spaces H 0 H 1... H = H, where H l = Spa({ν i } N l i=1 ) ad work with a hierarchy of solvers Ψ l : L p (Ω; H l ) L p (Ω; H l ). 25 / 27

Coclusio Exteded EKF to multilevel EKF. Verified asymptotic efficiecy gai for approximatios of expectatio of observables. We hope to improve result further! Further extesio of MLEKF to ifiite dimesioal state space is work i progress. Preprit available o Arxiv 26 / 27

Refereces Thak you! 1 Hoel, Håko, Kody JH Law, ad Raul Tempoe, Multilevel esemble Kalma filterig, arxiv preprit arxiv:1502.06069 (2015). 2 Fraçois Le Glad, Valérie Mobet, Vu-Duc Tra, et al., Large sample asymptotics for the esemble kalma filter, The Oxford Hadbook of Noliear Filterig, (2011), pp. 598 631. 3 Kody JH Law, Hamidou Tembie, ad Raul Tempoe, Determiistic methods for oliear filterig, part i: Mea-field esemble kalma filterig, arxiv preprit arxiv:1409.0628, (2014). 27 / 27