EFDA European Fusion Development Agreement - Close Support Unit - Garching

Similar documents
Review of experimental observations of plasma detachment and of the effects of divertor geometry on divertor performance

Driving Mechanism of SOL Plasma Flow and Effects on the Divertor Performance in JT-60U

Experimental results and modelling of ASDEX Upgrade partial detachment

Edge Plasma Energy and Particle Fluxes in Divertor Tokamaks

Modelling of JT-60U Detached Divertor Plasma using SONIC code

Divertor Requirements and Performance in ITER

ARTICLES PLASMA DETACHMENT IN JET MARK I DIVERTOR EXPERIMENTS

Physics of the detached radiative divertor regime in DIII-D

Scaling of divertor heat flux profile widths in DIII-D

Cross-Field Plasma Transport and Main Chamber Recycling in Diverted Plasmas on Alcator C-Mod

Multi-machine comparisons of divertor heat flux mitigation by radiative cooling with nitrogen

Results From Initial Snowflake Divertor Physics Studies on DIII-D

Scaling of divertor heat flux profile widths in DIII-D

Scaling of divertor plasma effectiveness for reducing target-plate heat flux

Cross-Field Transport in the SOL: Its Relationship to Main Chamber and Divertor Neutral Control in Alcator C-Mod

Development of an experimental profile database for the scrape-off layer

Modelling radiative power exhaust in view of DEMO relevant scenarios

ITER. Power and Particle Exhaust in ITER ITER

ITER Divertor Plasma Modelling with Consistent Core-Edge Parameters

Divertor Heat Flux Reduction and Detachment in NSTX

Impact of Carbon and Tungsten as Divertor Materials on the Scrape-off Layer Conditions in JET

Drift-Driven and Transport-Driven Plasma Flow Components in the Alcator C-Mod Boundary Layer

Exhaust scenarios. Alberto Loarte. Plasma Operation Directorate ITER Organization. Route de Vinon sur Verdon, St Paul lez Durance, France

THE ADVANCED TOKAMAK DIVERTOR

Simulation of ASDEX Upgrade Ohmic Plasmas for SOLPS Code Validation

Divertor Detachment on TCV

IMPLICATIONS OF WALL RECYCLING AND CARBON SOURCE LOCATIONS ON CORE PLASMA FUELING AND IMPURITY CONTENT IN DIII-D

Alcator C-Mod. Particle Transport in the Scrape-off Layer and Relationship to Discharge Density Limit in Alcator C-Mod

Volume Recombination and Detachment in JET Divertor Plasmas

3D analysis of impurity transport and radiation for ITER limiter start-up configurations

STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-60U

L-mode radiative plasma edge studies for model validation in ASDEX Upgrade and JET

GA A26119 MEASUREMENTS AND SIMULATIONS OF SCRAPE-OFF LAYER FLOWS IN THE DIII-D TOKAMAK

UEDGE Modeling of the Effect of Changes in the Private Flux Wall in DIII-D on Divertor Performance

Flow Measurements in the Divertor Region of DIII-D and Plasma Characterization using a Reciprocating Probe

Power Deposition Measurements in Deuterium and Helium Discharges in JET MKIIGB Divertor by IR-Thermography

II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas. D. Reiter

Fusion Nuclear Science Facility (FNSF) Divertor Plans and Research Options

Physics basis for similarity experiments on power exhaust between JET and ASDEX Upgrade with tungsten divertors

DIVIMP simulation of W transport in the SOL of JET H-mode plasmas

Partial detachment of high power discharges in ASDEX Upgrade

L-Mode and Inter-ELM Divertor Particle and Heat Flux Width Scaling on MAST

Detached Divertor Operation in DIII-D Helium Plasmas

Alcator C-Mod. Particle Transport in the Alcator C-Mod Scrape-off Layer

1. Motivation power exhaust in JT-60SA tokamak. 2. Tool COREDIV code. 3. Operational scenarios of JT-60SA. 4. Results. 5.

Power balance of Lower Hybrid Current Drive in the SOL of High Density Plasmas on Alcator C-Mod

Simulation of Plasma Flow in the DIII-D Tokamak

Fusion Development Facility (FDF) Divertor Plans and Research Options

Predicting the Rotation Profile in ITER

Hydrogen and Helium Edge-Plasmas

H-mode performance and pedestal studies with enhanced particle control on Alcator C-Mod

ITER A/M/PMI Data Requirements and Management Strategy

Progress in the ITER Physics Basis

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U

Detachment Dynamics on the TCV Tokamak

Tokamak Divertor System Concept and the Design for ITER. Chris Stoafer April 14, 2011

RADIATIVE DIVERTOR AND SOL EXPERIMENTS IN OPEN AND BAFFLED DIVERTORS ON DIIIÐD *

Impurity-seeded ELMy H-modes in JET, with high density and reduced heat load

Flow measurements in the Scrape-Off Layer of Alcator C-Mod using Impurity Plumes

Divertor physics research on Alcator C-Mod. B. Lipschultz, B. LaBombard, J.L. Terry, C. Boswell, I.H. Hutchinson

Integrated Core-SOL-Divertor Modelling for ITER Including Impurity: Effect of Tungsten on Fusion Performance in H-mode and Hybrid Scenario

Power Balance and Scaling of the Radiated Power in the Divertor and Main Plasma of Alcator C-Mod

Cross-field plasma transport and main chamber recycling in diverted plasmas on Alcator C-Mod. Abstract

ONION-SKIN METHOD (OSM) ANALYSIS OF DIII D EDGE MEASUREMENTS

Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor

Effect of ExB Driven Transport on the Deposition of Carbon in the Outer Divertor of. ASDEX Upgrade

Plasma-neutrals transport modeling of the ORNL plasma-materials test stand target cell

Improved EDGE2D-EIRENE Simulations of JET ITER-like Wall L-mode Discharges Utilising Poloidal VUV/visible Spectral Emission Profiles

EXD/P3-13. Dependences of the divertor and midplane heat flux widths in NSTX

PSI meeting, Aachen Germany, May 2012

Erosion and Confinement of Tungsten in ASDEX Upgrade

Divertor power and particle fluxes between and during type-i ELMs in ASDEX Upgrade

Total Flow Vector in the C-Mod SOL

Erosion and Confinement of Tungsten in ASDEX Upgrade

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

Overview of edge modeling efforts for advanced divertor configurations in NSTX-U with magnetic perturbation fields

Neutral gas modelling

Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

Some Notes on the Window Frame Method for Assessing the Magnitude and Nature of Plasma-Wall Contact

1 EX/P6-5 Analysis of Pedestal Characteristics in JT-60U H-mode Plasmas Based on Monte-Carlo Neutral Transport Simulation

Steady State and Transient Power Handling in JET

Comparing Scrape-Off-Layer and Divertor Physics in JET Pure He and D Discharges

Effect of Variation in Equilibrium Shape on ELMing H Mode Performance in DIII D Diverted Plasmas

Density Limit and Cross-Field Edge Transport Scaling in Alcator C-Mod

Sensitivity of Detachment Extent to Magnetic Configuration and External Parameters. September 2015

Long Term Reduction of Divertor Carbon Sources in DIII-D

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices!

Helium-3 transport experiments in the scrape-off layer with the Alcator C-Mod omegatron ion mass spectrometer

ao&p- 96 / O f Models and Applications of the UEDGE Code M.E. Rensink, D.A. Knoll, G.D. Porter, T.D. Rognlien, G.R. Smith, and F.

Divertor Plasma Detachment

Modelling of Carbon Erosion and Deposition in the Divertor of JET

Benchmarking Tokamak Edge Modelling Codes

Studies in JET Divertors of Varied Geometry I: Non Seeded Plasma Operation

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D

Can we tend the fire?

Radiative type-iii ELMy H-mode in all-tungsten ASDEX Upgrade

Estimating the plasma flow in a recombining plasma from

Density limits in toroidal plasmas

Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor

Effect of divertor nitrogen seeding on the power exhaust channel width in Alcator C-Mod

Transcription:

Multi-machine Modelling of Divertor Geometry Effects Alberto Loarte EFDA CSU -Garching Acknowledgements: K. Borrass, D. Coster, J. Gafert, C. Maggi, R. Monk, L. Horton, R.Schneider (IPP), A.Kukushkin (ITER), G. Matthews, M. Groth, (JET), G.Porter (LLNL), N. Asakura (JAERI), D. Stotler (PPPL), B. Lipschultz, B. La Bombard (MIT), R. Pitts (CRPP) - -

Outline of the talk. Introduction 2. Divertor Geometry and Detachment (Power Losses + Density Limits) 3. Divertor Geometry and Pumping (Hydrogen + Impurities) 4. Divertor Geometry and Plasma Flows (Hydrogen + Impurities) 5. Conclusions - 2 -

. Introduction Divertor Geometry affects Recycling Sources Divertor Density and Temperature Flow Patterns in Divertor Divertor Radiative Losses Power Recicled Particles 2-D Plasma Edge Simulation Codes used to analyse Effects of Divertor Geometry - 3 -

Divertor Geometry affects Transport in the Divertor itself DIII-D X-point Scans (D. Hill APS 92) Low X-point High X-point qdiv,out (MW/m2) qparallel,mp (MW/m 2 ) 3 2 8 6 4 2.2 (b) (c) (d) 4.8MW 6.8MW Ptot,div/Pbeam P..5..5.2.25.3.35 X-point height (m) - 4 -

Can account for ~ 2 Power Flux Reduction near Separatrix ASDEX-U Div I Æ Div II (ASDEX-U, R. Schneider, B2-Eirene, IAEA 98) Divertor energy balance: For each flux bundle Div I Div II Private flux Energy flux into outer divertor Private flux MW Energy flux onto outer divertor Integrals between target plate and divertor entrance Energy losses from neutrals Contribution of the divergence of radial energy fluxes.8.8 Separatrix Separatrix Private Private flux flux.4.4 MW 2 3 Flux bundle label (B2 grid) 2 Flux bundle label (B2 grid) Decrease depends on anomalous Transport (ASDEX-U, D. Coster, B2-Eirene, EPS 98) fetx_max_outer/psep (/m^2).6.5.4.3.2. 4MW transport variation (base: D=, Chi=2).25.5 transport coefficient multiplier - 5-3e9 4e9

2. Divertor Geometry and Detachment (Power Losses + Density Limits) Effects of Divertor Geometry on Detachment seen in Alcator C-mod, JET, ASDEX-U, JT-6U, TCV Modelling (B2-Eirene, EDGE2D-NIMBUS & UEDGE) reproduces Features in Experiment Vertical Divertor promotes Detachment close to Separatrix Parallel Current (A/m 2 ) 2.5 6 (Alcator C-mod, F. Wising, UEDGE, PSI 96) 2 6.5 6 6 5 5 Parallel Current Attached_Modelled Parallel Current Attached_Exp Parallel Current Detached_Modelled Parallel Current Detached_Exp.5. Radial Distance ρ (m) - 6 -

Easier Separatrix Detachment does not lead to Lower Density Limit (Æ total Detachment) (ASDEX-U, R. Schneider, B2-Eirene, PSI 98) distance along outer target plate [m].78.76.74.72.7.68 #862 ASDEX-U Div I & Div II Divertor T e SOL PFR Div I.5 2. 2.5..5 2. time [sec] Div II #967 2.5 3. 3.5 time [sec] ASDEX-U Div I & Div II calculated Ion Flux.35.3.25.2.5 2 5 5 T_e, div [ev] separatrix particle flux density (2MW) integrated particle flux (2MW) 22-2 - ( m s ) 8 4 Inner DivII Inner DivI Outer DivI Outer DivII 2 3 4 9 separatrix density ( m -3 ) 23 - ( s ).5..5 Outer DivI Inner DivI Outer DivII Inner DivII 2 3 4 9 separatrix density ( m -3 ) - 7 -

Most pronounced Geometry Effects seen in JET-Mk IIA Horizontal ÅÆ Vertical Discharges (JET, K. Borrass, B2-Eirene, EPTSW 98) JET-Mk IIA Vertical Modelling Experiment Modelling <n e > I [A/m 2 sat ] 4 3 2 () 58 6 62 64 66 time [s] (7) (9) (8) Separatrix () (9) Plasma Recombination Sink (7) (8) - 8 -

Divertor Geometry promotes Recombination away from Separatrix for JET-Mk IIA horizontal Discharges (JET, K. Borrass, B2-Eirene, EPS 97) Corner Effect JET- Mk IIA Horizontal Plasma Recombination Sink JET- Mk IIA Vertical Plasma Recombination Sink - 9 -

Detachment characterised by DOD or Degree of Detachment (A. Loarte, Nucl. Fusion 98) High recycling Scaling : scal Id Id DOD... = DOD >> Æ Detachment measured I D.O.D. (Inner) d scal (JET, R. Monk, EPS 97) JET Pulses Nos. 36862, Distance from Separatrix cm.6cm 6.cm.9cm Early Onset of Detachment 3754 Divertor MARFE = C n Horizontal e 2 D.O.D. (Inner) Distance from Separatrix cm 2.cm 4.9cm Vertical Divertor MARFE 2. 2.2 2.4 2.6 2.8 3. 3.2 3.4 3.6 Line Average Density ( 9 m 3 ) - -

ASDEX-U Divertor Geometry promotes Recombination for Div II with respect to Div I at lower Densities (ASDEX-U, R. Schneider, B2-Eirene, PSI 98) Photons [s- cm-2 sr-] 3e+8 2e+8 H α emission (standard ohmic shot) Div II Div I e+8 e+ -45-55 -65 Deflection [degree] deflection angle -75 divertor II scanning mirror - -

Septum in JET-Gas Box isolates in/out Divertor Gas Puffing changes Detachment Asymmetry (JET, C. Maggi, EPS 99) JG99.96/2c Inner divertor Fuelling Outer divertor Fuelling C/SFE/LT Pulse No: 45535, 4495 (MW) ( 22 s - ) ( 22 s - ) ( 9 m -3 ) 3 2 3 2 4 2 4 2 P IN <n e >, Central Inner fuelling Outer divertor fuelling Inner divertor fuelling I out Outer fuelling I in I out I in TOT P RAD 6 7 8 9 2 2 22 23 Time (s) JG99.96/5c - 2 -

Modelling is consistent with Septum Effect (JET, C. Maggi, EDGE2D-NIMBUS, EPS 99) - 3 -

Large Difference in Divertor Power Deposition between Div I and Div II in ASDEX-U power density /MW/m 2 5 4 3 2 (ASDEX-U, Kaufmann, IAEA 98) 2 MW, DIV II 5 MW, DIV I.5 MW, DIV I.5..5 length across targetplate / m q = 4, MA.5 MW, DIV II..5 Prad,divertor/Pheat + Divertor I + Divertor II...5e2.e2 Line averaged electron density (m-3) Change Div I Æ Div II in Agreement with Modelling (ASDEX-U, R. Schneider, B2-Eirene, PSI 98) Experiment Modelling P_heat =.5 MW NBI, Ý = 5e9 /m**3 2 MW input power, density ramp power density / MW/m 2 power density / MW/m 2.2.8.4..2.8.4. Div I Div II outer divertor..4.8 distance from separatrix / m Div I Div II inner divertor..4.8 distance from separatrix / m power density / MW/m 2 power density / MW/m 2.2.8.4..2.8.4. outer divertor Div I..4.8 distance from separatrix / m Div II inner divertor Div I Div II..4.8 distance from separatrix / m - 4 -

-.4 z[m] -.62 -.85 -.8 -.3 EFDA ASDEX-U Divertor Geometry creates optimum Conditions for extended Region of Radiation (ASDEX-U, R. Schneider, B2-Eirene, PSI 98) 5 Experiment B2-Eirene Radiation losses [MW/m¾] 2.4 9.8 7.2 4.6 2. Bolometer line integral [MW/m 2 ] 2.. -.2 6 7 Private Flux8 2 'yaa' 'yab' Measurements 'yac' 'yae' 'yaf' 'yag' B2-Eirene -...2 Distance Separatrix-Bolometer [m] - 5 -

Exact Change in Radiation Div I Æ Div II due mainly to access to Low Divertor T e regimes (ASDEX-U, D. Coster, B2-Eirene, EPS 99) Div. sep. Te (ev) Pure Plasma Simulations DivI 2MW outer Outer target DivII 2MW outer DivI 8MW outer DivII 8MW outer.. 2e+9 4e+9 6e+9 8e+9 e+2 midplane separatrix density Div. sep. Te (ev) DivI 2MW inner Inner target DivII 2MW inner DivI 8MW inner DivII 8MW inner.. 2e+9 4e+9 6e+9 8e+9 e+2 midplane separatrix density - 6 -

Radiation Fraction in ASDEX-U Div II (ASDEX-U, D. Coster, B2-Eirene, EPS 99) Fraction of power reaching target.8.6.4 %.2 3% 5%. Target temperature T=eV T=3eV.8 T=5eV.6.4.2... C chemical sputter yield - 7 -

Carbon Flow Pattern induced by Geometry increases Radiation Efficiency (ASDEX-U, R. Schneider, B2-Eirene, IAEA 98) Carbon mass flow: flow reversal close to separatrix forward flow in the outer SOL - 8 -

3. Divertor Geometry and Pumping (Hydrogen + Impurities) DIII-D Experiments Æ Strong Dependence of Hydrogen Pumping on Divertor Geometry (DIII-D, R. Maingi, PSI 94) Normalised Neutral Pressure @ Pump.9.8.7.6.5.4.3.2 Experiment Horizontal Target Bias Ring -5 5 5 Distance from separatrix to Bias Ring (cm) - 9 -

Strong dependence not seen in other Experiments (JET-Mk I, JET-Mk IIA, C-mod, ASDEX-U) - 2 -

Physics Basis for Difference found with 2-D Codes (Ballistic Flux ÅÆ Diffusive Flux) (A. Loarte, EPS 97).8 Separatrix SOL Distance separatrix slot x Pumping baffle Geometrical Probability PGeo.7.6.5.4.3.2 Slot width =.5 λ ion Slot width =. λ ion Slot width = 2. λ ion Slot width = 4. λ ion Private flux region Slot width Pumping slot JG.42/3c. 2 4 6 8 Distance to pumping slot (normalised to λ ion ) JG.42/4c Mod 3. 2.5 (DIII-D, R. Maingi, Nucl. Fusion 99) Variable Ion Current Model Fixed Ion Current Model Plenum Pressure (mtorr) 2..5..5..5.55.6.65.7.75 Outer Strike Point Location - 2 -

Diffusive Flux leads to weak Strike Point Position Pumping Dependence (A. Loarte, EDGE2D-NIMBUS, EPS 97) Normalised Neutral Pressure @ Pump.8.6.4.2 Bias Ring DIII-D_Press+EDGE2D Horizontal Target Experiment_Low_ne Experiment_High_ne EDGE2D-NIMBUS -5 5 5 Distance from Separatrix to Bias Ring (cm). JET MkII.2.4.6 Z (m).8 2. 2.2 2.4 2. 2.2 2.4 2.6 2.8 3. 3.2 3.4 R (m) JG97.23/2c - 22 -

He, Ne do not Charge-Exchange so Pumping Subject to stronger Effects of Divertor Geometry (ASDEX-U, D. Coster, B2-Eirene, PSI 96) additional pumping baffle pump Distance along Target (m) In ASDEX-U Div I Ne is more compressed than He Compression factor C i. Experiments Ne Helium B2-Eirene modelling Ne He 22 23 Neutral gas flux density [m -2s -] - 23 -

Change from Div I to Div II expected from ballistic Transport of He and Ne to the Pump (ASDEX-U, R. Schneider, B2-Eirene, IAEA 98) Neon Helium Improved helium exhaust, worse compression of neon (ASDEX-U, H. - S. Bosch, B2-Eirene, He Workshop 99) Deuterium Compression He & Ne Pumping - 24 -

Ballistic Effects for He also seen in JET Mk II He enrichment (JET MK II, M. Groth, He Workshop 99).2..8.6.4.2 L-mode Horizontal Corner Vertical Vertical H-mode Horizontal Vertical Vertical 2 3 4 Subdivertor pressure ( 3 mbar) Enrichment decreases with increasing n e + Detachment (JET Mk II Gas Box, H. Guo, EDGE2D-NIMBUS, Nucl. Fusion 2) Edge Enrichment Enrichment Enrichment L-mode : He Ne H-mode : He Ne Ar Core.. 2 3 4 Subdivertor Pressure ( -3 mbar) Ne He Edge Code..5..5 2. Separatrix density ( -9-3 m ) JG99.438/7c - 25 -

For ITER He enrichment increase with Detachment Helium Concentration Separatrix De-enrichment due to Thermal Forces Going to Partial Detachment helps He Pumping (Increased Neutral He Penetration to PFR) - 26 -

Detachment helps for He Pumping in ITER-FEAT Helium Concentration @ Plasma Edge. n_he_core_scaled_full_pumping Detachment Outer Divertor Detachment Inner Divertor. 3 3.2 3.4 3.6 3.8 4 Separatrix Density ( 9 m -3 ) Detachment increases D Pressure & He Enrichment P_PFR_Deuterium_Full_Pumping RC/RTO-ITER He-Enrichment Deuterium Neutral Pressure (Pa) 5 4 3 2 Detachment Inner Divertor Detachment Outer Divertor.5.4.3.2 Helium Enrichment @ Plasma Edge 3 3.2 3.4 3.6 3.8 4 Separatrix Density ( 9 m -3 ). - 27 -

Experiments + Modelling for DIII-D show different D and He Behaviour (DIII-D, A. Loarte, B2-Eirene, PET99) For D standard Detachment Picture Electron Temperature Electron Density Strong Recombination but Neutrals don't reach Main Plasma Ionisation/Recombination Neutral Density - 28 -

For He Main Bulk Plasma collapses before Recombination can be achieved (He penetration through X-point) Electron Temperature Helium Atomic Density Ionisation/Recombination Momentum Losses - 29 -

4. Divertor Geometry and Plasma Flows (Hydrogen + Impurities) Divertor Particle Flows are determined by Sources (Divertor Geometry) but also by Drifts High Density Operation can lead to Flow Reversal in the Divertor Vertical Divertors are more prone to Flow Reversal due to Recycling Pattern (Alcator C-mod, A. Loarte, B2-Eirene, PSI 98) - 3 -

Momentum Transport across the SOL between normal and reversed Flow Regions leads to Separatrix overpressure at Divertor "Death Ray" in Alcator C-mod (A. Loarte, EDGE2D-NIMBUS, PSI 96, Stotler, B2-Eirene, PSI 98) Total Pressure (Pa) 3 2 Upstream Divertor Total Pressure (Pa) 6 4 2 "Death Ray" Upstream Divertor - -5 5 5 2 ρ(mm) - -5 5 5 2 ρ(mm) p tot (Pa) - -2-3 -4-5 DR No DR Momentum Sources (N). -.2 -.4 -.6 DR S No DR S p p S n S n -.8 2 3 4 5 ρ (mm) - 3 -

Flow reversal occurs also in Horizontal Divertors (DIII-D, J. Boedo, G. Porter, UEDGE, APS 99).5.5. Private Region SOL Core..5.5 Mach. Mach. -.5 -.5 -. -. -.5. 2. 4. 6. 8.. 2. 4. 6. Z(cm) -.5. 2. 4. 6. 8.. 2. 4. 6. Z(cm) 942, Attached 75 Outer (fl8-nog) Leg -.6 Z [m] -. -.4..4.8 R [m] - 32 -

Flow reversal disappears at Detachment in Horizontal Divertors (DIII-D, J. Boedo, G. Porter, UEDGE, APS 99) 6. 6 4. 6 Private Region SOL Core 6. 6 4. 6 SOL Core @ 2 Vflow(cm/s) 2. 6. -2. 6 Vflow(cm/s) 2. 6. -2. 6-4. 6-4. 6-6. 6. 2. 4. 6. 8.. 2. 4. 6. Z(cm) -6. 6. 2. 4. 6. 8.. 2. 4. 6. Z(cm) - 33 -

Impurity Flow Reversal can occur without Deuterium Flow reversal Thermal Force wins over Friction (DIII-D, G. Porter, UEDGE, APS 98) Mach number.4.2.8.6.4.2 2 -.4..28.57.85 R (m) -.2.5..5.2.25 Z [m] 3 experiment UEDGE 4 5 6 7 Z [m] 8 9 -.6 -. -.4..4.8 R [m] - Mach number CII flow, attached 4 4 Attached phase -.6 u (C ) [m/s] -4 4-8 4 Experiment UEDGE Z [m] -. -.4..4.8 R [m] -.2 5.4.5.6.7-2.e+5.e+ 2.e+5 Parallel velocity [m/s] - 34 -

In ASDEX-U Div II Impurity Flow Reversal occurs @ Detachment in Agreement with Predictions (ASDEX-U, J. Gafert, D. Coster, R. Schneider, B2-Eirene, PSI 98) -.6 -.8 CIII-emissivity photons [ m 3 sr s ] -.6 -.8 Parallel velocity v (km/s) +5 +4 Measured PU4 Modelled PU4 z (m) -. POU POU2 POU3 POU4 -. POU POU2 POU3 POU4 +3 +2 + - + 2 Km/s + 5 Km/s - 24 Km/s -7 Km/s -.2 -.2-2 -3 C 2+ C 2+ -4-5 -.4.4.5.6.7.8.9 R (m) -.4.4.5.6.7.8.9 Carbon mass flow: flow reversal close to separatrix forward flow in the outer SOL - 35 -

sat / Xp Xp EFDA @ Detachment after ionisation Front in Divertor M (ASDEX-U,D. Coster, B2-Eirene, EPTSW 98) Plasma particle source ( m -3 s -) Mach number.5..6. -.5 -. -.5 e24 e23 e22 e2 -e2-e22 ionization recombination Well documented in JT-6U (JT-6U, N. Asakura, Nucl. Fusion 99) (A m -2 ) 6 5 ne = 3.2x 9 m -3 Xp MARFE large radiation loss j Xp sat (up) 4 ne = 2.6x 9 m -3 ne =.8x 9 m -3 Xp MARFE Attached Detached (down) j sat (up) T e (ev) 2 Detached Mach ~ j Xp. - 36 - flow towards target. 4 8 2 Distance from separatrix (mm) Large Mach

5. Conclusions Predicted Effects of Divertor Geometry on Detachment seen in most Experiments Strong Dependence of Separatrix Detachment on Geometry but weak Geometry Effect on L-mode Density Limit ( Total Detachment ) Divertor Geometry can enhance Radiation Losses for Carbon (ASDEX-U Div I Æ Div II) Divertor Geometry Effect on Hydrogen and Impurity Pumping understood in Terms of ballistic and diffusive Fluxes to pumping Plenum Divertor Geometry Effect on Hydrogen and Impurity Flows from 2-D Codes seen in Experiment: Hydrogen and Impurity Flow Reversal and Momentum Transport ("Death Rays") Modelling with Drifts needed for better understanding Divertor Geometry Effect on Midplane n e Profiles unclear ÅÆ SOL Flows+Main Chamber Recycling - 37 -