SELECTION OF MACHINING CONDITIONS FOR AERONAUTIC COMPOSITE USING VIBRATION ANALYSIS

Similar documents
TOOL GEOMETRY EVALUATION FOR CARBON REINFORCED COMPOSITE LAMINATES

Drilling of carbon fibre reinforced laminates a study

Study of the effect of machining parameters on material removal rate and electrode wear during Electric Discharge Machining of mild steel

EXPERIMENTAL INVESTIGATION OF HIGH SPEED DRILLING OF GLASS FIBER REINFORCED PLASTIC (GFRP) COMPOSITE LAMINATES MADE UP OF DIFFERENT POLYMER MATRICES

Determining Machining Parameters of Corn Byproduct Filled Plastics

ANALYSIS OF PARAMETRIC INFLUENCE ON DRILLING USING CAD BASED SIMULATION AND DESIGN OF EXPERIMENTS

Optimization of Machining Process Parameters in Drilling of

Influence of cutting parameters on thrust force and torque in drilling of E-glass/polyester composites

Investigation into the Effects of Process Parameters on Surface Roughness in Drilling of BD-CFRP Composite Using HSS Twist Drills

Effect of Machining Parameters on Milled Natural Fiber- Reinforced Plastic Composites

Available online at ScienceDirect. Procedia CIRP 31 (2015 ) th CIRP Conference on Modelling of Machining Operations

Determination of optimum parameters on delamination in drilling of GFRP composites by Taguchi method

Influence of drill helical direction on exit damage development in drilling carbon fiber reinforced plastic

Chapter 4 - Mathematical model

Chatter control in the milling process of composite materials

COMPARATIVE ANALYSIS OF DRILLS FOR COMPOSITE LAMINATES

EXPERIMENTAL ANALYSIS ON DE-LAMINATION IN DRILLING GFRP COMPOSITE MATERIAL

Optimization of EDM process parameters using Response Surface Methodology for AISI D3 Steel

Optimization of drilling parameters on CFRP composites

D.Ramalingam 1 *, R.RinuKaarthikeyen 1, S.Muthu 2, V.Sankar 3 ABSTRACT

Long-term behaviour of GRP pipes

CHAPTER 4 EXPERIMENTAL DESIGN. 4.1 Introduction. Experimentation plays an important role in new product design, manufacturing

Optimization of Radial Force in Turning Process Using Taguchi s Approach

The Effect of Machining Parameters on Drilling Induced Delamination of Carbon Fiber Reinforced Polymer Composite

Effects with a matrix crack on monitoring by electrical resistance method

University of Applied Sciences Aalen, Beethovenstr. 1, Aalen, Germany 2

Drilling of Composite Laminates- A Review

Determination of Machining Parameters of Corn Byproduct Filled Plastics

Computational Analysis for Composites

Optimization of delamination factor in drilling of carbon fiber filled compression molded GFRP composite

Interpolation. Create a program for linear interpolation of a three axis manufacturing machine with a constant

Drilling Uni-Directional Fiber-Reinforced Plastics Manufactured by Hand Lay-Up: Influence of Fibers

The Effect of Coolant in Delamination of Basalt Fiber Reinforced Hybrid Composites During Drilling Operation

VOL. 11, NO. 2, JANUARY 2016 ISSN

Delamination of carbon fiber reinforced plastics: analysis of the drilling method

STUDY OF IMPACTED COMPOSITE STRUCTURES BY MEANS OF THE RESPONSE SURFACE METHODOLOGY.

DRILLING DELAMINATION OUTCOMES ON GLASS AND SISAL REINFORCED PLASTICS

Study of water assisted dry wire-cut electrical discharge machining

MATHEMATICAL MODEL FOR DRILLING CUTTING FORCES OF 40CrMnMoS8-6 STEEL

Influence of Input Parameters on Characteristics of Electro Chemical Machining Process

A Fracture Mechanics Approach to the Water Jet Drilling of Composite Materials. Y. A-H Mashal* and M. W. Algrafi

Optimization of Machining Parameters in ECM of Al/B4C Composites Using Taguchi Method

Arch. Metall. Mater. 62 (2017), 3,

RESPONSE SURFACE ANALYSIS OF EDMED SURFACES OF AISI D2 STEEL

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

Modeling and Optimization of WEDM Process Parameters on Machining of AISI D2 steel using Response Surface Methodology (RSM)

CHAPTER 6 MACHINABILITY MODELS WITH THREE INDEPENDENT VARIABLES

Associate Professor, Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, India

INFLUENCE OF TURNING PARAMETERS ON CUTTING TEMPERATURE BY APPLYING THE DESIGN OF EXPERIMENTS WITH THE DEFINITION OF THE WORKPIECE MATERIAL BEHAVIOR

OPTIMIZATION OF MACHINING PARAMETERS USING DESIRABILITY FUNCTION ANALYSIS AND ANOVA FOR THERMO-MECHANICAL FORM DRILLING

Optimization of process parameters in drilling of EN 31 steel using Taguchi Method

Experimental Investigation and Analysis of Machining Characteristics in Drilling Hybrid Glass-Sisal-Jute Fiber Reinforced Polymer Composites

Drilling Mathematical Models Using the Response Surface Methodology

Structural Dynamic Behavior of a High-Speed Milling Machine

Effect of Process Parameters on Delamination, Thrust force and Torque in Drilling of Carbon Fiber Epoxy Composite

Tensile behaviour of anti-symmetric CFRP composite

Open-hole compressive strength prediction of CFRP composite laminates

Chapter 6 The 2 k Factorial Design Solutions

An investigation of material removal rate and kerf on WEDM through grey relational analysis

CHAPTER 6 A STUDY ON DISC BRAKE SQUEAL USING DESIGN OF EXPERIMENTS

Application of Taguchi method in optimization of control parameters of grinding process for cycle time reduction Snehil A. Umredkar 1, Yash Parikh 2

TECHNICAL INFORMATION

SPECTRUM FATIGUE LIFETIME AND RESIDUAL STRENGTH FOR FIBERGLASS LAMINATES IN TENSION

CHAPTER 5 EXPERIMENTAL AND STATISTICAL METHODS FOR DRILLING

Finite element modelling of infinitely wide Angle-ply FRP. laminates

FINITE ELEMENT MODELLING OF CUTTING FORCES IN DRILLING THERMOPLASTIC COMPOSITES: A REVIEW

DYNAMIC DELAMINATION OF AERONAUTIC STRUCTURAL COMPOSITES BY USING COHESIVE FINITE ELEMENTS

Prototype-less CAE Design of Mechanical Component for Automobile

RELIABILITY OF COMPOSITE STRUCTURES - IMPACT LOADING -

Suppression of Machine Tool Vibration Using Passive Damping

Design of Engineering Experiments Part 5 The 2 k Factorial Design

Effect Of Drilling Parameters In Drilling Of Glass Fiber Reinforced Vinylester/Carbon Black Nanocomposites


3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value.

Evaluation of Shear Energy in Turning Process Using DOE Approach

materials ISSN

Effect of eccentricity of twist drill and candle stick drill on delamination in drilling composite materials

In Situ Ultrasonic NDT of Fracture and Fatigue in Composites

Modeling and Optimization of Milling Process by using RSM and ANN Methods

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

DELAMINATION IN MODE I AND II OF CARBON FIBRE COMPOSITE MATERIALS : FIBRE ORIENTATION INFLUENCE

DETERMINATION OF POWER CONSUMPTION IN MILLING

EVALUATION OF DAMAGE DEVELOPMENT FOR NCF COMPOSITES WITH A CIRCULAR HOLE BASED ON MULTI-SCALE ANALYSIS

Modeling of Wire Electrical Discharge Machining of AISI D3 Steel using Response Surface Methodology

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala

EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES

OPTIMIZATION ON SURFACE ROUGHNESS OF BORING PROCESS BY VARYING DAMPER POSITION

PENETRATION OF FRAGMENTS INTO AIRCRAFT COMPOSITE STRUCTURES. G. Jenaro, F.Rey, G.Rosado and P. García

MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE

EFFECT OF THERMAL FATIGUE ON INTRALAMINAR CRACKING IN LAMINATES LOADED IN TENSION

DYNAMIC ANALYSIS OF THE STRUCTURE OF A MACHINE TOOL FOR WOODWORKING

3/4W, 2010 Low Resistance Chip Resistor

NUMERICAL MODELLING OF COMPOSITE PIN- JOINTS AND EXPERIMENTAL VALIDATION

A Sample Durability Study of a Circuit Board under Random Vibration and Design Optimization

SIMULATION AND TESTING OF STRUCTURAL COMPOSITE MATERIALS EXPOSED TO FIRE DEGRADATION

Condition Monitoring of Single Point Cutting Tool through Vibration Signals using Decision Tree Algorithm

Finite element analysis of drilled holes in uni-directional composite laminates using failure theories

PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP

Optimization of the detection of train wheel defects. SNCF Innovation and Research Department Paris, FRANCE 1

DYNAMICS OF COMPOSITE MATERIALS CUTTING

Transcription:

18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS SELECTION OF MACHINING CONDITIONS FOR AERONAUTIC COMPOSITE USING VIBRATION ANALYSIS H.Chibane 1*, R.Serra 2, A.Morandeau 1, R.Leroy 1 1 Université François Rabelais, Laboratoire de Mécanique et Rhéologie, Tours, France 2 Ecole Nationale d'ingénieurs du Val de Loire, Blois, France * Corresponding author (hicham.chibane@univ-tours.fr) Keywords: composites, delamination, cutting parameters, vibration, response surface methodology. 1 Abstract The constant increase of the composite part constitutes a priority for the aeronautic industry. However, the machining step of this material is complicated by different phenomena: delamination, burned resin and cutting edge chipping. The objective of the current study is to characterize the cutting conditions using vibration analysis in order to avoid the defects (stated above). Down milling tests operation was performed in a high speed milling machine (PCI Meteor 10) on a composite material carbon/epoxy (T800S/M21), while milling cutter of diameter 80mm equipped with a single PCD insert. In the experimental evaluation, a central composite design with 20 combinations were studied using parameters; cutting speed, depth of cut and feed per revolution, and the vibration levels were measured for each case. Methods such as Multiple Linear Regression (MLR) and Response Surface Methodology (RSM) were used to create mathematical models using the experimental data. 2 Introduction The machining conditions play an important role in determining lifespan and mechanical resistance of a material [1-4]. Many studies have shown that the cutting conditions, the material heterogeneity and the formation of these materials not only generate a premature cutting tools wear [5], but also severe damage to the work-piece [6]. The most common defects encountered during the machining of composites are delamination, tearing of fibers, the debonding and degradation of thermal origin. In order to understand their appearance, some authors have linked the cutting conditions to damage [7] and mechanical properties of the machined product. Koplev et al [8] and Ramulu et al [9] showed that the orientation of the folds relative to the cutting edge has a large influence on the generation of defects in the composite. Characterization of the machining quality by analysis the surface roughness is very sensitive, and the measurement error is important because of the orientation of fibers composite. The aim of this work is to present a new technique for selecting cutting conditions by the analysis of both vibration and defects generation during machining of a composite material. The results shows that surface defects and wear in the cutting tool started to appear before a threshold of vibration. It was also analysed that the interaction between feed per revolution and depth of cut was the most influential factor in the mathematical model. The variance analysis (ANOVA) was used to approve the model.

3 Response surface methodology Response surface methodology (RSM) is a collection of mathematical and statistical techniques useful for analyzing problems in which several independent variables influence a dependent variable or response. The goal is to optimize the response [10]. In many experimental conditions, the independent factors as given in Eq. (1) Then theses factors can have a functional relationship or response as follows: Y = Φ ( x1, x2,..., xn ) ± er (1) Between the response Y and x 1, x 2,, x n of n quantitative factors, the function Φ is called response surface or response function. The experimental error is represented by e r. For a given set of independent variables, a characteristic surface is responded. When the mathematical form of Φ is unknown, it can be approximate by a statistical methods using polynomial functions. In the present investigation, RSM has been applied for developing the mathematical model. In applying the response surface methodology, a mathematical model is fitted on the independent variable response surface. The second order polynomial (regression) equation used to represent the response surface Y is given by [11]. Fig. 1.Cutting tool 3.1 Design of experiment: In the experimentation, a central composite design plan with 20 combinations were studied using the parameters; cutting speed (Vc), depth of cut (ap) and feed per revolution (f), and the vibration levels (in the three directions i.e. x, y and z) were measured for each case.the three independent parameters ap, f, and Vc have been chosen in accordance with the recommendations provided by the manufacturer of cutting tools SAFETY [12]. The upper limit of a factor was coded as +1.68, and the lower limit as 1.68. 0 n n n 2 bixi biixi bijxixj i= 1 i= 1 i j Y = b + + + + r e (2) Fig. 2. Central composite design Where b 0 represents the linear effect of x i, b ii represents the quadratic effect of x i and b ij reveals the linear-by-linear interaction between x i and x j. In order to estimate the regression coefficients, a several experimental design plan are available. 4 Experimental details Down milling tests operation were performed in a high speed milling machine, (PCI Meteor 10) on a composite material carbon/epoxy, T800S/M21 while milling cutter of diameter 80mm equipped with a single PCD insert. Multiple Linear Regression Method and RSM were used to create mathematical models using the experimental data. The experiment variables are summarized in table 1. Table 1. Input parameters Codified variables Vc (m/min) f (mm) ap (mm) Min (-1.68) 659 0.032 0.660 Min (-1) 1000 0.100 1.000 Mean (0) 1500 0.200 1.500 Max (+1) 2000 0.300 2.000 Max (+1.68) 2349 0.368 2.340

SELECTION OF MACHINING CONDITIONS FOR AERONAUTIC COMPOSITE USING VIBRATION ANALYSIS 3.2 Vibration measurement Vibrations are measured by a tri-axial accelerometer mounted on the work-piece (Fig.3).A multi-analyzer (Brüel and Kjær 3560) connected to a computer for recording temporal data using the software Pulse Labshop. To use the full capacity of composites, it is necessary to analyze the initiation and growth of delamination. Fig. 5 Delamination (test 19) Fig. 3.Tri-axial accelerometer Root mean square (RMS) acceleration was calculated on the whole signal. To take fiber orientation of composite into account, the root square of the rms vibration measured on the 3 directions x, y and z was computed as shown: A = Ax + Ay + Az (3) 2 2 2 rms rms rms rms 3.3 Analysis of machining defects composites Delamination is one of the most dangerous defects in machining composite (Fig. 4, 5, 6). The stiffness loss may decrease the life of a composite structure significantly. Fig. 6. Delamination (test 15) Other defects such as wear of cutting tool (Fig.6) and the overheat of the composite matrix (Fig.7) may appear during the machining of composites. Fig. 4. Delamination (test 2) Fig. 7. Heating of the composite (test 15) Table 2, summarizes all the defects found during testing. 3

Table 2. Summary table of measures N Vc f ap A rms Defects 1 1500 0.2 1.5 129.56 2 1500 0.2 2.34 232.78 Delamination 3 1500 0.032 1.5 56.14 4 1500 0.2 1.5 142.24 5 2000 0.3 1 124.07 6 1500 0.2 1.5 128.50 7 1500 0.2 1.5 162.47 8 2000 0.3 2 279.54 9 1000 0.3 1 124.84 10 2000 0.1 2 122.05 11 659 0.2 1.5 128.11 12 1500 0.2 1.5 127.97 13 1500 0.2 1.5 150.47 14 2340 0.2 1.5 157.91 5 Results and discussion Three effects are discussed by the model such as linear, interactions and quadratic. A = 62.185 0.018 Vc 80.999 f 49.112 ap rms Tool wear+ delamination 15 1000 0.3 2 214.77 Tool wear+ Heating 16 1500 0.2 0.66 78.51 17 1000 0.1 1 47.34 18 2000 0.1 1 65.34 19 1500 0.368 1.5 241.17 delamination 20 1000 0.1 2 108.23 2 2 + 5.368 + 10.124 + 46.255 f ap ap f + 0.080 Vc f + 0.031 Vc ap + 319.541 f ap (4) Regression factors linked to this model helps us to build the relation between the work-piece vibration and the three study parameters: The coefficient of determination equals to 0.962, in others terms, 96.2% of the vibration variations fits to the model and 3.8% of them can t be explained. The model is better if this coefficient approaches the value of 1. This coefficient indicates that the vibrations measurements satisfy the model used. In order to test the model significance, the variance has been calculated and is given in tab.3. Fisher test shows us that the F-probability is lower than 0.001 (Prob>F), this results indicate us that the independent variable give enough informations to the model, this conclusion can be affirm with 0.1% of risk. The variance proportion of the dependant variable which fits to the model is 33.06 time higher than the variance proportion of the dependant variable which can t be explained. On the other hand, we can noticed that in this model, only interaction effects are significant (Prob> F is less than 0.05, or 5 %.) Table 3. ANOVA Source DDL SCE SS F Prob > F Regression 9 69792.10 7754.67 33.06 <0.001 Linear 3 66988.10 48.59 0.21 0.889 Quadratic 3 161.60 53.85 0.23 0.874 Interaction 3 2642.40 880.80 3.76 0.048 Residual 5 1005.60 Total 19 72137.60 Table 4. Model parameters Source Value Ecart-type F P-Value Constant 62.185 87.813 0.708 0.495 Vc -0.018 0.063-0.279 0.786 f -80.999 283.937-0.285 0.781 Ap -49.112 62.807-0.782 0.452 Vc Vc -0.000 0.000-0.480 0.642 f f 5.368 404.092 0.013 0.990 ap ap 10.124 16.164 0.626 0.545 Vc f 0.080 0.108 0.743 0.475 Vc ap 0.031 0.022 1.417 0.187 f ap 319.541 108.294 2.951 0.015

SELECTION OF MACHINING CONDITIONS FOR AERONAUTIC COMPOSITE USING VIBRATION ANALYSIS Table 4 shows that among all combinations, the interaction between feed rate and depth of cut was the most influential factor in the mathematical model. For this interaction, the P-value equal to 0.015 which is less than 0.05. This means that there are 1.5 chances in 100 that the true value of the coefficient of interaction f ap is zero. From the mathematical model of the A rms vibration and threshold of vibration that eliminates the appearing defects, region with defects have been defined. These regions can help the operator to making a choice for cutting parameters (cutting speed, depth of cut and feed rate) in order to avoid defects while machining. For Vc=1500 m/min (Fig.10), depending on ap chosen, we obtains the value of f. For example for ap=2 mm, the value of f must be less than 0.17 mm. Fig. 8. 3D surface graph for vibration A rms at Vc=1500 m/min as f and ap varies. Fig. 8 gives the 3D surface graph for A rms vibrations at Vc=1500 m/min as feed rate and depth of cut varies. It is clear that vibration increases with increase in feed rate and depth of cut. More f and ap increases, more A rms vibration increase. The results shows that in the test 2, 8, 15 and 19, defects such as delamination and epoxy overheating were observed and cutting tool wear started to appear before the value of A rms vibration of 175 m/s². To limit the occurrence of these defects, A rms vibration threshold of 175 m/s² was set (Fig.9). Fig. 10. Selection of f and ap while Vc=1500 m/min For f=0.2 mm (Fig.11), depending on the Vc chosen, we obtains the value of ap, eg for Vc=1500 m/min, ap must be less than 1.8 mm. Fig. 9. Threshold of vibration Fig. 11. Selection of Vc and ap while f =0.2 mm For ap=1.5 mm (Fig.12), depending on the chosen value of Vc, we obtains the value of f, eg Vc=1500 m/min, f must be less than 0.27 mm. 5

The analysis results show that the RMS vibrations are only influenced by the interaction of feed rate /depth of cut. This study should help the operator to choice the cutting parameters such as cutting speed, depth of cut and feed per revolution in order to avoid damage of the composite material carbon/epoxy, T800S/M21, and the cutting tool while machining, using vibration analysis. References Fig. 12. Selection of Vc and f while ap=0.2 mm In order to verify the accuracy of the model developed, confirmation experiment was performed. The test condition for the confirmation test was so chosen that they be within the range of the levels defined previously (Vc=1500 m/min, ap=1.5 mm and f=(0.1, 0.2, 0.3, 0.35 mm). Test show that the response equation for the A rms vibration evolved through RSM can be used to successfully predict the defects for any combination of the feed rate, cutting speed and depth of cut within the range of the experimentation conducted. 6 Conclusions This study is a combination of several methods for detecting machining defects which can appear on a composite material carbon/epoxy. Vibration analysis of the work-piece for each cutting condition is used; a threshold of vibration is defined from the observations of the piece according to the machining defects. The defects studied in this study are: delamination of the composite layer, overheat of the composite matrix and the wear of the cutting tool wear. The response surface methodology was used to determine the Analytical model which expresses the level of vibration according to the three cutting parameters cutting speed Vc, depth of cut ap and feed per revolution f. The ANOVA results approved that the mathematical models used in this study could adequately describe the performance indicators within the limits of the factors that are being investigated with 95% confidence interval. [1] T. Chung chen, C. Weng chou Prediction of the location of delamination in the drilling of composite laminates. Journal of Materials Processing Technology, Vol.70, pp 185-198, 1997. [2] J. P Davim, P. Reis Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. Journal of Materials Processing Technology, Vol.160, pp 160-167, 2005. [3] L. M. P Durao, D. J. S Goncalves, R.S Tavares, V.H de Albuquerque, A.A Vieira, A.T Marques Drilling tool geometry evaluation for reinforced composite laminates, Composite Structures, Vol. 92, pp. 1545-1550, 2010. [4] J. Y. Sheikh-Ahmad Machining of polymer composites, ed. Springer 2009. [5] D. Iliescu Approches expérimentale et numérique de l'usinage a sec des composites carbone/époxy. thesis, ENSAM, 2008. [6] U. A. Khashaba Delamination in drilling GFRthermoset composites. Composite Structures,Vol 63, pp 313 327, 2004. [7] A. T.Marques, L. M. Durão, A.G. Magalhães, J. F. Silva, J. M. R. S. Tavares Delamination analysis of carbon fibre reinforced laminates: Evaluation of a special step drill. Composites Science and Technology, Vol. 69, pp 2376 2382, 2009. [8] A. Koplev, A. Lystrup The cutting process, chips, and cutting forces in machining CFRP. composites 14, pp. 371-376, 1983. [9] M. Ramulu Machining and surface integrity of fibrere inforced plastic composites. Sadhana, Vol. 22, pp 449-472, 1997. [10] W. G. Cochran, G. M Cox Experimental design [M]. Asia Publishing House 1962. [11] M. Balasubramanian, V. Jayabalan, V. Balasubramanian A mathematical model to predict impact toughness of pulsed current gas tungsten arc welded titanium alloy. Journal of Advanced Manufacturing Technology, Vol. 35, pp 852-858, 2008. [12] Safety, Turning Catalog Valenite Safety. TURN- CAT, 2007.