Solutions for Tutorial 3 Modelling of Dynamic Systems

Similar documents
Solutions for Tutorial 4 Modelling of Non-Linear Systems

Solutions for Tutorial 5 Dynamic Behavior of Typical Dynamic Systems

CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES

Solutions for Tutorial 10 Stability Analysis

Theoretical Models of Chemical Processes

CHAPTER 13: FEEDBACK PERFORMANCE

Chemical Engineering 3P04 Process Control Tutorial # 1 Learning goals

CONTROL OF MULTIVARIABLE PROCESSES

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

CHAPTER 15: FEEDFORWARD CONTROL

Process Control & Design

Process Dynamics, Operations, and Control Lecture Notes 2

ChE 6303 Advanced Process Control

CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION

Process Control, 3P4 Assignment 6

Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur

Spring 2006 Process Dynamics, Operations, and Control Lesson 5: Operability of Processes

Mathematical Modeling of Chemical Processes. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1

CHAPTER 10: STABILITY &TUNING

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

1. Introductory Material

Process Control, 3P4 Assignment 5

(S1.3) dt Taking into account equation (S1.1) and the fact that the reaction volume is constant, equation (S1.3) can be rewritten as:

Guide to Selected Process Examples :ili3g eil;]iil

INTRODUCTION TO THE SIMULATION OF ENERGY AND STORAGE SYSTEMS

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Analyzing Mass and Heat Transfer Equipment

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data

Queen s University at Kingston. CHEE Winter Process Dynamics and Control. M. Guay. Quiz 1

Introduction to Process Control

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

A First Course on Kinetics and Reaction Engineering Unit 30.Thermal Back-Mixing in a PFR

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore

Overview of Control System Design

Dynamic Behavior. Chapter 5

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60

Overview of Control System Design

Temperature Scales. Temperature, and Temperature Dependent on Physical Properties. Temperature. Temperature Scale

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

MATLAB Ordinary Differential Equation (ODE) solver for a simple example 1. Introduction

Class 27: Block Diagrams

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

5. Collection and Analysis of. Rate Data

( ) ( = ) = ( ) ( ) ( )

Subject: Introduction to Process Control. Week 01, Lectures 01 02, Spring Content

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination

Process Unit Control System Design

Basic Procedures for Common Problems

Overview of Control System Design

Linear Second-Order Differential Equations LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS

Thermodynamics ENGR360-MEP112 LECTURE 7

A First Course on Kinetics and Reaction Engineering Unit 12. Performing Kinetics Experiments

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,

Chapter Four fluid flow mass, energy, Bernoulli and momentum

Chemical Engineering Applications in Scilab

AMJAD HASOON Process Control Lec4.

Process Solutions. Process Dynamics. The Fundamental Principle of Process Control. APC Techniques Dynamics 2-1. Page 2-1

CONSIM - MS EXCEL BASED STUDENT FRIENDLY SIMULATOR FOR TEACHING PROCESS CONTROL THEORY

CEE 370 Environmental Engineering Principles

BAE 820 Physical Principles of Environmental Systems

Fundamental Principles of Process Control

Design of de-coupler for an interacting tanks system

For a recycle reactor the relationship between the volume and other parameters is given by

DESIGN OF AN ON-LINE TITRATOR FOR NONLINEAR ph CONTROL

Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 3 : Analytical Solutions of Linear ODE-IVPs

A First Course on Kinetics and Reaction Engineering Unit 19. Analysis of Batch Reactors

Chemical Reaction Engineering

Index Accumulation, 53 Accuracy: numerical integration, sensor, 383, Adaptive tuning: expert system, 528 gain scheduling, 518, 529, 709,

Investigation of adiabatic batch reactor

Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

Chemical Reaction Engineering Lecture 5

Index. INDEX_p /15/02 3:08 PM Page 765

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

Innovative Solutions from the Process Control Professionals

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz,

Chapter 1 Basic Characteristics of Control Systems and their Representation Process and Instrument Diagrams

Chemistry Instrumental Analysis Lecture 31. Chem 4631

Measurement in Engineering

A First Course on Kinetics and Reaction Engineering Unit 14. Differential Data Analysis

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS

(Refer Slide Time: 00:10)

A First Course on Kinetics and Reaction Engineering Example 13.2

Numerical Analysis Module 1 Abstract Equation Forms in Process Modeling

Index. Index. More information. in this web service Cambridge University Press

Learn2Control Laboratory

Lecture 12. AO Control Theory

بسمه تعالي کنترل صنعتي 2 دکتر سید مجید اسما عیل زاده گروه کنترل دانشکده مهندسي برق دانشگاه علم و صنعت ایران پاییس 90

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Thermodynamics revisited

Dr Ian R. Manchester

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)

Transcription:

Solutions for Tutorial 3 Modelling of Dynamic Systems 3.1 Mixer: Dynamic model of a CSTR is derived in textbook Example 3.1. From the model, we know that the outlet concentration of, C, can be affected by manipulating the feed concentration, C 0, because there is a causal relationship between these variables. a. The feed concentration, C 0, results from mixing a stream of pure with solvent, as shown in the diagram. The desired value of C 0 can be achieved by adding a right amount of in the solvent stream. Determine the model that relates the flow rate of reactant, F, and the feed concentration, C 0, at constant solvent flow rate. b. Relate the gain and time constant(s) to parameters in the process. c. Describe a control valve that could be used to affect the flow of component. Describe the a) valve body and b) method for changing its percent opening (actuator). Solvent F s C,solvent F o C O F 1 C Reactant F C,reactant Figure 3.1 a. In this question, we are interested in the behavior at the mixing point, which is identified by the red circle in the figure above. We will apply the standard modelling approach to this question. Goal: Determine the behavior of C 0 (t) System: The liquid in the mixing point. (We assume that the mixing occurs essentially immediately at the point.) 11/05/05 Copyright 2000 by T. Marlin 1

alance: Since we seek the behavior of a composition, we begin with a component balance. ccumulation = in - out + generation (1) ( V C V C ) = MX t( F C + F C (F + F ) C ) 0 MW m 0 t+ t m 0 t S S S 0 + Note that no reaction occurs at the mixing point. We cancel the molecular weight, divide by the delta time, and take the limit to yield V dc (F + F ) m S (2) = CS + C C0 S F + F S F F F + F S No reactant () appears in the solvent, and the volume of the mixing point is very small. Therefore, the model simplifies to the following algebraic form. F F + F (3) C = C0 S re we done? We can check degrees of freedom. DOF = 1 1 = 0 C 0 Therefore, the model is complete. (F S, F, and C are known) You developed models similar to equation (3) in your first course in Chemical Engineering, Material and Energy balances. (See Felder and Rousseau for a refresher.) We see that the dynamic modelling method yields a steady-state model when the time derivative is zero. Note that if the flow of solvent is much larger than the flow of reactant, F S >> F, then, C F (4) C0 = F S If F S and C (concentration of pure reactant) are constant, the concentration of the mixed stream is linearly dependent on the flow of reactant. b. For the result in equation (4), Time constant = 0 Gain = C /F S (This is a steady-state process.) (The value will change as F S is changed.) 11/05/05 Copyright 2000 by T. Marlin 2

c. The control valve should have the following capabilities. 1. Introduce a restriction to flow. 2. llow the restriction to be changed. 3. Have a method for automatic adjustment of the restriction, not requiring intervention by a human. 1&2 These are typically achieved by placing an adjustable element near a restriction through which the fluid must flow. s the element s position in changed, the area through which the fluid flows can be increased or decreased. 3 This requirement is typically achieved by connecting the adjustable element to a metal rod (stem). The position of the rod can be changed to achieve the required restriction. The power source for moving the rod is usually air pressure, because it is safe (no sparks) and reliable. rough schematic of an automatic control valve is given in the following figure. air pressure diaphram spring valve stem position valve plug and seat See a Valve You can see a picture of a typical control valve by clicking here. Many other valves are used, but this picture shows you the key features of a real, industrial control valve. Hint: To return to this current page after seeing the valve, click on the previous view arrow on the dobe toolbar. You can read more about valves at the McMaster WE site. 11/05/05 Copyright 2000 by T. Marlin 3

3.2 Stirred tank mixer a. Determine the dynamic response of the tank temperature, T, to a step change in the inlet temperature, T 0, for the continuous stirred tank shown in the Figure 3.2 below. b. Sketch the dynamic behavior of T(t). c. Relate the gain and time constants to the process parameters. d. Select a temperature sensor that gives accuracy better than ± 1 K at a temperature of 200 K. F T 0 F T V Figure 3.2 We note that this question is a simpler version of the stirred tank heat exchanger in textbook Example 3.7. Perhaps, this simple example will help us in understanding the heat exchanger example, which has no new principles, but more complex algebraic manipulations. Remember, we use heat exchangers often, so we need to understand their dynamic behavior. a/c. The dynamic model is derived using the standard modelling steps. Goal: The temperature in the stirred tank. System: The liquid in the tank. See the figure above. alance: Since we seek the temperature, we begin with an energy balance. 11/05/05 Copyright 2000 by T. Marlin 4

efore writing the balance, we note that the kinetic and potential energies of the accumulation, in flow and out flow do not change. lso, the volume in the tank is essentially constant, because of the overflow design of the tank. accumulation = in - out (no accumulation!) (1) ( U U ) = t(h H ) t+ t t We divide by delta time and take the limit. du (2) = (H H ) in out in out The following thermodynamic relationships are used to relate the system energy to the temperature. du/ = VρC v dt/ H = FρC p (T-T ref ) For this liquid system, C v C p Substituting gives the following. dt (3) V ρ = F ρ (T T) 0 re we done? Let s check the degrees of freedom. DOF = 1 1 = 0 T (V, and T 0 known) This equation can be rearranged and subtracted from its initial steady state to give dt' (4) τ + T' = KT' 0 with τ = V/F K = 1 Note that the time constant is V/F and the gain is 1.0. These are not always true! We must derive the models to determine the relationship between the process and the dynamics. See Example 3.7 for different results for the stirred tank heat exchanger. 11/05/05 Copyright 2000 by T. Marlin 5

The dynamic response for the first order equation differential equation to a step in inlet temperature can be derived in the same manner as in Examples 3.1, 3.2, etc. The result is the following expression. T / (5) T' K T (1 e t τ = ) 0 Time / and T T K T (1 e t τ = + ) initial 0 T 0 d. We base the temperature sensor selection on Time the information on advantages and disadvantages of sensors. table is available on the McMaster WE site, and links are provided to more extensive sensor information. version of such a table is given below. Since a high accuracy is required for a temperature around 200 K, an RTD (a sensor based on the temperature sensitivity of electrical resistance) is recommended. Even this choice might not achieve the 1 K accuracy requirement. sensor type limits of application ( C) accuracy (1,2) dynamics, time constant (s) advantages disadvantages thermocouple type E (chromel-constantan) type J (iron-constantan) type K (chromel-nickel) -100 to 1000 0 to 750 0 to 1250 ± 1.5 or 0.5% (0 to 900 C) ± 2.2 or 0.75% ± 2.2 or 0.75% (3) 1. good reproducibility 2. wide range 1. minimum span, 40 C 2. temperature vs emf not exactly linear 3. drift over time 4. low emf corrupted by noise type T ± 1.0 or 1.5% (copper-constantan) -160 to 400 (-160 to 0 C) RTD -200 to 650 (0.15 +.02 T ) C (3) 1. good accuracy 2. small span possible 3. linearity Thermister -40 to 150 0.10 C (3) 1. good accuracy 2. little drift imetallic ± 2% 1. low cost 2. physically rugged Filled system -200 to 800 ± 1% 1-10 1. simple and low cost 2. no hazards 1. self heating 2. less physically rugged 3. self-heating error 1. highly nonlinear 2. only small span 3. less physically rugged 4. drift 1. local display 1. not high temperatures 2. sensitive to external pressure 1. C or % of span, whichever is larger 2. for RTDs, inaccuracy increases approximately linearly with temperature deviation from 0 C 3. dynamics depend strongly on the sheath or thermowell (material, diameter and wall thickness), location of element in the sheath (e.g., bonded or air space), fluid type, and fluid velocity. Typical values are 2-5 seconds for high fluid velocities. 11/05/05 Copyright 2000 by T. Marlin 6

3.3 Isothermal CSTR: The model used to predict the concentration of the product, C, in an isothermal CSTR will be formulated in this exercise. The reaction occurring in the reactor is r = -kc Concentration of component in the feed is C 0, and there is no component in the feed. The assumptions for this problem are 1. the tank is well mixed, 2. negligible heat transfer, 3. constant flow rate, 4. constant physical properties, 5. constant volume, 6. no heat of reaction, and 7. the system is initially at steady state. F 0 C 0 V C F 1 Figure 3.3 a. Develop the differential equations that can be used to determine the dynamic response of the concentration of component in the reactor, C (t), for a given C 0 (t). b. Relate the gain(s) and time constant(s) to the process parameters. b. fter covering Chapter 4, solve for C (t) in response to a step change in C 0 (t), C 0. c. Sketch the shape of the dynamic behavior of C (t). d. Could this system behave in an underdamped manner for different (physically possible) values for the parameters and assumptions? In this question, we investigate the dynamic behavior of the product concentration for a single CSTR with a single reaction. We learned in textbook Example 3.2 that the concentration of the reactant behaves as a first-order system. Is this true for the product concentration? a. We begin by performing the standard modelling steps. Goal: Dynamic behavior of in the reactor. System: Liquid in the reactor. alance: ecause we seek the composition, we begin with a component material balance. ccumulation = in - out + generation 11/05/05 Copyright 2000 by T. Marlin 7

(1) MW (VC VC ) = MW t(fc FC VkC ) t+ t t 0 + We can cancel the molecular weight, divide by delta time, and take the limit to obtain the following. dc (2) V = FC0 FC + VkC 0 We can subtract the initial steady state and rearrange to obtain dc' (3) τ + C' = K C' τ V = Vk K = F F re we done? Let s check the degrees of freedom. DOF = 2 1 = 1 0 No! C and C The first equation was a balance on ; we find that the variable C remains. We first see if we can evaluate this using a fundamental balance. Goal: Concentration of in the reactor. System: Liquid in the reactor. alance: Component (4) MW (VC VC ) = MW t(fc FC VkC ) t+ t Following the same procedures, we obtain the following. t 0 dc' (5) τ + C' = K C' 0 τ V = F + Vk K F = F + Vk re we done? Let s check the degrees of freedom for equations (3) and (5). DOF = 2 2 = 0 Yes! C and C The model determining the effect of C 0 on C is given in equations (3) and (5). 11/05/05 Copyright 2000 by T. Marlin 8

b. The relationship between the gains and time constants and the process are given in equations (3) and (5). c. We shall solve the equations for a step in feed concentration using Laplace transforms. First we take the Laplace transform of both equations; then we combine the resulting algebraic equations to eliminate the variable C. (6) ( sc' (s) C' (t) ) + C' (s) K C' (s) τ t= 0 = (7) ( ' (s) C' (t) ) + C' (s) K C' (s) τ = = sc t 0 0 K K s + 1)( τ (8) ' (s) = C' (s) C 0 ( τ s + 1) We substitute the input forcing function, C 0 (s) = C 0 /s, and invert using entry 10 of Table 4.1 (with a=0) in the textbook. (9) C' (s) = ( τ K K s + 1)( τ s + 1) C' s 0 τ t / τ τ t / τ (10) C ' (t) = K K C 1+ e e 0 τ τ τ τ c. The shape of the response of C using the numerical values from textbook Example 3.2 is given in the following figure. Note the overdamped, S-shaped curve. This is much different from the response of C. Compare the responses and explain the differences. 1 0.8 0.6 solid = C d. ecause the roots of the denominator in the Laplace transform are real, this process can never behave as an underdamped system. 0.4 0 20 40 60 80 100 120 time 2 1.5 1 0.5 0 20 40 60 80 100 120 time 11/05/05 Copyright 2000 by T. Marlin 9

3.4 Inventory Level: Process plants have many tanks that store material. Generally, the goal is to smooth differences in flows among units, and no reaction occurs in these tanks. We will model a typical tank shown in Figure 2.4. a. Liquid to a tank is being determined by another part of the plant; therefore, we have no influence over the flow rate. The flow from the tank is pumped using a centrifugal pump. The outlet flow rate depends upon the pump outlet pressure and the resistance to flow; it does not depend on the liquid level. We will use the valve to change the resistance to flow and achieve the desired flow rate. The tank is cylindrical, so that the liquid volume is the product of the level times the cross sectional area, which is constant. ssume that the flows into and out of the tank are initially equal. Then, we decrease the flow out in a step by adjusting the valve. F in L F out i. Determine the behavior of the level as a function of time. V = L Figure 2.4 We need to formulate a model of the process to understand its dynamic behavior. Let s use our standard modelling procedure. Goal: Determine the level as a function of time. Variable: L(t) System: Liquid in the tank. alance: We recognize that the level depends on the total amount of liquid in the tank. Therefore, we select a total material balance. Note that no generation term appears in the total material balance. (accumulation) = in - out ( ρ L) t+ t ( ρl) t = ρfin t ρf We cancel the density, divide by the delta time, and take the limit to yield dl = F in F out out t 11/05/05 Copyright 2000 by T. Marlin 10

The flow in and the flow are independent to the value of the level. In this problem, the flow in is constant and a step decrease is introduced into the flow out. s a result, dl = F in F out = constant > 0 We know that if the derivative is constant, i.e., independent of time, the level will increase linearly with time. While the mathematician might say the level increases to infinity, we know that it will increase until it overflows. Thus, we have the following plot of the behavior. To infinity Overflow! L F in F out time Note that the level never reaches a steady-state value (between overflow and completely dry). This is very different behavior from the tank concentration that we have seen. Clearly, we must closely observe the levels and adjust a flow to maintain the levels in a desirable range. If you are in charge of the level and you do not have feedback control you better not take a coffee break! The level is often referred to as an integrating process Why? The level can be determined by solving the model by separation and integration, as shown in the following. dl = ( Fin Fout ) L = ( Fin Fout ) Thus, the level integrates the difference between inlet and outlet flows. 11/05/05 Copyright 2000 by T. Marlin 11

ii. Compare this result to the textbook Example 3.6, the draining tank. F in F in L F out L F out V = L Key Issue Example 3.6 Draining tank This question Tank with outlet pump Level model y overall material balance y overall material balance Flow out Depends on the level Independent of the level (or very nearly so) Level behavior First order exponential for a step Linear, unbounded response change to a step change Level stability stable unstable iii. Describe a sensor that could be used to measure the level in this vessel. Naturally, we could tell you the answer to this question. ut, you will benefit more from finding the answer. Click to access the instrumentation resources and review Section 2.4 and links to more detailed resources. CLICK HERE F in F out? Only superman has X-ray vision, so how do I determine the level in the tank? 11/05/05 Copyright 2000 by T. Marlin 12

3.5 Designing tank volume: In this question you will determine the size of a storage vessel. Feed liquid is delivered to the plant site periodically, and the plant equipment is operated continuously. tank is provided to store the feed liquid. The situation is sketched in Figure 3.5. ssume that the storage tank is initially empty and the feed delivery is given in Figure 2.5. Determine the minimum height of the tank that will prevent overflow between the times 0 to 100 hours. F in L =? F out = 12.0 m 3 /h = 50 m 2 30.0 F in (m 3 /h) 0 0 20 40 50 70 80 Time (h) End of problem at 100 h Figure 3.5 Tank between the feed delivery and the processing units. This problem shows how the dynamic behavior of a process unit can be important in the design of the process equipment. Our approach to solving the problem involves determining the liquid volume over the complete time period from 0 to 100 hours. The maximum volume during the period can be used to evaluate the size of the tank; any tank smaller would experience an overflow. The dynamic model for the tank was formulated in the previous solution, which we will apply in this solution. The behavior of the system is summarized in the following table and sketched in the figure. Time (h) F in F out (m 3 /h) dv/ = F in -F out (m 3 /h) V beginning of period (m 3 ) V end of period (m 3 ) 0-20 30 12 18 0 360 20-40 0 12-12 360 120 40-50 30 12 18 120 300 50-70 0 12-12 300 60 70-80 30 12 18 60 240 80-100 30 12-12 240 0 11/05/05 Copyright 2000 by T. Marlin 13

Volume (m3) 400 300 200 100 0 0 20 40 50 70 80 100 time (h) We see in the table and figure that the maximum volume is 360 m 3. Since the cross sectional area is 50 m 2, the minimum height (or level) for the tank is calculated to be 7.2 m. L = 360 m 3 / 50 m 2 = 7.2 m We should note that this calculation results in the tank being completely full at t = 20 hours; there is no margin for error. We should look into the likely variability of the feed deliveries and the production rates before making a final decision on the correct volume. 3.6 Modelling procedure: Sketch a flowchart of the modelling method that we are using to formulate dynamic models. We should develop this type of sketch so that we can visualize the procedure and clarify the sequence of steps. flowchart is given on the following page. Did yours look similar? 11/05/05 Copyright 2000 by T. Marlin 14

Flowchart of Modeling Method (We have not yet done the parts in the yellow boxes) Goal: ssumptions: Data: Variable(s): related to goals System: volume within which variables are independent of position Fundamental alance: e.g. material, energy DOF = 0 Check D.O.F. DOF 0 nother balance: -Fundamental balance -Constitutive equations [e.g.: Q =h(t h -T c )] Is model linear? No Expand in Taylor Series Yes Express in deviation variables Group parameters to evaluate [gains (K), time-constants (τ), dead-times(θ)] Take Laplace transform Substitute specific input, e.g., step, and solve for output nalytical solution (step) Numerical solution nalyze the model for: - causality - order - stability - damping Combine several models into integrated system 11/05/05 Copyright 2000 by T. Marlin 15