AA242B: MECHANICAL VIBRATIONS

Similar documents
Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi Lecture March, 2016

Dynamics of Structures

Multi Degrees of Freedom Systems

AA242B: MECHANICAL VIBRATIONS

Introduction to structural dynamics

AA242B: MECHANICAL VIBRATIONS

AA 242B / ME 242B: Mechanical Vibrations (Spring 2016)

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Appendix A Equations of Motion in the Configuration and State Spaces

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices

Structural Dynamics Lecture 7. Outline of Lecture 7. Multi-Degree-of-Freedom Systems (cont.) System Reduction. Vibration due to Movable Supports.

Structural Dynamics A Graduate Course in Aerospace Engineering

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems: Non-Linear Dynamics Part I

Some Aspects of Structural Dynamics

Vibrations Qualifying Exam Study Material

L = 1 2 a(q) q2 V (q).

Damped Harmonic Oscillator

COPYRIGHTED MATERIAL. Index

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Structural Matrices in MDOF Systems

FREE VIBRATION RESPONSE OF UNDAMPED SYSTEMS

Mechanical Vibrations Chapter 6 Solution Methods for the Eigenvalue Problem

1. Multiple Degree-of-Freedom (MDOF) Systems: Introduction

Free Vibration of Single-Degree-of-Freedom (SDOF) Systems

SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES

Introduction to Vibration. Professor Mike Brennan

Math 1302, Week 8: Oscillations

Table of Contents. Preface... 13

Matrix Iteration. Giacomo Boffi.

Truncation Errors Numerical Integration Multiple Support Excitation

Dynamics of structures

Dynamics of structures

Introduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil

Reduction in number of dofs

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass

Codal Provisions IS 1893 (Part 1) 2002

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Appendix C. Modal Analysis of a Uniform Cantilever with a Tip Mass. C.1 Transverse Vibrations. Boundary-Value Problem

This appendix gives you a working knowledge of the theory used to implement flexible bodies in ADAMS. The topics covered include

! 4 4! o! +! h 4 o=0! ±= ± p i And back-substituting into the linear equations gave us the ratios of the amplitudes of oscillation:.»» = A p e i! +t»»

Stochastic Dynamics of SDOF Systems (cont.).

Substructuring using Impulse Response Functions for Impact Analysis

Final Exam December 11, 2017

L = 1 2 a(q) q2 V (q).

Time integration and the Trefftz Method, Part II Second-order and hyperbolic problems

Multiple Degree of Freedom Systems. The Millennium bridge required many degrees of freedom to model and design with.

4.9 Free Mechanical Vibrations

Preliminary Examination - Dynamics

Keble College - Hilary 2014 CP3&4: Mathematical methods I&II Tutorial 5 - Waves and normal modes II

Outline of parts 1 and 2

Assignment 6. Using the result for the Lagrangian for a double pendulum in Problem 1.22, we get

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load

A Complex Power Approach to Characterise Joints in Experimental Dynamic Substructuring

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas)

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes

Math Assignment 5

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

3. Mathematical Properties of MDOF Systems

Dynamic Soil Structure Interaction

Finite element analysis of rotating structures

Solution of Vibration and Transient Problems

Transient Response Analysis of Structural Systems

Advanced Vibrations. Distributed-Parameter Systems: Exact Solutions (Lecture 10) By: H. Ahmadian

Cardan s Coupling Shaft as a Dynamic Evolutionary System

Theory and Practice of Rotor Dynamics Prof. Dr. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

4. Complex Oscillations

Explosion Protection of Buildings

Modal Analysis: What it is and is not Gerrit Visser

Lagrange s Equations of Motion and the Generalized Inertia

THE subject of the analysis is system composed by

Laboratory notes. Torsional Vibration Absorber

Design of Structures for Earthquake Resistance

Rigid Body Kinetics :: Virtual Work

Introduction to Modern Control MT 2016

USAGE OF THE GENERALIZED MODAL SYNTHESIS METHOD IN DYNAMICS OF MACHINES

Theory of Vibrations in Stewart Platforms

Mobility and Impedance Methods. Professor Mike Brennan

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody

Dynamic Response of Structures With Frequency Dependent Damping

Response Analysis for Multi Support Earthquake Excitation

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Second order linear equations

Vibration Dynamics and Control

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

Damped harmonic motion

Introduction to Geotechnical Earthquake Engineering

Using Simulink to analyze 2 degrees of freedom system

SHOCK RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS Revision F By Tom Irvine May 24, 2010

Seminar 6: COUPLED HARMONIC OSCILLATORS

Dynamic Loads CE 543. Examples. Harmonic Loads

Today s goals So far Today 2.004

Contents i. Contents


Transcription:

AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations: Theory and Applications to Structural Dynamics, Second Edition, Wiley, John & Sons, Incorporated, ISBN-13:9780471975465 1 / 50

AA242B: MECHANICAL VIBRATIONS 2 / 50 Outline 1 Linear Vibrations 2 Natural Vibration Modes 3 Orthogonality of Natural Vibration Modes 4 Modal Superposition Analysis 5 Spectral Expansions 6 Forced Harmonic Response 7 Response to External Loading 8 Mechanical Systems Excited Through Support Motion 2 / 50

AA242B: MECHANICAL VIBRATIONS 3 / 50 Linear Vibrations Equilibrium configuration q s (t) = q s (0) q s (t) = 0 } s = 1,, n (1) Recall the Lagrange equations of motion d ( ) T + T V D + Q s (t) = 0 dt q s q s q s q s where T = T 0 + T 1 + T 2 Recall the generalized gyroscopic forces F s = r=1 2 T 1 q s q r q r + T1 q s = r=1 ( 2 T 1 q s q r 2 T 1 q r q s ) q r, s = 1,, n Definition: the effective potential energy is defined as V = V T 0 The Lagrange equations of motion can be re-written as ( ) d T2 T 2 = Q s (t) V D + F s ( ) T1 dt q s q s q s q s t q s 3 / 50

AA242B: MECHANICAL VIBRATIONS 4 / 50 Linear Vibrations Recall that T 0(q, t) = 1 N 3 ( ) Uik 2 m k (q, t) (transport kinetic energy) 2 t k=1 i=1 N vk ( q) D = C k f k (γ)dγ (dissipation function) k=1 0 From the Lagrange equations of motion ( ) d T2 T 2 = Q s (t) V D + F s ( ) T1 dt q s q s q s q s t q s it follows that an equilibrium configuration exists if and only if 0 = Q s (t) V Q s (t) and V are function of q only and not q s explicitly dependent on time Q s (t) = 0 and V = V (q) At equilibrium Q s (t) = 0 and V q s = (V T 0) q s = 0, s = 1,, n 4 / 50

AA242B: MECHANICAL VIBRATIONS 5 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Consider first a system that does not undergo a transport or overall motion T = T 2 ( q) The equilibrium position is then given by Q s (t) = 0 and V q s = 0, s = 1,, n Assume next that this system is conservative E = T + V = cst Shift the origin of the generalized coordinates so that at equilibrium, q s = 0, s = 1,, n (in which case the q s represent the deviation from equilibrium) Since the potential energy is defined only up to a constant, choose this constant so that V(q s = 0) = 0 Now, suppose that a certain energy E(0) is initially given to the system in equilibrium 5 / 50

AA242B: MECHANICAL VIBRATIONS 6 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Definition: the equilibrium position (q s = 0, s = 1,, n) is said to be stable if E / E(0) < E, T (t) E(0) Consequences T + V = E = cst = E(0) V(t) = E(0) T (t)) 0 at a stable equilibrium position, the potential energy is at a relative minimum if E(0) is small enough, V(t) will be small enough and therefore deviations from the equilibrium position will be small enough 6 / 50

AA242B: MECHANICAL VIBRATIONS 7 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Linearization of T and V around an equilibrium position (q s = 0, V = 0) q s actually, this means obtaining a quadratic form of T and V in q and q so that the corresponding generalized forces are linear since q s(t) represent deviations from equilibrium, V can be expanded as follows V(q) = V(0) + = V(0) + 1 2 s=1 V q s q=0 q s + 1 2 s=1 r=1 s=1 r=1 2 V q s q r q=0 q sq r + O(q 3 ) 2 V q s q r q=0 q sq r + O(q 3 ) since the potential energy is defined only up to a constant, if this constant is chosen so that V(0) = 0, then a second-order approximation of V(q) is given by V(q) = 1 2 s=1 r=1 2 V q s q r q=0 q sq r, for q 0 7 / 50

AA242B: MECHANICAL VIBRATIONS 8 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Stiffness matrix let K = [k sr ] where k sr = k rs = 2 V q s q r q=0 = V(q) = 1 2 qt Kq > 0, for q 0 K is symmetric positive (semi-) definite 8 / 50

AA242B: MECHANICAL VIBRATIONS 9 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Recall that T 2 = 1 2 N 3 s=1 r=1 k=1 i=1 T 2(q, q) = T 2(0, 0) + + 1 2 s=1 r=1 + 1 2 s=1 r=1 = 1 2 s=1 r=1 m k U ik q s U ik q r q s q r (relative kinetic energy) s=1 T 2 q s q=0, q=0 q s + 2 T 2 q s q r q=0, q=0 q s q r + T 2 q s q=0, q=0 q s s=1 s=1 r=1 2 T 2 q s q r q=0, q=0 q s q r + O(q 3, q 3 ) 2 T 2 q s q r q=0, q=0 q s q r + O(q 3, q 3 ) 2 T 2 q s q r q=0, q=0 q s q r 9 / 50

AA242B: MECHANICAL VIBRATIONS 10 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Hence, a second-order approximation of T 2 ( q) is given by T 2 ( q) = 1 2 qt M q > 0, for q 0 where[ M = m sr = m rs = 2 T 2 U ik q=0 = m k q s q r q s k=1 i=1 is the mass matrix and is symmetric positive definite N 3 q=0 U ik q r q=0 ] 10 / 50

AA242B: MECHANICAL VIBRATIONS 11 / 50 Linear Vibrations Free-Vibrations About a Stable Equilibrium Position Free-vibrations about a stable equilibrium position of a conservative system that does not undergo a transport or overall motion (T 0 = T 1 = 0) d dt ( T2 q s ) T 2 = V q s q s = d (M q) 0 = Kq dt = M q + Kq = 0 11 / 50

AA242B: MECHANICAL VIBRATIONS 12 / 50 Linear Vibrations Free-Vibrations About an Equilibrium Configuration Consider next the more general case of a system in steady motion (a transported system) whose equilibrium configuration defined by V q s = (V T 0) q s = 0, s = 1,, n corresponds ( ) to the balance of forces ( ) deriving from a potential V T0 and centrifugal forces q s q s It is an equilibrium configuration in the sense that q s which represent here the generalized velocities relative to a steady motion are zero but the system is not idle 12 / 50

AA242B: MECHANICAL VIBRATIONS 13 / 50 Linear Vibrations Free-Vibrations About an Equilibrium Configuration Linearizations effective potential energy V effective stiffness matrix K where K = mutual kinetic energy T 1 = where F = = V (q) = 1 2 qt K q > 0, for q 0 [ ( ) ] ksr 2 T 0 = k sr q=0 q s q r N 3 s=1 k=1( i=1 T 1 q s (0) + q s s=1 2 T 1 q r q=0 q s s=1 r=1 [ f sr = 2 T 1 q s q r q=0 U ik t m U ik k q s = q s ] r=1 s=1 q s T 1 q s (q) 2 T 1 q sq r q=0 q r + O(q 2 ) q sq r T 1(q, q) = q T Fq ) 13 / 50

AA242B: MECHANICAL VIBRATIONS 14 / 50 Linear Vibrations Free-Vibrations About an Equilibrium Configuration Equations of free-vibration around an equilibrium configuration the equilibrium configuration generated by a steady motion remains stable as long as V = V T 0 0 this corresponds to the fact that K remains positive definite in the neighborhood of such a configuration, the equations of motion (for a conservative system undergoing transport or overall motion) are d dt ( T2 where F s = q s ) T2 q s }{{} 0 r=1 = Q s(t) }{{} 0 V q s D q s }{{} 0 ( ) 2 T 1 2 T 1 q r = (F T F) q q s q r q r q s M q + G q + K q = 0 +F s ( ) T1 t q s }{{} 0 where G = F F T = G T is the gyroscopic coupling matrix 14 / 50

AA242B: MECHANICAL VIBRATIONS 15 / 50 Linear Vibrations Free-Vibrations About an Equilibrium Configuration Example X = (a + x) cos Ωt Y = (a + x) sin Ωt v 2 = Ẋ 2 + Ẏ 2 = (a + x) 2 Ω 2 + ẋ 2 V = 1 2 kx 2 T 0 = 1 2 Ω2 m(a + x) 2 T 1 = 0 T 2 = 1 2 mẋ 2 V = 1 2 kx 2 1 2 Ω2 m(a + x) 2 equilibrium configuration V x = 0 = kx Ω2 m(a + x) = 0 = x eq = Ω2 ma k Ω 2 m the system becomes unstable for Ω 2 = k m k = 2 V = k Ω 2 m system is unstable for Ω 2 k x 2 m 15 / 50

AA242B: MECHANICAL VIBRATIONS 16 / 50 Natural Vibration Modes Free-vibration equations: M q + Kq = 0 q(t) = q a e iωt (K ω 2 M)q a = 0 det (K ω 2 M) = 0 If the system has n degrees of freedom (dofs), M and K are n n matrices n eigenpairs (ω 2 i, q a i ) Rigid body mode(s): ω 2 j = 0 Kq aj = 0 For a rigid body mode, V(q aj ) = 1 2 qt a j Kq aj = 0 16 / 50

AA242B: MECHANICAL VIBRATIONS 17 / 50 Orthogonality of Natural Vibration Modes Distinct Frequencies Consider two distinct eigenpairs (ωi 2, q a i ) and (ωj 2, q a j ) q T a j Kq ai = q T a j ωi 2 Mq ai (2) q T a i Kq aj = q T a i ωj 2 Mq aj (3) Because M and K are symmetric (2) (3) T 0 = (ω 2 i ω 2 j )q aj T Mq ai since ω 2 i ω 2 j q aj T Mq ai = 0 and q aj T Kq ai = 0 17 / 50

AA242B: MECHANICAL VIBRATIONS 18 / 50 Orthogonality of Natural Vibration Modes Distinct Frequencies Physical interpretation of the orthogonality conditions q aj T Mq ai = 0 q aj T ( ω 2 i Mq ai ) = (ω 2 i Mq ai ) T q aj = 0 which implies that the virtual work produced by the inertia forces of mode i during a virtual displacement prescribed by mode j is zero q aj T Kq ai = 0 (Kq ai ) T q aj = 0 which implies that the virtual work produced by the elastic forces of mode i during a virtual displacement prescribed by mode j is zero 18 / 50

AA242B: MECHANICAL VIBRATIONS 19 / 50 Orthogonality of Natural Vibration Modes Distinct Frequencies Rayleigh quotient Kq ai = ω 2 i Mq ai q ai T Kq ai = ω 2 i q ai T Mq ai ω 2 i = q a i T Kq ai q ai T Mq ai γ i = generalized stiffness coefficient of mode i (measures the contribution of mode i to the elastic deformation energy) µ i = generalized mass coefficient of mode i (measures the contribution of mode i to the kinetic energy) Since the amplitude of q ai is determined up to a factor only γ i and µ i are determined up to a constant factor only Mass normalization q aj T Mq ai = δ ij q aj T Kq ai = ω 2 i δ ij = γ i µ i 19 / 50

AA242B: MECHANICAL VIBRATIONS 20 / 50 Orthogonality of Natural Vibration Modes Degeneracy Theorem What happens if a multiple circular frequency is encountered? Theorem: to a multiple root ω 2 p of the system Kx = ω 2 Mx corresponds a number of linearly independent eigenvectors {q ai } equal to the root multiplicity 20 / 50

AA242B: MECHANICAL VIBRATIONS 21 / 50 Modal Superposition Analysis n-dof system: M R n n, K R n, and q R n Coupled system of ordinary differential equations M q + Kq = 0 q(0) = q 0 q(0) = q 0 21 / 50

AA242B: MECHANICAL VIBRATIONS 22 / 50 Modal Superposition Analysis Natural vibration modes (eigenmodes) Kq ai = ωi 2 Mq ai, i = 1,, n Q = [q a1 q a2 { Q q an ] KQ = Ω 2 Q T MQ = I Truncated eigenbasis Ω 2 = ω 2 1... ω 2 n Q r = [ { ] Q T q a1 q a2 q ar, r << n r KQr = Ω2 r (reduced stiffness matrix) Q T r MQr = Ir (reduced mass matrix) Ω 2 r = ω 2 1... ω 2 r 22 / 50

AA242B: MECHANICAL VIBRATIONS 23 / 50 Modal Superposition Analysis Modal superposition: q = Q r y = r y i q ai where y = [y 1 y 2 y r ] T and y i is called the modal displacement i=1 Substitute in M q + Kq = 0 = MQ r ÿ + KQ r y = 0 = Q T r MQ r ÿ + Q T r KQ r y = 0 = I r ÿ + Ω 2 r y = 0 Uncoupled differential equations (modal equations) ÿ i + ω 2 i y i = 0, i = 1, r 23 / 50

AA242B: MECHANICAL VIBRATIONS 24 / 50 Modal Superposition Analysis ÿ i + ω 2 i y i = 0, i = 1, r Case 1: ω 2 i = 0 (rigid body mode) y i = a i t + b i Case 2: ωj 2 0 y j = c j cos ω j t + d j sin ω j t General case: r b rigid body modes q = r b r r b (a i t + b i )q ai + (c j cos ω j t + d j sin ω j t)q aj i=1 j=1 Initial conditions q(0) = q 0 = Qy(0) and q(0) = q 0 = Qẏ(0) 24 / 50

AA242B: MECHANICAL VIBRATIONS 25 / 50 Modal Superposition Analysis q 0 = Qy(0) and q 0 = Qẏ(0) = q T a i Mq 0 = q T a i MQy(0) From the orthogonality properties of the natural mode shapes (eigenvectors) it follows that q T a i Mq 0 = q T a i MQy(0) = q T a i Mq ai y i (0) = y i (0) y i (0) = q T a i Mq(0) Case 1: ω 2 i Case 2: ω 2 j Case 1: ω 2 i = 0 (rigid body mode) a i 0 + b i = q T a i Mq(0) b i = q T a i Mq(0) 0 c j 1 + d j 0 = q T a j Mq(0) c j = q T a j Mq(0) = 0 (rigid body mode) a i = q T a i M q(0) Case 2: ω 2 j 0 d j = q T a M q(0) j Thus, the general solution is q(t) = r b i=1 ([ ] ) q T a M q(0) t + q T i a Mq(0) q ai + i r r b j=1 ( q T a Mq(0) cos ω j t + q T j a M q(0) sin ω ) j t q aj j ω j 25 / 50

AA242B: MECHANICAL VIBRATIONS 26 / 50 Spectral Expansions = x R n, x = x R n, x = s=1 α s q as q T a Mx = j s=1 (q T as Mx ) q as = s=1 α s q T a Mq as = α j j s=1 q as ( q T as Mx ) = s=1 ( ( ) ) q as q T Mx = (q as as q T as )M x s=1 s=1 ( ) q as q T M = I as This is the same result as Q T MQ = I A given load p can be expanded in terms of the inertia forces generated by the eigenmodes, Mq aj as follows p = β j Mq aj q T a i p = j=1 β j q T a i Mq aj = β i j=1 = β i = q T a i p = modal participation factor p = j=1 ( ) q T a j p Mq aj 26 / 50

AA242B: MECHANICAL VIBRATIONS 27 / 50 Spectral Expansions ( ) Recall that q as q T M = I as s=1 Hence, A R n, A = n Aq as q T as M and A = n s=1 s=1 A = M M = n Mq as q T as M = n Mq as (Mq as ) T s=1 s=1 A = K K = n Kq as q T as M = n ω 2 s Mqas qt as M = s=1 s=1 q as q T as MA A = M 1 M 1 = n q as q T as MM 1 M 1 = q as q T as s=1 s=1 (because M is symmetric) n s=1 ω 2 s Mqas (Mqas )T A = K 1 K 1 = n q as q T as MK 1 = n q as (Mq as ) T K 1 K 1 q as q T as = s=1 s=1 ω 2 s=1 s 27 / 50

AA242B: MECHANICAL VIBRATIONS 28 / 50 Forced Harmonic Response M q + Kq = s a cos ωt q(0) = q 0 q(0) = q 0 Solution can be decomposed as q = q H (homogeneous) + q P (particular) q p = q a cos ωt q a = (K ω 2 M) 1 s a where (K ω 2 M) 1 is called the admittance or dynamic influence matrix The forced response is the part of the response that is synchronous to the excitation that is, q p 28 / 50

AA242B: MECHANICAL VIBRATIONS 29 / 50 Forced Harmonic Response Rigid body modes: { } u rb ai i=1 q a R n r b n r b, q a = α i u ai + β j q aj i=1 j=1 = s a = (K ω 2 M)q a = r b n r b α i (K ω 2 M)u ai + β j (K ω 2 M)q aj i=1 j=1 r b n r b = s a = α i ω 2 Mu ai + β j (ω 2 j ω 2 )Mq aj i=1 j=1 u T Premultiply by u T a s a j a α j = and premultiply by q T j ω 2 a β i = i r b = q a = i=1 u T n r a s a b i ω 2 ua + i j=1 q T a s r a b j (ωj 2 ω 2 ) qa = j i=1 q T a i s a (ω 2 i ω 2 ) u ai u T n r a b i + ω 2 j=1 q aj q T a j (ωj 2 s ω 2 a ) Since q a = (K ω 2 M) 1 s a = (K ω 2 M) 1 = 1 ω 2 r b i=1 n r b q aj q T u ai u T a j a + i ω 2 (4) j=1 j ω 2 29 / 50

AA242B: MECHANICAL VIBRATIONS 30 / 50 Forced Harmonic Response Which excitation s am will generate a harmonic response with an amplitude corresponding to q am? q am = (K ω 2 M) 1 s am s am = (K ω 2 M)q am = s am = Kq am ω 2 Mq am = (ωm 2 ω 2 )Mq am At resonance (ω 2 = ωm) 2 s am = 0 no force is needed to maintain once it is reached q am 30 / 50

AA242B: MECHANICAL VIBRATIONS 31 / 50 Forced Harmonic Response The inverse of an admittance is an impedance Z(ω 2 ) = (K ω 2 M) 31 / 50

AA242B: MECHANICAL VIBRATIONS 32 / 50 Forced Harmonic Response Application: substructuring (or domain decomposition) the dynamical behavior of a substructure is described by its harmonic response when forces are applied onto its interface boundaries a subsystem is typically described by K and M, has n 1 free dofs q 1, and is connected to the rest of the system by n 2 = n n 1 boundary dofs q 2 where the reaction forces are denoted here by g 2 ( ) ( ) ( ) Z11 Z 12 q1 0 = Z 21 Z 22 q 2 g 2 = Z 11q 1 + Z 12q 2 = 0 q 1 = Z 1 11 Z 12q 2 = (Z 22 Z 21Z 1 11 Z 12)q 2 = Z 22q 2 = g 2 Z 22 is the reduced impedance (reduced to the boundary) 32 / 50

AA242B: MECHANICAL VIBRATIONS 33 / 50 Forced Harmonic Response Spectral expansion of Z 22 look at Z 1 11 and let ( ω 2 i, qa i subsystem: from (4), it follows that Z 1 11 = apply twice the relation n 1 = Z 1 11 = K 1 11 +ω2 j=1 ) denote the n1 eigenpairs of the associated dynamical n 1 q aj q T a j ω j 2 ω 2 1 ω 2 j ω 2 = 1 ω 2 j j=1 ω 2 + ω j 2( ω2 j ω 2 ) q aj q T n a 1 q aj q T n j ω j 2( ω2 j ω 2 ) = a 1 j K 1 11 +ω2 ω 4 +ω 4 j=1 j j=1 q aj q T a j ω 4 j ( ω2 j ω 2 ) owing to the M 11-orthonormality of the modes and the spectral expansion of K 1 11, the above expression can further be written as Z 1 11 = K 1 11 + ω2 K 1 11 M11K 1 11 + ω4 = Z 22 = K 22 K 21K 1 11 K12 ω 2 [M 22 M 21K 1 11 ω 4 n 1 i=1 n 1 j=1 q aj q T a j ω 4 j ( ω2 j ω 2 ) K12 K21K 1 11 M12 + K21K 1 11 M11K 1 11 K12] [(K 21 ω 2 i M21) qa i ][(K21 ω2 i M21) qa i )]T ω 4 i ( ω2 i ω 2 ) 33 / 50

AA242B: MECHANICAL VIBRATIONS 34 / 50 Forced Harmonic Response Z22 = K 22 K 21 K 1 11 K 12 ω 2 [M 22 M 21 K 1 11 K 12 K 21 K 1 11 M 12 + K 21 K 1 11 M 11K 1 n 1 ω 4 [(K 21 ω i 2M 21) q ai ][(K 21 ω i 2M 21) q ai )] T ω i 4( ω2 i ω 2 ) i=1 11 K 12] The first term K 22 K 21 K 1 11 K 12 represents the stiffness of the statically condensed system The second term M 22 M 21 K 1 11 K 12 K 21 K 1 11 M 12 + K 21 K 1 11 M 11K 1 11 K 12 represents the mass of the subsystem statically condensed on the boundary The last term represents the contribution of the subsystem eigenmodes since it is generated by q ai q T a i (K 21 ω 2 i M 21) q ai is the dynamic reaction on the boundary 34 / 50

AA242B: MECHANICAL VIBRATIONS 35 / 50 Response to External Loading M q + Kq = p(t) q(0) = q 0 q(0) = q 0 General approach consider the simpler case where there is no rigid body mode eigenmodes (q ai, ωi 2 ), ωi 2 0, i = 1,, n modal superposition: q = Qy = n y i q ai i=1 substitute in equations of dynamic equilibrium = MQÿ + KQy = p(t) Q T MQÿ + Q T KQy = Q T p(t) modal equations ÿ i + ω 2 i y i = q T a i p(t), i = 1,, n y i (t) depend on two constants that can be obtained from the initial conditions q(0) = Qy(0), q(0) = Qẏ(0) y i(0), ẏ i (0) orthogonality conditions 35 / 50

AA242B: MECHANICAL VIBRATIONS 36 / 50 Response to External Loading Response to an impulsive force spring-mass system: m, k, ω 2 = k m impulsive force f (t): force whose amplitude could be infinitely large but which acts for a very short duration of time magnitude of impulse: I = τ+ɛ τ f (t)dt impulsive force = I δ(t) where δ is the delta function centered at t = 0 and satisfying ɛ 0 δ(t)dt = 1 36 / 50

AA242B: MECHANICAL VIBRATIONS 37 / 50 Response to External Loading Response to an impulsive force (continue) dynamic equilibrium m τ+ɛ τ d u dt dt + k τ+ɛ τ udt = τ+ɛ τ f (t)dt = I assume that at t = τ, the system is at rest (u(τ) = 0 and u(τ) = 0) τ+ɛ τ+ɛ ü = A/ɛ üdt = A and udt = Aɛ 2 /6 hence τ τ τ+ɛ d u m τ dt dt τ+ɛ = I m u = I u = u(τ + ɛ) u(τ) = I m u(τ + ɛ) = I m udt = 0 u = 0 u(τ + ɛ) u(τ) = 0 u(τ + ɛ) = 0 τ the above equations provide initial conditions for the free-vibrations that start at the end of the impulsive load = u(t) = I mω sin ωt 37 / 50

AA242B: MECHANICAL VIBRATIONS 38 / 50 Response to External Loading Response to an impulsive force (continue) linear system superposition principle du = f (τ)dτ mω sin ω(t τ) u(t) = 1 mω t 0 f (τ) sin ω(t τ)dτ 38 / 50

AA242B: MECHANICAL VIBRATIONS 39 / 50 Response to External Loading Time-integration of the normal equations let p i (t) = q T a i p(t) = i-th modal participation factor modal or normal equation: ÿ i + ωi 2 y i = p i (t) y i (t) = yi H (t) + yi P (t), yi H = A i cos ω i t + B i sin ω i t the particular solution yi P (t) depends on the form of p i (t) however, the general form of a particular solution that satisfies the rest initial conditions is given by the Duhamel s integral y P i (t) = 1 t p i (τ) sin ω i (t τ)dτ ω i complete solution y i (t) = A i cos ω i t + B i sin ω i t + 1 t p i (t) sin ω i (t τ)dτ ω i 0 A i = y i (0), B i = ẏi(0) and y i (0) and ẏ i (0) can be determined from ω i the initial conditions q(0) and q(0) and the orthogonality conditions 0 39 / 50

AA242B: MECHANICAL VIBRATIONS 40 / 50 Response to External Loading Response truncation and mode displacement method computational efficiency q = Q r y = r y i q ai, r n what is the effect of modal truncation? consider the case where p(t) = g static load distribution i=1 φ(t) amplification factor for a system initially at rest (q(0) = 0 and q(0) = 0) y i (0) = q T a i Mq(0) = 0 and ẏ i (0) = q T a i M q(0) = 0 A i = B i = 0 = y i (t) = 1 ω i t = q(t) = 0 p i (τ) sin ω i (t τ)dτ = qt a i g ω i [ ] r q ai q T 1 a i g spatial factor ω i i=1 t 0 t 0 φ(τ) sin ω i (t τ)dτ φ(τ) sin ω i (t τ)dτ temporal factor 40 / 50

AA242B: MECHANICAL VIBRATIONS 41 / 50 Response to External Loading Response truncation and mode displacement method (continue) general solution for restrained structure initially at rest [ ] r = q(t) = q ai q T 1 t a i g φ(τ) sin ω i (t τ)dτ spatial factor ω i 0 i=1 temporal factor θ i (t) truncated response is accurate if neglected terms are small, which is true if: q T a i g is small for i = r + 1,, n g is well approximated in the range of Q r 1 t φ(τ) sin ω j (t τ)dτ is small for j > r, which depends on the ω j 0 frequency content of φ(t) φ(t) = 1 θ i (t) = 1 cos ω i t 0 for large circular frequencies ω i φ(t) = sin ωt θ i (t) = ω i sin ωt ω sin ω i t ω i (ωi 2 ω 2 ) 41 / 50

AA242B: MECHANICAL VIBRATIONS 42 / 50 Response to External Loading Mode acceleration method M q + Kq = p(t) Kq = p(t) M q apply truncated modal representation to the acceleration q(t) = Q r y(t) q(t) = Q r ÿ(t) = Kq = p(t) recall that r Mq ai ÿ i = q = K 1 p(t) i=1 and that for a system initially at rest r i=1 q ai ÿ ωi 2 i ÿ i + ω 2 i y i = q T a i p(t) (5) y i (t) = 1 t q T a ω i p(τ) sin ω i (t τ)dτ (6) i 0 (5) and (6) ÿ i (t) = q T a i ( p(t) ωi t 0 p(τ) sin ω i(t τ)dτ ) 42 / 50

AA242B: MECHANICAL VIBRATIONS 43 / 50 Response to External Loading Mode acceleration method (continue) r substitute in q(t) = K 1 q ai p(t) ÿ ωi 2 i = q(t) = r i=1 q ai q T a i ω i t 0 i=1 p(τ) sin ω i (t τ)dτ+ recall the spectral expansion K 1 = n = q(t) = r i=1 q ai q T a i ω i t 0 i=1 q ai q T a i ω 2 i ( p(τ) sin ω i (t τ)dτ + K 1 ( i=r+1 r i=1 q ai q T a i ω 2 i q ai q T a i ω 2 i which shows that the mode acceleration method complements the truncated mode displacement solution with the missing terms using the modal expansion of the static response ) ) p(t) p(t) 43 / 50

AA242B: MECHANICAL VIBRATIONS 44 / 50 Response to External Loading Direct time-integration methods for solving M q + Kq = p(t) q(0) = q 0 q(0) = q 0 will be covered towards the end of this course 44 / 50

AA242B: MECHANICAL VIBRATIONS 45 / 50 Mechanical Systems Excited Through Support Motion The general case ( ) q1 q = where q q 2 is prescribed 2 ( ) ( ) ( ) ( ) ( M11 M 12 q1 K11 K + 12 q1 0 = M 21 M 22 q 2 K 21 K 22 q 2 r 2 (t) The first equation gives M 11 q 1 + K 11 q 1 = K 12 q 2 M 12 q 2 q 1 (t) Substitute in second equation = r 2 (t) = K 21 q 1 + M 21 q 1 + K 22 q 2 + M 22 q 2 ) 45 / 50

AA242B: MECHANICAL VIBRATIONS 46 / 50 Mechanical Systems Excited Through Support Motion Quasi-static response of q 1 0 + K 11 q 1 = K 12 q 2 0 = q qs 1 = K 1 11 K 12q 2 = Sq 2 Decompose q 1 = q qs 1 + z 1 = Sq 2 + z 1 ( ) ( q1 I S = q(t) = = 0 I q 2 ) ( z1 q 2 ) where z 1 represents the sole dynamics part of the response Substitute in the first dynamic equation and exploit above results = M 11 S q 2 + M 11 z 1 + K 11 q qs 1 + K 11z 1 = K 12 q 2 M 12 q 2 { M11 z = 1 + K 11 z 1 = g 1 (t) g 1 (t) = M 11 q qs 1 M 12 q 2 = (M 11 S + M 12 ) q 2 46 / 50

AA242B: MECHANICAL VIBRATIONS 47 / 50 Mechanical Systems Excited Through Support Motion Consider next the system fixed to the ground and solve the corresponding EVP K 11 x = ω 2 M 11 x Q = [ q ai ] = z 1 (t) = Qη(t) Solve M 11 z 1 + K 11 z 1 = g 1 (t) for z 1 (t) using the modal superposition technique 47 / 50

AA242B: MECHANICAL VIBRATIONS 48 / 50 Mechanical Systems Excited Through Support Motion Case of a global support acceleration q 2 (t) = u 2 φ(t), where u = [u 1 u 2 ] T denotes a rigid body mode decomposition of the solution into a rigid body motion and a relative displacement y [ ] [ ] [ ] q = q rb q1 u1 ÿ1 + ÿ = φ(t) + q 2 u 2 0 u 1 = Su 2 g 1(t) = (M 11Su 2 + M 12u 2)φ(t) = g 1(t) = (M 11u 1 + M 12u 2)φ(t) 48 / 50

AA242B: MECHANICAL VIBRATIONS 49 / 50 Mechanical Systems Excited Through Support Motion Method of additional masses (approximate method) suppose the system is subjected not to a specified q 2(t) but to an imposed ( ) 0 f(t) suppose that masses associated with q 2 are increased to M 22 + M 22 then ( ) ( ) M11 M 12 q1 M 21 M 22 + M 22 ) ( ) ( q1 K11 K 12 + q 2 K 21 K 22 by elimination one obtains q 2 = (M 22 + M 22) 1 (f(t) K 22q 2 K 21q 1 M 21 q 1) and q 2 = ( 0 f(t) M 11 q 1 + K 11q 1 = K 12q 2 M 12(M 22 + M 22 ) 1 (f(t) K 22q 2 K 21q 1 M 21 q 1) ) 49 / 50

AA242B: MECHANICAL VIBRATIONS 50 / 50 Mechanical Systems Excited Through Support Motion Method of additional masses (continue) therefore {M 11 M 12(M 22 + M 22 ) 1 M 21 } q 1 + = K 12q 2 M 12(M 22 + M 22 ) 1 (f(t) K 22q 2) {K 11 M 12(M 22 + M 22 ) 1 K 21 } q 1 now if (M 22 + M 22) 1 0 and if f(t) = (M 22 + M 22) q 2, one obtains M 11 q 1+K 11q 1 = K 12q 2 M 12 q 2 = M 11 q 1+M 12 q 2+K 11q 1+K 12q 2 = 0 which is the same equation as in the general case of excitation through support motion for M 22 very large, the response of the system with ground motion is the same as the response of the system with added lumped mass M 22 and the forcing function ( 0 (M 22 + M 22) q 2 ) ( 0 M 22 q 2 where q 2 is given apply same solution method as for problems of response to external loading ) 50 / 50