Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

Similar documents
Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

BIPOLAR JUNCTION TRANSISTOR MODELING

Bipolar Junction Transistor (BJT) Model. Model Kind. Model Sub-Kind. SPICE Prefix. SPICE Netlist Template Format

****** bjt model parameters tnom= temp= *****

Digital Integrated CircuitDesign

Bipolar Junction Transistor (BJT) - Introduction

DATA SHEET. PRF957 UHF wideband transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Mar 01.

BFR93A. NPN Silicon RF Transistor. For low-noise, high-gain broadband amplifiers at collector currents from 2 ma to 30 ma

figure shows a pnp transistor biased to operate in the active mode

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

Charge-Storage Elements: Base-Charging Capacitance C b

Transistor Characteristics and A simple BJT Current Mirror

Type Marking Pin Configuration Package BFR92P GFs 1=B 2=E 3=C SOT23

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR181 RFs 1=B 2=E 3=C SOT23

BFP193. NPN Silicon RF Transistor*

Berkeley. Two-Port Noise. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad. September 13, 2014

BFP196W. NPN Silicon RF Transistor*

BFP193. NPN Silicon RF Transistor* For low noise, high-gain amplifiers up to 2 GHz For linear broadband amplifiers f T = 8 GHz, F = 1 db at 900 MHz

Type Marking Pin Configuration Package BGA427 BMs 1, IN 2, GND 3, +V 4, Out SOT343. Maximum Ratings Parameter Symbol Value Unit Device current I D

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR183W RHs 1=B 2=E 3=C SOT323

EE105 - Fall 2006 Microelectronic Devices and Circuits

University of Pittsburgh

BFP196W. NPN Silicon RF Transistor*

About Modeling the Reverse Early Effect in HICUM Level 0

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Symbolic SPICE TM Circuit Analyzer and Approximator

Tutorial #4: Bias Point Analysis in Multisim

Figure 1 Basic epitaxial planar structure of NPN. Figure 2 The 3 regions of NPN (left) and PNP (right) type of transistors

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

Lecture Notes for ECE 215: Digital Integrated Circuits

Chapter 2. - DC Biasing - BJTs

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Junction Bipolar Transistor. Characteristics Models Datasheet

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

Mextram 504. Jeroen Paasschens Willy Kloosterman Philips Research Laboratories, Eindhoven. c Philips Electronics N.V. 1999

Consider the circuit below. We have seen this one already. As before, assume that the BJT is on and in forward active operation.

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Chapter 2 - DC Biasing - BJTs

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

ELEC3106 Electronics: lecture 7 summary. SPICE simulations. Torsten Lehmann

Chapter 13 Small-Signal Modeling and Linear Amplification

Realization of Tunable Pole-Q Current-Mode OTA-C Universal Filter

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)

Bipolar junction transistor operation and modeling

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

VBIC. SPICE Gummel-Poon. (Bipolar Junction Transistor, BJT) Gummel Poon. BJT (parasitic transistor) (avalance mutliplication) (self-heating)

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

THERMAL EFFECTS ON ANALOG INTEGRATED CIRCUIT DESIGN MD MAHBUB HOSSAIN. Presented to the Faculty of the Graduate School of

CHAPTER.4: Transistor at low frequencies

Device Physics: The Bipolar Transistor

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

MEXTRAM (level 504) the Philips model for bipolar transistors

CLASS 3&4. BJT currents, parameters and circuit configurations

Section 1: Common Emitter CE Amplifier Design

7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING

Linear Phase-Noise Model

EE292: Fundamentals of ECE

ECE 546 Lecture 16 MNA and SPICE

ECE Spring 2015 Final Exam

Working Group Bipolar (Tr..)

A Novel Method for Transit Time Parameter Extraction. Taking into Account the Coupling Between DC and AC Characteristics

Silicon Diffused Power Transistor

EE 434 Lecture 12. Process Flow (wrap up) Device Modeling in Semiconductor Processes

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

BJT Biasing Cont. & Small Signal Model

PCM- and Physics-Based Statistical BJT Modeling Using HICUM and TRADICA

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

VBIC Fundamentals. Colin McAndrew. Motorola, Inc East Elliot Rd. MD EL-701 Tempe, AZ USA 1 VBIC

Chapter 5. BJT AC Analysis

A WORK-NOTE on OSCILLATORS - LEARNING by DOING

VALIDATION OF NONLINEAR BIPOLAR TRANSISTOR MODEL

Introduction to Transistors. Semiconductors Diodes Transistors

Status of HICUM/L2 Model

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model

ECE-305: Spring 2018 Final Exam Review

Refinements to Incremental Transistor Model

The Common-Emitter Amplifier

MP6901 MP6901. High Power Switching Applications. Hammer Drive, Pulse Motor Drive and Inductive Load Switching. Maximum Ratings (Ta = 25 C)

Regional Approach Methods for SiGe HBT compact modeling

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model

to Highbury via Massey University, Constellation Station, Smales Farm Station, Akoranga Station and Northcote

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

Non-standard geometry scaling effects

ECE 2201 PRELAB 5B BIPOLAR JUNCTION TRANSISTOR (BJT) FUNDAMENTALS

Silicon Diffused Power Transistor

E2.2 Analogue Electronics

Pushbutton Units and Indicator Lights

Band-bending. EE 436 band-bending 1

Insulated Gate Bipolar Transistor (IGBT)

The Devices. Jan M. Rabaey

Lecture 27: Introduction to Bipolar Transistors

Silicon Diffused Darlington Power Transistor

Transcription:

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L16 07Mar02 1

Gummel-Poon Static npn Circuit Model C RC Intrinsic Transistor B RBB ILC IBR I CC - I EC = B ILE IBF IS(exp(v BE /NFV t ) - exp(v BC /NRV t )/Q B RE E L16 07Mar02 2

Gummel Poon npn Model Equations I BF = IS expf(v BE /NFV t )/BF I LE = ISE expf(v BE /NEV t ) I BR = IS expf(v BC /NRV t )/BR I LC = ISC expf(v BC /NCV t ) I CC - I EC = IS(exp(v BE /NFV t - exp(v BC /NRV t )/Q B Q B = { + + (BF IBF/IKF + BR IBR/IKR) 1/2 } (1 - v BC /VAF - v BE /VAR ) -1 L16 07Mar02 3

VAF Parameter Extraction (fearly) i C = I CC = (IS/Q B )exp(v BE /NFV t ), where I CE = 0, and Q -1 B = (1-v BC /VAF-v BE /VAR )* {IKF terms } -1, so since v BC = v BE - v CE, VAF = i C /[ i C / v BC ] vbe Forward Active Operation L16 07Mar02 4 + - i B v BE i C v CE 0.2 < v CE < 5.0 0.7 < v BE < 0.9 + -

Forward Early Data for VAF At a particular data point, an effective VAF value can be calculated VAF eff = i C /[ i C / v BC ] vbe 0.003 0.002 0.001 v BE = 0.85 V v BE = 0.75 V The most accurate is at v BC = 0 (why?) 0.000 0 1 2 3 4 5 i C (A) vs. v CE (V) L16 07Mar02 5

Forward Early VAf extraction VAF eff = i C /[ i C / v BC ] vbe VAF was set at 100V for this data 105 103 101 v BE = 0.75 V v BE = 0.85 V When v BC = 0 v BE =0.75 VAR=101.2 v BE =0.85 VAR=101.0 99 0 1 2 3 4 VAF eff (V) vs. v CE (V) L16 07Mar02 6

VAR Parameter Extraction (rearly) i E = - I EC = (IS/Q B )exp(v BC /NRV t ), where I CC = 0, and Q -1 B = (1-v BC /VAF-v BE /VAR ) {IKR terms } -1, so since v BE = v BC - v EC, VAR = i E /[ i E / v BE ] vbc Reverse Active Operation L16 07Mar02 7 i B + - v BC i E v EC 0.2 < v EC < 5.0 0.7 < v BC < 0.9 + -

Reverse Early Data for VAR At a particular data point, an effective VAR value can be calculated 0.0006 0.0004 0.0002 v BC = 0.85 V v BC = 0.75 V VAR eff = i E /[ i E / v BE ] vbc The most accurate is at v BE = 0 (why?) 0.0000 0 1 2 3 4 5 i E (A) vs. v EC (V) L16 07Mar02 8

Reverse Early VAR extraction VAR eff = i E /[ i E / v BE ] vbc VAR was set at 200V for this data When v BE = 0 v BC =0.75 VAR=200.5 v BC =0.85 VAR=200.2 204 202 200 198 v BC = 0.75 V v BC = 0.85 V 0 1 2 3 4 VAR eff (V) vs. v EC (V) L16 07Mar02 9

BJT Characterization Forward Gummel v BCx = 0 = v BC + i B R B - i C R C v BEx = v BE +i B R B +(i B +i C )R E i B = I BF + I LE = IS exp(v BE /NFV t )/BF + ISE expf(v BE /NEV t ) i C = F I BF /Q B = IS exp(v BE /NFV t ) (1-v BC /VAF-v BE /VAR ) {IKF terms } -1 v BEx L16 07Mar02 10 + - i B i C R B v BC + + v BE R C - - R E

Sample fg data for parameter extraction 1.E-02 1.E-04 i C data 1.E-06 1.E-08 i B data 1.E-10 1.E-12 0.1 0.3 0.5 0.7 0.9 i C, i B vs. v BEext IS = 10f NF = 1 BF = 100 Ise = 10E-14 Ne = 2 Ikf =.1m Var = 200 Re = 1 Rb = 100 L16 07Mar02 11

Definitions of N eff and IS eff In a region where i C or i B is approximately a single exponential term, then i C or i B ~ IS eff exp (v BEext /(NF eff V t ) where N eff = {dv BEext /d[ln(i)]}/v t, and IS eff = exp[ln(i) - v BEext /(N eff V t )] L16 07Mar02 12

Forward Gummel Data Sensitivities 1.E-02 1.E-04 1.E-06 1.E-08 1.E-10 1.E-12 v BCx = 0 e b i C i B d 0.1 0.3 0.5 0.7 0.9 i C (A),i B (A) vs. v BE (V) a c Region a - IKF IS, RB, RE, NF, VAR Region b - IS, NF, VAR, RB, RE Region c - IS/BF, NF, RB, RE Region d - IS/BF, NF Region e - ISE, NE L16 07Mar02 13

Region (b) fg Data Sensitivities Region b - IS, NF, VAR, RB, RE i C = F I BF /Q B = IS exp(v BE /NFV t ) (1-v BC /VAF-v BE /VAR ) {IKF terms } -1 L16 07Mar02 14

Region (e) fg Data Sensitivities Region e - ISE, NE i B = I BF + I LE = (IS/BF) expf(v BE /NFV t ) + ISE expf(v BE /NEV t ) L16 07Mar02 15

Simple extraction of IS, ISE from data 1.E-10 1.E-12 1.E-14 1.E-16 i C data i B data 0.1 0.3 0.5 0.7 0.9 IS eff vs. v BEext Data set used IS = 10f ISE = 10E-14 Flat IS eff for i C data = 9.99E-15 for 0.230 < v D < 0.255 Max IS eff value for i B data is 8.94E-14 for v D = 0.180 L16 07Mar02 16

Simple extraction of NF, NE from fg data 2.1 1.9 1.7 1.5 1.3 1.1 0.9 i B i C data data 0.1 0.3 0.5 0.7 0.9 NE eff vs. v BEext Data set used NF=1 NE=2 Flat N eff region from i C data = 1.00 for 0.195 < v D < 0.390 Max N eff value from i B data is 1.881 for 0.180 < v D < 0.181 L16 07Mar02 17

Region (d) fg Data Sensitivities Region d - IS/BF, NF i B = I BF + I LE = (IS/BF) expf(v BE /NFV t ) + ISE expf(v BE /NEV t ) L16 07Mar02 18

Simple extraction of BF from data 100 75 50 25 0 1.E-10 1.E-06 1.E-02 i C /i B vs. i C Data set used BF = 100 Extraction gives max i C /i B = 92 for 0.50 V < v D < 0.51 V 2.42 A < i D < 3.53 A Minimum value of N eff =1 for slightly lower v D and i D L16 07Mar02 19

Region (a) fg Data Sensitivities Region a - IKF IS, RB, RE, NF, VAR i C = F I BF /Q B = IS exp(v BE /NFV t ) (1-v BC /VAF-v BE /VAR ) {IKF terms } -1 L16 07Mar02 20

Region (c) fg Data Sensitivities Region c - IS/BF, NF, RB, RE i B = I BF + I LE = (IS/BF) expf(v BE /NFV t ) + ISE expf(v BE /NEV t ) L16 07Mar02 21

BJT Characterization Reverse Gummel v BEx = 0 = v BE + i B R B - i E R E v BCx = v BC +i B R B +(i B +i E )R C i B = I BR + I LC = (IS/BR) expf(v BC /NRV t ) + ISC expf(v BC /NCV t ) i E = R I BR /Q B = IS expf(v BC /NRV t ) (1-v BC /VAF-v BE /VAR ) {IKR terms } -1 L16 07Mar02 22 - + v BCx i B R B i E v BC + + v BE R C - - R E

Sample rg data for parameter extraction 1.E-02 i B data 1.E-04 1.E-06 1.E-08 i E data 1.E-10 0.1 0.3 0.5 0.7 0.9 i E, i B vs. v BCext IS=10f Nr=1 Br=2 Isc=10p Nc=2 Ikr=.1m Vaf=100 Rc=5 Rb=100 L16 07Mar02 23

Definitions of N eff and IS eff In a region where i C or i B is approximately a single exponential term, then i C or i B ~ IS eff exp (v BCext /(NR eff V t ) where N eff = {dv BCext /d[ln(i)]}/v t, and IS eff = exp[ln(i) - v BCext /(N eff V t )] L16 07Mar02 24

Reverse Gummel Data Sensitivities 1.E-02 1.E-04 1.E-06 1.E-08 1.E-10 i B v BCx = 0 e i E b 0.1 0.3 0.5 0.7 0.9 i E (A),i B (A) vs. v BC (V) d c a Region a - IKR IS, RB, RC, NR, VAF Region b - IS, NR, VAF, RB, RC Region c - IS/BR, NR, RB, RC Region d - IS/BR, NR Region e - ISC, NC L16 07Mar02 25

Region (d) rg Data Sensitivities Region d - BR, IS, NR i B = I BR + I LC = IS/BR expf(v BC /NRV t ) + ISC expf(v BC /NCV t ) L16 07Mar02 26

Simple extraction of BR from data 2.0 1.5 1.0 0.5 0.0 1.E-10 1.E-06 1.E-02 i E /i B vs. i E Data set used Br = 2 Extraction gives max i E /i B = 1.7 for 0.48 V < v BC < 0.55V 1.13 A < i E < 14.4 A Minimum value of N eff =1 for same range L16 07Mar02 27

Region (b) rg Data Sensitivities Region b - IS, NR, VAF, RB, RC i E = R I BR /Q B = IS exp(v BC /NRV t ) (1-v BC /VAF-v BE /VAR ) {IKR terms } -1 L16 07Mar02 28

Region (e) rg Data Sensitivities Region e - ISC, NC i B = I BR + I LC = IS/BR expf(v BC /NRV t ) + ISC expf(v BC /NCV t ) L16 07Mar02 29

Simple extraction of IS, ISC from data 1.E-10 1.E-12 1.E-14 1.E-16 i B data i E data 0.2 0.4 0.6 IS eff vs. v BCext Data set used IS = 10fA ISC = 10pA Min IS eff for i E data = 9.96E-15 for v BC = 0.200 Max IS eff value for i B data is 8.44E-12 for v BC = 0.200 L16 07Mar02 30

Simple extraction of NR, NC from rg data 2.1 1.9 1.7 1.5 1.3 1.1 0.9 i B i E data data 0.1 0.3 0.5 0.7 0.9 NE eff vs. v BCext Data set used Nr = 1 Nc = 2 Flat N eff region from i E data = 1.00 for 0.195 < v BC < 0.375 Max N eff value from i B data is 1.914 for 0.195 < v BC < 0.205 L16 07Mar02 31

Region (c) rg Data Sensitivities Region c - BR, IS, NR, RB, RC i B = I BR + I LC = IS/BR expf(v BC /NRV t ) + ISC expf(v BC /NCV t ) L16 07Mar02 32

Region (a) rg Data Sensitivities Region a - IKR IS, RB, RC, NR, VAF i E = R I BR /Q B ~[IS IKR] 1/2 exp(v BC /NRV t ) (1-v BC /VAF-v BE /VAR ) L16 07Mar02 33

RE-flyback data extraction of RE Qintr o.c. v CE R E v CE / i B (from IC-CAP Modeling Reference, p. 6-37) v BE R BB i B B E R E R BM (v BE - v CE )/ i B (adapted by RLC from IC-CAP Modeling Reference, p. 6-39) L16 07Mar02 34

Extraction of RE from refly data 0.08 0.07 0.06 y=7.1373x+0.0517 RE vce/ ib Slope gives RE 7.1 Ohm 0.05 0.04 0.000 0.001 0.002 0.003 vce(v) vs. ib(a) Model data assumed RE = 1 Ohm L16 07Mar02 35

Extraction of RBM from refly data 1.00 y=107.72x+0.6714 RBM (v BE - v CE )/ i B 0.90 0.80 0.70 0.000 0.001 0.002 0.003 vbc(v) vs. ib(a) Slope gives RBM 108 Ohm Model data assumed RB = RBM = 100 Ohm L16 07Mar02 36