Micromeritics SediGraph. Particle Size Data based on Consolidated Certainties

Similar documents
PARTICLE SIZE ANALYTICAL RANGES AND APPLICABILITY. m mm (10-6 m) nm (10-9 m)

Ratio of coccolith CaCO 3 to foraminifera CaCO 3 in late Holocene deep sea sediments

Geoffrey (Jake) Gebbie Research Associate, Harvard University Visiting Scientist, MIT

Holographic Characterization of Agglomerates in CMP Slurries

I. CALCIUM-CARBONATE AND SAND-FRACTION ANALYSIS OF CENOZOIC AND MESOZOIC SEDIMENTS FROM THE MOROCCAN BASIN

An Investigation of Antarctic Circumpolar Current Strength in Response to Changes in Climate. Presented by Matt Laffin

Refractive index determination of single sub micrometer vesicles in suspension using dark field microscopy

QbD QUANTITATIVE MEASUREMENTS OF CQAS IN SOLID DOSAGE FORM UNIT OPERATIONS

This is start of the single grain view

GSA DATA REPOSITORY

Minimal change in Antarctic Circumpolar Current flow speed between the last glacial and Holocene

Processes affecting continental shelves

*To whom correspondence should be addressed: FAX: (886) ;

Announcements. First problem set due next Tuesday. Review for first exam next Thursday. Quiz on Booth (1994) after break today.

A bit of background on carbonates. CaCO 3 (solid)

1 Millimeter. 1 Micron. 1 Nanometer. 1 Angstrom ELECTRON SEPARATION PROCESS COMMON MATERIALS PARTICLE SIZE LOG SCALE MAGNETIC RANGE SPECTRUM

A Broecker Brief Origin of the Atlantic s glacial age lower deep water

Jim Hagerman 4/12/99

Salinity distribution in the Oceans

Site Location (Latitude/ Longitude)

Analysis of Clays and Soils by XRD

Floc Strength Scale-Up: A Practical Approach

The Physical Properties of Sea Water OCEA 101

STABILITY OF PIGMENT INKJET INKS

Seeing the Nano-scale: Nanoparticle Tracking Analysis HVM MNT Expo 2006 Oxford. Jeremy Warren CEO, NanoSight Ltd

BACKSCATTERING BY NON-SPHERICAL NATURAL PARTICLES: INSTRUMENT DEVELOPMENT, IOP S, AND IMPLICATIONS FOR RADIATIVE TRANSFER

Inform is a series of white papers designed to provide advice on material characterization issues. Mie theory The rst 100 years

Introduction to Dynamic Light Scattering for Particle Size Determination

Chapter 4 Implications of paleoceanography and paleoclimate

Application of Micro-Flow Imaging (MFI TM ) to The Analysis of Particles in Parenteral Fluids. October 2006 Ottawa, Canada

SUPPLEMENTARY INFORMATION

Currents & Gyres Notes

Final exam questions ED

FINE-GRAINED INORGANIC SEDIMENT CHARACTERISTICS AND SIZE. Paul Robert Auerbach

429 LIGHT DIFFRACTION MEASUREMENT OF PARTICLE SIZE

Activity of the Month

Introduction to Nanoparticle Tracking Analysis (NTA) Measurement Principle of ZetaView

Going down in the Weddell Sea why deep water formation is of vital importance

Universe. Chapter 6. Optics and Telescopes 8/12/2015. By reading this chapter, you will learn. Tenth Edition

Backscattering and Polarization Properties of Marine Particles -- Instrument Development and Field Work

Marine Sediments EPSS15 Spring 2017 Lab 4

Determination of an Appropriate Method for Dispersion of Soil Samples in Laser Diffraction Particle Size Analyses

Measurements, applications, and impact of the refractive index of extracellular vesicles

New Trends in Shallow Geophysical/Seismic Surveying and Borehole Logging

Method Development. Creating the Perfect Standard Operating Procedure (SOP) 2007 HORIBA, Ltd. All rights reserved.

Universe. Chapter 6. Optics and Telescopes 11/16/2014. By reading this chapter, you will learn. Tenth Edition

MAR 110 LECTURE #10 The Oceanic Conveyor Belt Oceanic Thermohaline Circulation

Particle sizing by multi-wavelength photo-sedimentation

A measurement of the diffuse reflectivity of 1056 Tyvek in air and water

Physics 30: Chapter 5 Exam Wave Nature of Light

Telescopes: Portals of Discovery

Lecture Outlines. Chapter 5. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

PTM: A Lagrangian Particle Tracking Model. Joseph Gailani

DEEP CIRCULATION CHANGES IN THE SOUTH ATLANTIC OCEAN: RESPONSE TO INITIATION OF NORTHERN HEMISPHERIC GLACIATION. A Thesis.

Three-dimensional Visualization and Quantification of Gold Nanomaterial Deposition and Aggregation in Porous Media via Raman Spectroscopy

Item #9: Amphipod Tox Proposal Modification Page 1 of 9

Instrumental Polarization of Telescopes on Alt-Azimuth and Equatorial Mounts

EPSS 15 Fall 2017 Introduction to Oceanography. Marine Sediments

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

Abyssal eddy in the southwest Atlantic

Light scattering Small and large particles

1. Base your answer to the following question on The diagram below represents a part of the crystal structure of the mineral kaolinite.

Impact of the 2002 stratospheric warming in the southern hemisphere on the tropical cirrus clouds and convective activity

1 Carbon - Motivation

Why is the sky blue?

CliffsNotes.com. Stream Erosion. 18 Oct 2012 < ,articleId 9511.html>.

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

Decomposing white light into its components:

Lecture 0 A very brief introduction

Particle size analysis -Chapter 3

13. CHERTS FROM RIO GRANDE RISE SEDIMENTS, DEEP SEA DRILLING PROJECT LEG 72, HOLE 516F 1

Midterm 2: Nov. 20 (Monday)

16. DATA REPORT: CARBONATE

Fundamentals of Particle Counting

The role of ice cores in understanding the dust cycle

Petroleum Thermodynamic Research Group

Particles, drops, and bubbles. Lecture 3

LAB 3: Confocal Microscope Imaging of single-emitter fluorescence. LAB 4: Hanbury Brown and Twiss setup. Photon antibunching. Roshita Ramkhalawon

A New Atmospheric Motion Vector Intercomparison Study

λmax = k d Supplementary Figures

BOTTOM CURRENTS DEPOSITS ALONG THE URUGUAYAN MARGIN: CONCEPTUAL AND ECONOMIC IMPLICATIONS

SUBJECT INDEX. ~ ~5 physico-chemical properties 254,255 Redox potential 254,255

Interpreting Your PSA Results

Supporting Information

Laboratory#6 Sediment Particle Size Distribution and Turbidity Flows

BIO & PHARMA ANALYTICAL TECHNIQUES. Chapter 5 Particle Size Analysis

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

17. DATA REPORT: CARBONATE, ORGANIC CARBON, AND OPAL CONCENTRATIONS SOUTHWEST AFRICA MARGIN 1

Hydrothermal Chemistry/ Reverse Weathering. Marine Chemistry Seminar

Invited paper on the South Atlantic J. Lutjeharms

Marine Sediments. Introductory Oceanography. Ray Rector: Instructor

A laboratory investigation of the mechanical behaviour of a volcanic ash

Does the Mg/Ca in Foraminifera Tests Provide a Reliable Temperature Proxy?

How DLS Works: Interference of Light

Ocean Sediments. Key Concepts

CHAPTER 3 Ocean Basins

Salinity variability associated with changes in the hydrological cycle variables

Arnold L. Gordon Retroflections and Bifurcations Johann Lutjeharms Memorial Lecture

FACTORS AFFECTING IN-LINE PHASE CONTRAST IMAGING WITH A LABORATORY MICROFOCUS X-RAY SOURCE

Transcription:

Micromeritics SediGraph Particle Size Data based on Consolidated Certainties Dr. Michael Frenz Pedology Workshop Napoli, 22.2.211

Outline Size This! Particle Size is a Relative Attribute! Comparison between Methods SediGraph Method Examples from the Atlantic Ocean Saturn DigiSizer II 525 Particle Insight Image Analyser Summary

Size this!

Size this!

Courtesy: C. Vogt, ZEKAM, University Bremen

Micromeritics Techniques SediGraph Saturn Elzone Particle Insight

Glass beads D1 D5 D9 Mode µm µm µm µm 41, 61,6 89,1 63,1 45, 66,9 85, 71,1 45,1 61,7 75,9 67,1 49,5 66,5 82,4 72,4

Garnet D1 D5 D9 Mode µm µm µm µm 16,4 25,4 4,8 25,1 2,1 32,4 53,4 31,8 21,9 29,8 42,8 28,5 19,7 25,6 33,8 24,9

Wollastonite D1 D5 D9 Mode µm µm µm µm 2,7 8,3 18,4 1, 2,9 12,7 53,5 13,4 11,7 23,6 41,3 25,7 5,5 11,1 18,9 12,5

Mica D1 D5 D9 Mode µm µm µm µm 1,5 1,9 27,4 16,8 1,4 14, 39,5 28, 8, 17, 35,2 18,2 1,8 14, 28,9 16,1

Kaolinite Courtesy: C. Vogt, ZEKAM, University Bremen D1 D5 D9 Mode µm µm µm µm -,35 1,5,38,12,65 3,82,42 Top-Cut ~3 µm: 99% <3 µm SediGraph 85% <3 µm Saturn

SediGraph Method X-ray Detector X-ray Source Attenuated X-ray beam Cell

X-ray Intensity (kc/s) SediGraph Method Highest Concentration Reference Cell Position (cm)

SediGraph III 512 Sedimentation Simple, well understood Theory: Lambert-Beer Law, Stokes Law Representative sample amount Range,1-3 µm Weight-% <d min High Resolution Easy Maintenance

SediGraph Data in Sedimentology Examples from Suolo di Mare

Water Wassertiefe Depth (m) (m) Alter Age (ka) Terr. Silt ( ) Estimating Current Velocities from Particle Size Terr. Silt ( ) 6 5.6-2 -3 VC -4 5 5 5.4 5.8-5 -6-5 -4 Today 18 ka BP 1 6.2 NADW 3 35 4 15 AABW 45 5 Ledbetter & Johnson 1976 Vema Channel

Frequency Estimating Current Velocities from Particle Size Sortable Silt Current Velocity < 5 cm/s 1-15 cm/s > 15 cm/s 1 1 1 Particle Size (µm) Robinson & McCave 1994, McCave et al. 1995 Rockall Plateau

Unravel Sediment Input Smith & Sandwell (1997), Wessel & Smith (1998)

Water Depth (m) Latitude Unravel Sediment Input -2 Water Mass Distribution BC AABW NADW Antarctic Bottom Water North Atlantic Deep Water -3 MC Malvinas- (Falkland-) Current -4 MC B M C AABW Argentinien- Becken BC BMC 1 2 3 4 5 MC Brazil Current Brasil-Malvinas-Confluence BMC NADW AABW BC -5-6 -5 Longitude -4 6-4 -3-2 Modified from Piola & Matano 21

Wassertiefe (m) Unravel Sediment Input -2 B B -25 95 9 8 CaCO 3 (wt-%) 3 2.5 C org (wt-%) 7-3 6 5 4 2 1.5-35 3 2 1 1.5-4 5-45 A A -5-65 A -6-55 -5-45 -4 B A -65-6 -55-5 -45-4 B 1 2 3 4 5 6-45 -4-35 -3-25 -2-45 -4-35 -3-25 -2 Frenz et al. 24

Frequency Haufigkeit (wt-% (% /,1 /,1 ) ) 8 Unravel Sediment Input EM1: Bottom & Residual Sediment Korngröße (µm) Particle Size (µm) 6 4 2 1 8 6 4 2-2 -25-3 -35 B % 9 7 6-4 5 4-45 3 2-5 -65 A -6-55 -5-45 -4 1 2 A B 1 4 5 6 7 8 9 Korngröße ( ) Particle Size ( ) 3 4 5 6-45 -4-35 -3-25 -2 Frenz et al. 24

Frequency Haufigkeit (wt-% (% /,1 /,1 ) ) Unravel Sediment Input EM2: Coarse Suspension Korngröße (µm) Particle Size (µm) 6 4 2 1 8 6 4 2-2 -25-3 B % 9 8-35 7 6-4 5 4-45 3 2 A -5-65 A -6-55 -5-45 -4 1 2 B 1 4 5 6 7 8 9 Korngröße ( ) Particle Size ( ) 3 4 5 6-45 -4-35 -3-25 -2 Frenz et al. 24

Frequency Haufigkeit (wt-% (% /,1 /,1 ) ) Differentiate Sediment Input EM3: Fine Suspension Korngröße (µm) Particle Size (µm) 6 4 2 1 8 6 4 2-2 -25-3 B % 9 8-35 7 6-4 5 4-45 3 2 A -5-65 A -6-55 -5-45 -4 1 2 B 1 4 5 6 7 8 9 Korngröße ( ) Particle Size ( ) 3 4 5 6-45 -4-35 -3-25 -2 Frenz et al. 24

Quantifying Carbonate Smith & Sandwell (1997), Wessel & Smith (1998) Frenz et al. 25

Häufigkeit Frequency (Gew.-% (wt-% / /,1 ) ) Differentiating Particle Size of Components Particle Size (µm) Korngröße (µm) 6 4 2 1 8 6 4 2 5 4 3 2 1 Terrigenous Silt Bulk (TS) Silt 4 5 6 7 8 9 Korngröße ( ) Particle Size ( ) Paull et al. 1988, Robinson & McCave 1994, Frenz et al. 25

Häufigkeit Frequency (Gew.-% (wt-% / /,1 ) ) Differentiating Particle Size of Components Particle Size (µm) Korngröße (µm) 6 4 2 1 8 6 4 2 5 4 3 2 Carbonate Silt 1 TS relative (21%) 4 5 6 7 8 9 Korngröße ( ) Particle Size ( ) Paull et al. 1988, Robinson & McCave 1994, Frenz et al. 25

Häufigkeit Frequency (Gew.-% (wt-% /,1 ) 1-1 -2-3 -4 Quantifying Carbonate -5-3 -2-1 1 Equatorial MAR Central MAR Southern MAR 6 4 2 8 6 4 2 8 6 4 2 Particle Size (µm) Korngröße (µm) 6 4 2 18 6 4 2 8 4 5 6 7 8 9 Korngröße ( ) Particle Size ( ) Frenz et al. 25

Quantifying Carbonate Silt 5 µm 1 µm Clay 5 µm 5 µm Frenz et al. 24

Quantifying Carbonate Silt 5 µm 1 µm Silt 5 µm 1 µm Frenz et al. 24

Breite Quantifying Carbonate Foraminifer Carbonate Coccolith Carbonate 1-1 -2-3 -4-5 -3-2 -1 1 Länge 1 75 5 25 wt-% -3-2 -1 1 Länge Frenz et al. 25

Wassertiefe Water Depth (m) (m) Häufigkeit Frequency (Gew.-% (wt-% /,1 ) 2 3 4 5 6 Quantifying Carbonate Modalkorngröße (µm) Modal Particle Size (µm) 6 4 2 1 8 6 4 2 CaCO 3 Dissolution 4 5 6 7 8 9 Modal Particle Size ( ) Modalkorngröße ( ) 8 6 4 2 8 6 4 2 8 6 4 2 Particle Size (µm) Korngröße (µm) 6 4 2 18 6 4 2 4 5 6 7 8 9 Korngröße ( ) Particle Size ( ) Frenz et al. 25, Frenz & Henrich 27

Quantifying Carbonate E. huxleyi Nominal Size 1 µm Frenz et al. 25

Häufigkeit (Gew.-% /,1 ) Häufigkeit Quantifying Carbonate Korngröße (µm) 1 5 3 2 1 5 3 2 1 F. profunda E. huxleyi U. sibogae H. carteri R. clavigera C. leptoporus (A+C) 2 16 12 8 4 Electron Microscope C. leptoporus (B) 6 4 SediGraph Deconvolution 2 3 4 5 6 7 8 9 1 Korngröße ( ) Frenz et al. 25

Breite Häufigkeit (Gew.-%) 1 Quantifying Carbonate Korngröße (µm) 1 5 3 2 1 5 3 2 6 4 2 1-1 6-2 -3-4 4 2 6 4 2-5 -3-2 -1 1 Länge 3 4 5 6 7 8 9 1 Korngröße ( ) Frenz et al. 25

Laser Light Scattering Mie-Theory Reflection Diffraction Refraction Scattering pattern Intensity vs Angle

Saturn DigiSizer II 525 Highlights: Detector: CCD 3,4 Megapixel 14 angle positions (-65 ), multiple exposure High resolution from low to high angles 591 real data points (intensity vs angle) Range:,4 µm 25 µm Optional AquaPrep degasser

Saturn DigiSizer II 525 Highlights: Detector: CCD 3,4 Megapixel 14 angle positions (-65 ), multiple exposure High resolution from low to high angles 591 real data points (intensity vs angle) Range:,4 µm 25 µm Optional AquaPrep degasser

Relative Intensity Saturn DigiSizer II 525 Measured Intensity Model Intensity Calcium Carbonate Goodness of Fit Reference Material Weighted Residual =.19% 5 1.5.1

Incremental Volume Percent Saturn DigiSizer II 525 Test 3 Test 1 Test 2 Calcium Carbonate Reference Material Incremental Volume Percent vs. Particle Diameter Gra 2.5 2. 1.5 1..5

Relative Intensity Saturn DigiSizer II 525 Goodness of Fit 5, Measured Intensity Model Intensity Weighted Residual =.76% Glass Beads 44-53 & 125-149 µm 1, 5, 1, 5 1 5 1 5

Incremental Volume Percent Saturn DigiSizer II 525 12 Test 4 Test 1 Test 2 Test 3 Glass Beads 44-53 & 125-149 µm Incremental Volume Percent vs. Particle Diameter Graph 11 1 9 8 7 6 5 4 3

Relative Intensity 1 Saturn DigiSizer II 525 Measured Intensity Model Intensity Goodness of Fit 16 µm Latex Weighted Residual = 8.38% 1, 1, 1 1

Incremental Volume Percent Saturn DigiSizer II 525 Test 8 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 16 µm Latex Incremental Volume Percent vs. Particle Diameter Gra 6 5 4 3 2

Particle Insight Particle Size & Particle Shape Dynamic digital image analysis Up to 3 frames per second 28 particle size and shape models in real time Sample re-circulation Telecentric Lense Working range 3-3 (8-8) µm Comprehensive post-run data reduction

Post-run Processing: Thumbnails Parameter distributions Correlation plots Particle Insight

Summary Size matters! Method matters! Hydrodynamic Size in Geosciences Resolution matters! Applications: Unraveling Sediment Input and Distribution Differentiating and Quantifying Components Deconvoluting Microfossil Species Tracking Carbonate Dissolution Micromeritics: Four high-resolution Methods Sedimentation: SediGraph III 512 Laser Light Scattering: Saturn DigiSizer II 525 Image Analysis: Particle Insight Electric Sensing: ElZone 539

Grazie!