Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators

Similar documents
Additional material: Linear Differential Equations

Limits for BC Jacobi polynomials

arxiv: v2 [math.ca] 7 Mar 2008

Some Summation Theorems for Generalized Hypergeometric Functions

The ABC of hyper recursions

MATH 543: FUCHSIAN DIFFERENTIAL EQUATIONS HYPERGEOMETRIC FUNCTION

SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm. Abstract

Math Homework 2

Harmonic Mappings and Shear Construction. References. Introduction - Definitions

QMI Lesson 19: Integration by Substitution, Definite Integral, and Area Under Curve

An Analysis of Five Numerical Methods for Approximating Certain Hypergeometric Functions in Domains within their Radii of Convergence

Math 111 lecture for Friday, Week 10

Notes on character sums and complex functions over nite elds

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

PHYS 404 Lecture 1: Legendre Functions

INTEGRATION: THE FUNDAMENTAL THEOREM OF CALCULUS MR. VELAZQUEZ AP CALCULUS

Zhedanov s Askey-Wilson algebra, Cherednik s double affine Hecke algebras, and bispectrality. lecture 3: Double affine Hecke algebras.

Barnes integral representation

Elena Gogovcheva, Lyubomir Boyadjiev 1 Dedicated to Professor H.M. Srivastava, on the occasion of his 65th Birth Anniversary Abstract

Outline. Asymptotic Expansion of the Weyl-Titchmarsh m Function. A Brief Overview of Weyl Theory I. The Half-Line Sturm-Liouville Problem

ON THE C-LAGUERRE FUNCTIONS

Positivity of Turán determinants for orthogonal polynomials

Properties of orthogonal polynomials

ULTRASPHERICAL TYPE GENERATING FUNCTIONS FOR ORTHOGONAL POLYNOMIALS

A finite element solution for the fractional equation

Properties of the Scattering Transform on the Real Line

The Riemann Hypothesis Project summary

MA22S3 Summary Sheet: Ordinary Differential Equations

On character sums and complex functions over nite elds

INTEGRAL REPRESENTATION OF A SOLUTION OF HEUN S GENERAL EQUATION

arxiv: v1 [math.ca] 3 Aug 2008

Transformation formulas for the generalized hypergeometric function with integral parameter differences

HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES

arxiv:math/ v1 [math.ca] 21 Mar 2006

arxiv:math/ v1 [math.ca] 7 May 2002

A FEW REMARKS ON THE SUPREMUM OF STABLE PROCESSES P. PATIE

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

Monotonicity formulas for variational problems

Asymptotics of integrals

Closed-form Second Solution to the Confluent Hypergeometric Difference Equation in the Degenerate Case

ASYMPTOTIC EXPANSIONS

New series expansions of the Gauss hypergeometric function

On the Weyl symbol of the resolvent of the harmonic oscillator

Oberwolfach Preprints

Lecture 3: Initial and boundary value problems in 1 dimension

Lecture 04: Balls and Bins: Birthday Paradox. Birthday Paradox

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Generalized Hankel-Schwartz Type Transformations on L p,ν Spaces of Distributions

Announcements. Topics: Homework:

arxiv:math/ v1 [math.ca] 9 Jul 1993

Euler and the modern mathematician. V. S. Varadarajan Department of Mathematics, UCLA. University of Bologna

Bernoulli Polynomials

Applications of the Maximum Principle

Daily Update. Math 290: Elementary Linear Algebra Fall 2018

IMPROVEMENTS OF COMPOSITION RULE FOR THE CANAVATI FRACTIONAL DERIVATIVES AND APPLICATIONS TO OPIAL-TYPE INEQUALITIES

Joseph B. Keller and Ravi Vakil. Department of Mathematics. Stanford University, Stanford, CA February 15, 2008

e Hypergeometric Fun ion and the Papperitz Equation

arxiv: v1 [math.ca] 28 Feb 2014

Alphonse Magnus, Université Catholique de Louvain.

G: Uniform Convergence of Fourier Series

On the singularities of non-linear ODEs

Exploring Substitution

arxiv: v1 [math.ca] 18 Feb 2009

MATH 425, FINAL EXAM SOLUTIONS

ODD MAGNE OGREID AND PER OSLAND

Relevant sections from AMATH 351 Course Notes (Wainwright): 1.3 Relevant sections from AMATH 351 Course Notes (Poulin and Ingalls): 1.1.

From the N-body problem to the cubic NLS equation

McGill University Department of Mathematics and Statistics. Ph.D. preliminary examination, PART A. PURE AND APPLIED MATHEMATICS Paper BETA

Elliptic functions. MATH 681: Lecture Notes. Part I. 1 Evaluating ds cos s. 18 June 2014

Math 312 Lecture Notes Linearization

Partial Differential Equations

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

arxiv: v3 [quant-ph] 1 Jul 2013

arxiv: v1 [math.ca] 31 Dec 2018

An integral formula for L 2 -eigenfunctions of a fourth order Bessel-type differential operator

The Free Central Limit Theorem: A Combinatorial Approach

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)

Announcements. Topics: Homework:

Announcements. Topics: Homework:

arxiv: v1 [math.pr] 6 Jan 2014

Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions

Applications of Computer Algebra to the Theory of Hypergeometric Series

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E,

Topics in fractional Brownian motion

Fractional part integral representation for derivatives of a function related to lnγ(x+1)

Math Spring Practice for the Second Exam.

Notes on Special Functions

Analogues for Bessel Functions of the Christoffel-Darboux Identity

Lecture Notes for Math 251: ODE and PDE. Lecture 30: 10.1 Two-Point Boundary Value Problems

q GAUSS SUMMATION VIA RAMANUJAN AND COMBINATORICS

1 Assignment 1: Nonlinear dynamics (due September

Four Point Functions in the SL(2,R) WZW Model

Math Calculus I

MATH 196, SECTION 57 (VIPUL NAIK)

Title Project Summary

PLEASE LET ME KNOW IF YOU FIND TYPOS (send to

Exact fundamental solutions

Chebyshev polynomial approximations for some hypergeometric systems

Multiple orthogonal polynomials. Bessel weights

Project 1: Riemann Sums

Transcription:

Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators Korteweg-de Vries Institute, University of Amsterdam T.H.Koornwinder@uva.nl https://staff.fnwi.uva.nl/t.h.koornwinder/ Lecture at the International Conference on Orthogonal Polynomials and q-series, Orlando, Florida, May 10 12, 2015 on the occasion of the 70th birthday of Mourad Ismail Last modified: May 11, 2015

Oberwolfach workshop Combinatorics, 4 10 May 1980

École d Été d Analyse Harmonique, Tunis, August September 1984: excursion to Cap Bon

Tunisia, September 1984: trip to Kairouan (with René Beerends)

About this talk see the preprint arxiv:1504.08144v2 [math.ca], 7 May 2015

Fractional integrals Riemann-Liouville fractional integral: (I µ f )(x) := 1 x f (y) (x y) µ 1 dy (Re µ > 0). Γ(µ) a Weyl fractional integral: (W µ f )(x) := 1 Γ(µ) x f (y) (y x) µ 1 dy (Re µ > 0). ( ) d n (I n f )(x) = f (x), dx ( ) d n (W n f )(x) = ( 1) n f (x). dx

Gauss hypergeometric function 2F 1 c ; z := k=0 (a) k (b) k (c) k k! z k ( z < 1). It has a one-valued analytic continuation to C\[1, ). Hypergeometric equation: D a,b,c 2 F 1 c ; z = 0, where (D a,b,c f )(z) := z(1 z)f (z) + (c (a + b + 1)z)f (z) ab f (z). Then f (z) := 2 F 1 c ; z is the unique solution of D a,b,c f = 0 which is regular and equal to 1 at z = 0.

Fractional integrals and hypergeometric functions Bateman s integral (1909): 1 t c 1 2F 1 c ; tz (1 t) µ 1 dt = Γ(c)Γ(µ) Γ(c + µ) 2 F 1 c + µ ; z 0 As fractional integral: 1 Γ(µ) x 0 y c 1 2F 1 c ; y (z C\[1, ), Re c > 0, Re µ > 0). = Γ(c) Γ(c + µ) x c+µ 1 2F 1 Fractional generalization of: ( ) d n ( ( )) a, b x c+n 1 2F 1 dx c + n ; x (x y) µ 1 dy c + µ ; x (0 < x < 1, Re c > 0, Re µ > 0). = Γ(c + n) Γ(c) x c 1 2F 1 c ; x.

Fractional integrals and hypergeom. functions (cntd.) Askey-Fitch integral (1969): 1 x y a µ 1 2F 1 Γ(µ) 0 c ; y (x y) µ 1 dy = Γ(a µ) Γ(a) Fractional generalization of: ( ) d n ( ( )) a n, b x a 1 2F 1 ; x dx c ( a µ, b x a 1 2F 1 ; x c ) (0 < x < 1, Re a > Re µ > 0). = Γ(a) Γ(a n) x a n 1 2F 1 c ; x.

Fractional integrals and hypergeom. functions (cntd.) Camporesi integral (2014, he gave a special case). Rewrite the Askey-Fitch integral as 1 x ( y) a 2F 1 Γ(µ) c ; y 1 (x y) µ 1 dy = Γ(a µ) Γ(a) and twice apply ( ) a µ, b ( x) a+µ 2F 1 ; x 1 c (x < 0) ( ) ( ) a, b 2F 1 c ; x Γ(c)Γ(b a) a, 1 c + a = Γ(b)Γ(c a) ( x) a 2F 1 1 b + a ; x 1 ( ) + a b (x < 0). Then:

Fractional integrals and hypergeom. functions (cntd.) Camporesi integral: 1 x 2F 1 Γ(µ) c ; y = Γ(a µ) Γ(a) Γ(b µ) Γ(b) Fractional generalization of: (x y) µ 1 dy ( Γ(c) a µ, b µ Γ(c µ) 2 F 1 c µ ) ; x (x < 1, Re a, Re b > Re µ > 0). ( ) d n 2F 1 dx c ; x = (a) ( ) n(b) n a + n, b + n 2F 1 ; x. (c) n c + n

Fractional integrals and hypergeom. functions (cntd.) The three fractional integrals of Bateman, Askey-Fitch and Camporesi have respectively two, one, and two variants by applying the following transformation formulas on both sides: 2F 1 c ; z 2F 1 c ; z ( a, c b = (1 z) a 2F 1 ; c z z 1 ( c a, c b = (1 z) c a b 2F 1 ; z c The parameter shift patterns of these eight formulas are: I. Bateman: c+; a+, c+; a+, b+, c+ II. Askey-Fitch: a ; a+ III. Camporesi: a, b, c ; a, c ; c ) ) (z / [1, )), (z / [1, )). They are the fractional analogues of the eight parameter shifting n-th derivative formulas for hypergeometric functions.

Euler integral representation 2F 1 c ; z = As fractional integral: 2F 1 c ; x = Γ(c) Γ(b)Γ(c b) 1 0 t b 1 (1 t) c b 1 (1 tz) a dt (z C\[1, ), Re c > Re b > 0). Γ(c) x 1 c x y b 1 (1 y) a (x y) c b 1 dy Γ(b)Γ(c b) 0 (0 < x < 1, Re c > Re b > 0). This is the case c = b of Bateman s integral: 2F 1 c ; x = Γ(c) x 1 c x ( ) Γ(c c )Γ(c y c 1 a, b 2 F 1 ) 0 c ; y (x y) c c 1 dy.

Proof by transmutation Write D a,b,c;x for D a,b,c acting on a function of x. We can prove the transmutation identity: D a,b,c;x ( x 1 c x 0 ) y c 1 f (y) (x y) c c 1 dy x = x 1 c y c 1 (D a,b,c f )(y) (x y) c c 1 dy. 0 In particular for c = b (Euler integral representation). In the identity, if D a,b,c f = 0 then the integral on the left-hand side is annihilated by D a,b,c;x. Regularity and value at x = 0 of the integral follows from regularity and value at 0 of f.

History of transmutation An operator T is a transmutation operator between differential operators D 1 and D 2 if D 1 T = T D 2. Pioneers are J. Delsarte (1938), Levitan (1951) and J. L. Lions (1956). A typical example is: D 2 = d 2 /dx 2, Then: (Tf )(x) = D 1 = d 2 /dx 2 + (2α + 1)x 1 d/dx (Bessel). 2Γ(α + 1) x π Γ(α + 1 2 ) x 2α f (y) (x 2 y 2 ) α 1 2 dy (Re α > 1 2 ). 0 If f (x) = cos(λx) then ( ) (Tf )(x) = J α (λx) := 0 F 1 α + 1 ; (λx)2. 4

Proof by transmutation (cntd.) For the proof of the transmutation identity D a,b,c;x ( x 1 c x 0 ) y c 1 f (y) (x y) c c 1 dy x = x 1 c y c 1 (D a,b,c f )(y) (x y) c c 1 dy we need two preliminary results: 1. The formal adjoint of D a,b,c is D 1 a,1 b,2 c. 2. A PDE for the fractional integral kernel: y 1 c D 1 a,1 b,2 c ;y 0 (y c 1 (x y) c c 1 ) = x c 1 D a,b,c;x (x 1 c (x y) c c 1 ).

Proof by transmutation (cntd.) Now we have formally: ( x ) D a,b,c;x x 1 c f (y) y c 1 (x y) c c 1 dy = x 0 0 f (y) y c 1 D a,b,c;x (x 1 c (x y) c c 1 ) dy x ( ) = x 1 c f (y) D 1 a,1 b,2 c ;y y c 1 (x y) c c 1 dy 0 x = x 1 c (D a,b,c f )(y) y c 1 (x y) c c 1 dy. 0 All steps can be made rigorous for f regular and Re c and Re (c c ) sufficiently large. Then relax the constraints by analytic continuation.

Key observation Our proof of the transmutation identity works also for other integration boundaries: ( ) M D a,b,c;x x 1 c y c 1 f (y) x y c c 1 dy m M = x 1 c y c 1 (D a,b,c f )(y) x y c c 1 dy. m Here m and M are two consecutive points where the integrand sufficiently vanishes. Such points may be x (but not necessarily), and also or. So another solution of D a,b,c f = 0 and/or other integration boundaries may yield another solution of D a,b,c g = 0. This works also for the integrands of the other seven fractional integral transforms.

Key observation (cntd.) In particular Euler type integral representations by M g(x) = x 1 c y b 1 1 y a x y c b 1 dy m M (D a,b,c g)(x) = x 1 c y b 1 D a,b,b;y ( 1 y a) x y c b 1 dy = 0. This works for: m (m, M) (, x) (, 0) (x, 0) (0, x) (0, 1) x (, 0) (0, ) (, 0) (0, 1) (, 0) (m, M) (0, 1) (x, 1) (1, x) (1, ) (x, ) x (1, ) (0, 1) (1, ) (, 1) (1, )

Six solutions of the hypergeometric equation For real x: w 1 (x; a, b, c) = 2 F 1 c ; x (x (, 1)), ( ) a c + 1, b c + 1 w 2 (x; a, b, c) = x 1 c 2F 1 ; x (x (, 1)), 2 c ( ) a, a c + 1 w 3 (x; a, b, c) = x a 2F 1 a b + 1 ; x 1 (x / [0, 1]), ( ) b, b c + 1 w 4 (x; a, b, c) = x b 2F 1 b a + 1 ; x 1 (x / [0, 1]), ( ) a, b w 5 (x; a, b, c) = 2 F 1 a + b c + 1 ; 1 x (x (0, )), ( ) c a, c b w 6 (x; a, b, c) = 1 x c a b 2F 1 c a b + 1 ; 1 x (x (0, )).

Euler type integral representations for the solutions Integrand x 1 c y b 1 1 y a x y c b 1 : Γ(c) x 1 c w 1 (x; a, b, c) = y b 1 (1 y) a x y c b 1 dy Γ(b)Γ(c b) w 3 (x; a, b, c) = 0<y/x<1 (x < 1, Re c > Re b > 0), Γ(a b + 1) x 1 c y b 1 y 1 a y x c b 1 dy Γ(a c + 1)Γ(c b) y/x>1 (x / [0, 1], Re (a c + 1) > 0, Re (c b) > 0), Γ(c a b + 1) w 6 (x; a, b, c) = Γ(1 a)γ(c b) x 1 c 0< 1 y 1 x <1 y b 1 (1 y) a x y c b 1 dy (x > 0, Re (c b) > 0, Re a < 1).

Euler type integral reps for the solutions (cntd.) Integrand y a c 1 y c b 1 x y a : w 2 (x; a, b, c) = w 4 (x; a, b, c) = w 6 (x; a, b, c) = Γ(2 c) Γ(a c + 1)Γ(1 a) 0<y/x<1 y a c (1 y) c b 1 x y a dy Γ(b a + 1) Γ( a)γ(b + 1) (x < 1, Re a, Re (c a) < 1), y/x>1 y a c y 1 c b 1 y x a dy (x / [0, 1], Re a < 1, Re b > 0), Γ(c a b + 1) y a c 1 y c b 1 x y a dy Γ(1 a)γ(c b) 0< 1 y 1 x <1 (x > 0, Re (c b) > 0, Re a < 1).

Aleksei Letnikov (1837 1888)

Aleksei Letnikov (cntd.) A. V. Letnikov, Research related to the theory of integrals of the form x 0 (x u)p 1 f (u)du. Chapter III, Application to the integration of certain differential equations (in Russian), Mat. Sbornik. 7 (1874), no. 2, 111 205. This paper contains already the Euler type integral relations for the various solutions of the hypergeometric equation. Letnikov essentially used the transmutation method. The paper remained unknown outside Russia. Mat. Sbornik was not reviewed in JFM before 1900. I thank Sergei Sitnik for bringing this work to my attention. Letnikov is only mentioned in literature in connection with the Grünwald-Letnikov fractional derivative.

Fractional integrals for other solutions Recall the eight parameter shift patterns for which we got fractional integral tranformation formulas for the solution w 1 : c+; a+, c+; a+, b+, c+; a ; a+; a, b, c ; a, c ; c Each of the other solutions w j has also a fractional integral transformation formula for each of these eight patterns, and for each pattern the formula for each w j has the same integrand, but the integration boundaries vary. Furthermore, each Euler type integral representation for some w j is a special case of some fractional integral transformation for that w j.

Generalized Stieltjes transform Widder (1938), for z C\(, 0]: dα(t) φ(t) α f : f (z) = 0 (z + t) ρ or φ f : f (z) = 0 (z + t) ρ dt. For ρ = 1 the classical Stieltjes transform. Here we will denote by the generalized Stieltjes transform a map f g : g(x) = M m f (y) y x µ 1 dy (x R\[m, M]), where (m, M) is (, 0) or (0, 1) or (1, ).

Generalized Stieltjes from Euler type integral rep. 2F 1 c ; x = Γ(c) x 1 c x y b 1 (1 y) a (x y) c b 1 dy Γ(b)Γ(c b) 0 (0 < x < 1, Re c > Re b > 0). Replace x by x 1 and then substitute y y/x: 2F 1 c ; x 1 = Γ(c) Γ(b)Γ(c b) x a 1 0 y b 1 (1 y) c b 1 (x y) a dy (x > 1, Re c > Re b > 0). In this way obtain three Euler type integral representations with integrand y a c 1 y c b 1 x y a as generalized Stieltjes transforms, and three other with integrand x 1 c y b 1 1 y a x y c b 1.

Generalized Stieltjes with Bateman type integrand = 0 ( y) c 1 w 1 (y; a, b, c) (x y) µ 1 dy Γ(a c µ + 1)Γ(b c µ + 1)Γ(c) Γ(a + b c µ + 1)Γ(1 µ) x c 1+µ w 5 (x; a, b, c+µ) (x > 0, Re (a c µ + 1), Re (b c µ + 1), Re (c) > 0). The left-hand side has the same integrand as Bateman s integral. That x 1 c µ times the right-hand side is annihilated by D a,b,c+µ;x can be expected by the transmutation argument. Thus 24 generalized Stieltjes transforms mapping a w i to a w j can be obtained which all have a same integrand as one of the fractional integral transforms sending some w i to itself. They all follow from each other by applying standard tranformation formulas for the hypergeometric function to the left-hand side and/or right-hand side.

Gener. Stieltjes with Bateman type integrand (cntd.) The box in row w i and column w j gives the parameter shift pattern of the generalized Stieltjes transform sending w i to w j : w 1 w 2 w 3 w 4 w 5 w 6 w 1 b+, c+ a+, c+ c+ a+, b+, c+ w 2 a, c b, c a, b, c c w 3 b, c a+, c+ b a+ w 4 a, c b+, c+ a b+ w 5 c a+, b+, c+ b+ a+ w 6 a, b, c c+ a b The six Euler type integral representations which are generalized Stieltjes transforms can be obtained by specialization of some of the above formulas.

Generalized Stieltjes transform sending 2 F 1 to 3 F 2 The following formula by Karp & Sitnik (2009) will imply all our 24 generalized Stieltjes transform formulas: 1 0 ( ) d c, e c t b 1 (1 t) d+e b c 1 2F 1 d + e b c ; 1 t (1 tz) a dt ) = Γ(b)Γ(c)Γ(d + e b c) Γ(d)Γ(e) 3F 2 ( a, b, c d, e ; z (z C\[1, ), Re b, Re c, Re (d + e b c) > 0). For the proof expand (1 tz) a and evaluate 1 0 ( ) d c, e c t d+e b c 1 (1 t) b+k 1 2F 1 d + e b c ; t dt by Bateman s integral and the Gauss summation formula. For d = a the 3 F 2 becomes a 2 F 1.

Stieltjes tranform sending P (α,β) n to Q (α,β) n A classical formula in Szegö s book gives for x > 1: 1 1 (1 t) α (1+t) β P(α,β) n (t) dt = const. (x 1) α (x +1) β Q (α,β) n (x). x t For n complex the right-hand side would be by the Karp-Sitnik formula a 3 F 2. It specializes to a 2 F 1 for n a nonnegative integer.

Appell hypergeometric F 2 F 2 (a; b, b ; c, c ; x, y) := m,n=0 (a) m+n (b) m (b ) n (c) m (c ) n m! n! x m y n ( x + y < 1). Let := {(x, y) R 2 x, y 0, x + y < 1}. For (x, y), Re b, Re b, Re (c b), Re (c b ) > 0 we have an Euler type double integral representation: F 2 (a; b, b ; c, c ; x, y) = 1 1 0 0 Γ(c)Γ(c ) Γ(b)Γ(b )Γ(c b)γ(c b ) u b 1 v b 1 (1 u) c b 1 (1 v) c b 1 (1 ux vy) a du dv Γ(c)Γ(c ) = Γ(b)Γ(b )Γ(c b)γ(c b ) x 1 c y 1 c x u=0 y v=0 u b 1 v b 1 (1 u v) a (x u) c b 1 (y v) c b 1 du dv. Double fractional integral transformation.

Appell hypergeometric F 2 (cntd.) F 2 (a; b, b ; b, b ; u, v) = (1 u v) a. The Euler type double integral representation is a special case of a Bateman type double integral: x u=0 y v=0 = Γ(c) Γ(c + µ) u c 1 v c 1 F 2 (a; b, b ; c, c ; u, v) (x u)µ 1 (y v) µ 1 Γ(µ) Γ(µ du dv ) Γ(c ) Γ(c + µ ) x c+µ 1 y c +µ 1 F 2 (a; b, b ; c + µ, c + µ ; x, y) (x, Re c, Re c, Re µ, Re µ > 0).

Appell hypergeometric F 2 (cntd.) PDE s for F 2 : D a,b,c;x,y := x(1 x) xx + ( c (a + b + 1)x ) x ab (x x + b) y y ) D a,b,c;x,y (F 2 (a; b, b ; c, c ; x, y) = 0, ( ) F 2 (a; b, b ; c, c ; x, y) = 0. D a,b,c ;y,x Proof by transmutation of Bateman-type double integral works. In particular in special case of Euler-type double integral representation. Then changing the integration region should give double integral representations of other solutions of PDE s.

Appell hypergeometric F 2 (cntd.) Indeed, for x, y > 0, x + y < 1 and for Re b, Re b, Re (c b), Re (c b ) > 0 we saw F 2 (a; b, b ; c, c Γ(c)Γ(c ) ; x, y) = Γ(b)Γ(b )Γ(c b)γ(c b ) x 1 c y 1 c x y u b 1 v b 1 (1 u v) a (x u) c b 1 (y v) c b 1 du dv, u=0 v=0 and for x, y > 1 and Re b, Re b, Re (1 a) > 0 we have x b y b F 3 (b, b ; 1 + b c, 1 + b c ; b + b a + 1; x 1, y 1 ) = Γ(b + b a + 1) Γ(b)Γ(b )Γ(1 a) x 1 c y 1 c u b 1 v b 1 (1 u v) a (x u) c b 1 (y v) c b 1 du dv, where F 3 (a, a ; b, b ; c; x, y) := m,n=0 (a) m (a ) n (b) m (b ) n (c) m+n m! n! x m y n ( x, y < 1).

Mourad, I wish you many years to come in discussing math with many people.