Cold fermions, Feshbach resonance, and molecular condensates (II)

Similar documents
BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Fermi Condensates ULTRACOLD QUANTUM GASES

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

A study of the BEC-BCS crossover region with Lithium 6

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Reference for most of this talk:

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

BEC and superfluidity in ultracold Fermi gases

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

Condensation of pairs of fermionic lithium atoms

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Lecture 4. Feshbach resonances Ultracold molecules

A Mixture of Bose and Fermi Superfluids. C. Salomon

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Superfluidity in interacting Fermi gases

From laser cooling to BEC First experiments of superfluid hydrodynamics

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Experiments with an Ultracold Three-Component Fermi Gas

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Search. Search and Discovery Ultracold Fermionic Atoms Team up as Molecules: Can They Form Cooper Pairs as Well? 1 of 10 11/12/2003 4:57 PM

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

A Mixture of Bose and Fermi Superfluids. C. Salomon

Confining ultracold atoms on a ring in reduced dimensions

Lecture 3. Bose-Einstein condensation Ultracold molecules

Superfluidity and Superconductivity Macroscopic Quantum Phenomena

Contents Ultracold Fermi Gases: Properties and Techniques Index

Ultracold molecules - a new frontier for quantum & chemical physics

High-Temperature Superfluidity

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Fermi gases in an optical lattice. Michael Köhl

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Vortices and other topological defects in ultracold atomic gases

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

Experimental realization of BCS-BEC crossover physics with a Fermi gas of atoms

Lecture 3 : ultracold Fermi Gases

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Ultracold Fermi Gases with unbalanced spin populations

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Many-Body Physics with Quantum Gases

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Evidence for Efimov Quantum states

Introduction to cold atoms and Bose-Einstein condensation (II)

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Effective Field Theory and Ultracold Atoms

F. Chevy Seattle May 2011

From Optical Pumping to Quantum Gases

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids

Ytterbium quantum gases in Florence

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

hal , version 1-9 Jan 2007

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions

arxiv:cond-mat/ v1 17 Apr 2000

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

arxiv:cond-mat/ v1 [cond-mat.other] 19 Dec 2005

Strongly paired fermions

Path-integrals and the BEC/BCS crossover in dilute atomic gases

Degenerate atom-molecule mixture in a cold Fermi gas

Low-dimensional Bose gases Part 1: BEC and interactions

Quantum dynamics in ultracold atoms

First Observations of an S-wave Contact on the Repulsive Side of a Feshbach Resonance. Scott Smale University of Toronto

Bose-Einstein Condensate: A New state of matter

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

New states of quantum matter created in the past decade

Fluctuations between the BCS and BEC Limits in the System of Ultracold Alkali Atoms

Why ultracold molecules?

Strongly Correlated Physics With Ultra-Cold Atoms

Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of Lithium isotopes

BCS: from Atoms and Nuclei to the Cosmos

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover

Quantum superpositions and correlations in coupled atomic-molecular BECs

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1

1. Cold Collision Basics

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

COPYRIGHTED MATERIAL. Index

BCS everywhere else: from Atoms and Nuclei to the Cosmos. Gordon Baym University of Illinois

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 9 Aug 2005

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

Ultracold atoms and molecules

Fundamentals and New Frontiers of Bose Einstein Condensation

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Lecture 2: Ultracold fermions

arxiv:cond-mat/ v1 28 Jan 2003

Bose-Bose mixtures in confined dimensions

Cooperative Phenomena

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Thermodynamic Measurements in a Strongly Interacting Fermi Gas

The amazing story of Laser Cooling and Trapping

Transcription:

Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$ NSF, NIST, Hertz

I. Cold Fermions

Quantum Particles There are two types of quantum particles found in nature - bosons and fermions. Bosons like to do the same thing. Fermions are independent-minded. Atoms, depending on their composition, can be either. bosons: 87 Rb, 23 Na, 7 Li, H, 39 K, 4 He*, 85 Rb, 133 Cs fermions: 40 K, 6 Li

Bosons integer spin Ψ 1,2 = Ψ 2,1 Atoms in a harmonic potential. Bose-Einstein condensation 1995 other bosons: photons, liquid 4 He

Fermions half-integer spin Ψ 1,2 = - Ψ 2,1 (Pauli exclusion principle) T = 0 E F = k b T F spin spin Fermi sea of atoms 1999 other fermions: protons, electrons, neutrons

Quantum gases Bosons T C Fermions T F BEC phase transition Fermi sea of atoms gradually emerges for T<T F d λ debroglie d ultralow T

Fermionic atoms 40 K Jin, JILA Inguscio, LENS others in progress 6 Li Hulet, Rice Salomon, ENS Thomas, Duke Ketterle, MIT Grimm, Innsbruck Future: Cr, Sr, Yb, radioactive isotopes Rb, metastable *He, *Ne

Cooling fermions Evaporative cooling requires collisions, but at low T identical fermions stop colliding.

Cooling strategies for fermions Simultaneous cooling evaporate atoms in two spin-states magnetic trap 40 K optical trap 6 Li Sympathetic cooling evaporate bosonic atoms and cool fermionic atoms via thermal contact two isotopes 7 Li + 6 Li two species 87 Rb + 40 K 23 Na + 6 Li

40 K spin-states 4P 3/2 ~10 14 Hz 4S 1/2 hyperfine f=7/2 f=9/2 Zeeman ~10 9 m Hz ~10 6-10 7 f = 9/2 Hz m f = 7/2. m f =-9/2

More on spin-states spin spin Energy splitting is 10 s MHz. T = 1 μk corresponds to 20 khz. spin degree of freedom is frozen

Collision measurement 1. Add energy in one dimension of trap 2. Watch thermal relaxation before after relaxation

Collisions and Fermions two spin-states elastic collision cross section one spin-state

Cooling a gas of 40 K atoms 1. Laser cooling and trapping 300 K to 1 mk, 10 9 atoms 2. Magnetic trapping & evaporative cooling 1 mk to 1 μk, 10 8 10 6 atoms spin 1 spin 2 3. Optical trapping & evaporative cooling 1 μk to 50 nk, 10 6 10 5 atoms can confine any spin-state can apply arbitrary B-field

Probing the ultracold gas Time-of-flight absorption imaging Probing the atoms

Stern-Gerlach imaging Time-of-flight absorption imaging B gradient Probing the atoms

Quantum degenerate atomic Fermi gases 1999: 40 K JILA 6 Li - Rice, Duke, ENS, MIT, Innsbruck; 40 K - LENS, ETH Zurich E F = k B T F Fermi sea of atoms T ~ 0.05 T F low temperature, low density: T ~ 100 nk, n ~ 10 13 cm -3

Quantum degeneracy velocity distributions E F T/T F =0.77 n 0 = 0.28 T/T F =0.27 n 0 = 0.944 Fermi sea of atoms E F T/T F =0.11 n 0 = 0.99984

Quantum degeneracy 20 T/T Fermi = 0.05 N = 4 10 5, T = 16 nk T/T Fermi = 0.05 μ/k b T 10 0 0.01 0.1 1 T/T F

Fermi gas thermometry Determine temperature from (1) surface fit to expanded cloud (2) an embedded non-degenerate gas surface fit T / T Fermi 0.3 0.2 0.1 0.0 0.0 0.1 0.2 0.3 T impurity / T Fermi Impurity spin state Fermi gas

II. Feshbach resonance

Interactions Interactions are characterized by the s-wave scattering length, a a > 0 repulsive, a < 0 attractive Large a strong interactions In an ultracold atomic gas, we can control a! 0 scattering length

Magnetic-field Feshbach resonance V(R) R repulsive R R R a>0, repulsive a<0, attractive > ΔB attractive molecules

Magnetic-field Feshbach resonance repulsive free atoms > ΔB attractive molecules

Experimental observation 1. Trap Loss (3-body inelastic collisions) three 87 Rb- 40 K Feshbach resonances: S. Inouye et al., cond-mat, 2004.

Experimental observation 2. Elastic collision rate (σ=4πa 2 ) 10-9 mf 10-10 = -9/2, -7/2 mixture σ (cm 2 ) 10-11 10-12 T. Loftus et al., PRL 88, 173202 (2002). 10-13 160 180 200 220 240 260 B (gauss)

More 40 K resonances σ (cm 2 ) 10-9 m f = -7/2 gas 10-10 10-11 10-12 a p-wave resonance! C. A. Regal et al., PRL 90, 053201 (2003) 10-13 180 200 220 B (gauss) 10-9 mf 10-10 =-7/2,-5/2 mixture σ (cm 2 ) 10-11 10-12 another s-wave resonance 10-13 150 160 170 180 190 B (gauss)

Experimental observation 3. Interaction energy 3000 (RF spectroscopy) scattering length (a o ) 2000 1000 0-1000 -2000-3000 repulsive attractive 215 220 225 230 Feshbach resonance between m f =-9/2,-5/2 Use Δν ~n 9 a 59 C. A. Regal and D. S. Jin, PRL, (2003) B (gauss)

M ole cule cre atio n -5/2 1. 5-9/2 1. 0 0. 5 0. 02 02 24 26 28 B hold(g ) B(t ) -5/2-9/2 ato mnu mb er(1 06) Experimental observation 4. Molecule creation -5/2 Ramp across Feshbach resonance from high to low B -9/2 energy B -5/2-9/2 atom number (10 6 ) 1.5 1.0 0.5 0 215 220 225 230 B (gauss) C. A. Regal et al., Nature 424, 47 (2003). Motivation: E. A. Donley et al., Nature 417, 529 (2002)

Magnetic field sweep rate atom number (10 6 ) 1.5 1.0 0.5 Reversible energy B 0 0 20 40 60 80 inverse ramp speed (μs/g) Similar experiments: Bosons Innsbruck Garching JILA Fermions Rice ENS Innsbruck

Molecule detection Apply RF near the atomic m f =-5/2 to m f =-7/2 transition Σm f = -5/2 + -9/2 molecule -7/2 + -9/2-5/2-7/2-9/2 photodissociate the molecules -5/2-7/2-9/2

Molecule detection 1.0 transfer (arb) 0.8 0.6 0.4 0.2 molecules atoms kinetic energy (MHz) 0 0.4 0.3 0.2 0.1 dissociation threshold 0 49.8 50.1 50.4 50.7 rf frequency (MHz)

Molecule binding energy 0-100 Δν (khz) -200-300 -400-500 atoms molecules binding energy theory (Ticknor, Bohn) 220 221 222 223 224 B (gauss) extremely weakly bound! C. Regal et al. Nature 424, 47 (2003)

Molecule conversion efficiency depends strongly on energy of Fermi gas 1.0 molecule fraction 0.8 0.6 0.4 0.2 0.0 n pk ~10 13 cm -3 0.3 0.4 0.5 T Fermi (μk) up to 70% conversion N molecule > 250,000

Molecule decay rate N m /N m (ms -1 ) N a /N a (ms -1 ) 1 0.1 0.01 1E-3 1-3 -2-1 0 0.1 0.01 Theory prediction: D.S. Petrov, C. Salomon, G.V. Shlyapnikov, condmat/0309010 (2003) Expts: 1E-3 Rice, ENS, Innsbruck, JILA molecules atoms ΔB (gauss) -3-2 -1 0 ΔB (gauss) m f =-7/2, -9/2 m f =-5/2, -9/2 no molecules with molecules C. A. Regal, M. Greiner, and D. S. Jin, PRL 92, 083201 (2004) C. A. Regal, M. Greiner, and D. S. Jin, cond-mat/0308606 (2003)

Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$ NSF, NIST, Hertz

III. BCS-BEC crossover

Bose-Einstein condensation BEC shows up in condensed matter, nuclear physics, elementary particle physics, astrophysics, and atomic physics. Excitons, biexcitons in semiconductors Cooper pairs of electrons in superconductors Neutron pairs, protron pairs in nuclei And neutron stars Alkali atoms in ultracold atom gases 4 He atoms in superfluid liquid He Mesons in neutron star matter 3 He atom pairs in superfluid 3 He-A,B

Bosons and Fermions Condensation requires bosons. Material bosons are composite particles, made up of fermions. For a gas of bosonic atoms, the underlying fermion degrees of freedom are not accessible. 87 Rb, 23 Na, By starting with a gas of fermionic atoms we can explore how bosonic degrees of freedom emerge. 40 K, 6 Li,

Making condensates with fermions BEC of diatomic molecules 1. Bind fermions together. 2. BEC spin spin BCS superconductivity/superfluidity Condensation of Cooper pairs of atoms (pairing in momentum space, near the Fermi surface) E F Something in between? BCS-BEC crossover

BCS-BEC landscape transition temperature T/T c F 10 0 10-2 10-4 10-6 M. Holland et al., PRL 87, 120406 (2001) BCS BEC alkali atom BEC superfluid 4 He high T c superconductors superfluid 3 He superconductors 10-5 10 5 10 10 2 Δ/ kt B energy to break fermion pair F

Pairing and Superfluidity Spin is additive: Fermions can pair up and form effective bosons: Ψ(1,,N) = Â [ φ(1,2) φ(3,4) φ(n-1,n) ] spin spin Molecules of fermionic atoms Generalized Cooper pairs of fermionic atoms Cooper pairs k F BEC of weakly bound molecules BCS - BEC crossover BCS superconductivity Cooper pairs: correlated momentum-space pairing BCS-BEC crossover for example: Eagles, Boulder Leggett, School Nozieres 2004 and Schmitt-Rink, Randeria, Strinati, Zwerger, Holland, Timmermans, Griffin, Levin

BCS-BEC crossover Predict a smooth connection between BCS and BEC 0.6 BEC BEC BCS 0.4 BCS T c / T F 0.2 A. Perali et al., cond-mat/0311309 0-2 -1 0 1 2 BCS 1/(k BEC (atoms) F a) (molecules) J. R. Engelbrecht et al., PRB 55, 15153 (1997) BCS BEC (atoms) (molecules) partial list: Eagles, Leggett, Nozieres and Schmitt-Rink, Randeria, Haussman, Strinati, Holland, Timmermans, Griffin, Levin,

Magnetic-field Feshbach resonance repulsive free atoms > ΔB attractive molecules

Changing the interaction strength in real time: FAST repulsive E F 2 μs/g > ΔB attractive molecules

Changing the interaction strength in real time: SLOW E F 40 μs/g > ΔB attractive molecules

Changing the interaction strength in real time: SLOWER E F 4000 μs/g > ΔB attractive molecules Cubizolles et al., PRL 91, 240401 (2003); L. Carr et al., cond-mat/0308306

Molecular Condensate initial T/T F : 0.19 0.06 Time of flight absorption image M. Greiner, C.A. Regal, and D.S. Jin, Nature 426, 537 (2003).

A BEC from a Fermi Sea! 0.20 0.15 N 0 / N 0.10 0.05 0 0 0.1 0.2 0.3 0.4 initial T / T F

Timescales Creating molecules energy B Creating molecular BEC E F molecule number (10 3 ) 750 500 250 0 2-body 0 20 40 60 80 inverse ramp speed (μs/g) condensate fraction 0.15 0.10 0.05 many-body 0 0 2000 4000 6000 8000 inverse sweep speed (μs/g) two orders of magnitude difference in timescales!

Observing a Fermi condensate repulsive? E F 40 μs/g 4000 μs/g > ΔB? attractive

Condensates w/o a two-body bound state N molecules 3x10 5 2x10 5 1x10 5 0-0.5 0.0 0.5 ΔB (gauss) Dissociation of molecules at low density C. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004) ΔB = 0.12 G ΔB = 0.25 G ΔB=0.55 G T/T F =0.08

Fermionic condensate N 0 / N 0.15 0.10 0.05 0-0.5 0 0.5 1.0 ΔB (G) T/T F =0.08 molecules atoms two-body molecules pairing due to many-body effects Clearly see condensation on the atom-side of the resonance!

Fermionic condensate 0.15 N 0 / N 0.10 0.05 T/T F =0.08 0-0.5 0 0.5 1.0 ΔB (gauss) Clearly see condensation on the atom-side of the resonance! Condensate lives much longer near resonance than in BEC limit.

Mapping out a phase diagram repulsive a E F 40 μs/g 4000 μs/g > ΔB attractive T/T F molecules

BCS-BEC Crossover T/T F 0.20 0.15 0.10 0.05 N 0 /N 0-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0-2 -1 0 1 1/(k F a) BCS (atoms) BEC (molecules) C. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004)

BCS-BEC Crossover T/T F 0.20 0.15 0.10 0.05 0-2 -1 0 1 BCS 1/(k F a) Cooper pairs: collective, many-body effect weakly bound (pairing in momentum-space) pair size >> n -1/3 T c /T F << 1 T pairing = T c Fermion excitations N 0 /N 0-0.020 0.010 0.025 0.050 0.075 0.100 0.125 0.150 0.175 BEC diatomic molecules: two-body effect tightly bound (pairing in real space) pair size << n -1/3 T c /T F ~ 1 T pairing >> T c Boson excitations

BCS-BEC crossover Predict a smooth connection between BCS and BEC 0.6 BEC BEC BCS 0.4 BCS T c / T F 0.2 A. Perali et al., cond-mat/0311309 0-2 -1 0 1 2 BCS 1/(k BEC (atoms) F a) (molecules) J. R. Engelbrecht et al., PRB 55, 15153 (1997) BCS BEC (atoms) (molecules) partial list: Eagles, Leggett, Nozieres and Schmitt-Rink, Randeria, Haussman, Strinati, Holland, Timmermans, Griffin, Levin,

Measuring the excitation spectrum Utilize tunable interaction to measure spectrum: dissociate pairs of atoms by modulating B-field a B B 0 B pert 1/ν pert t t pert E binding ΔB B(t)=B 0 +B pert sin(ωt) collective excitations: Grimm, Thomas rf measurement at crossover: Grimm

Excitation spectrum: BEC side 0.5 dissociation threshold: molecule binding energy E B /h Δ B=-801 m G 0.0 2 N tilde (khz ms mg -2 ) 0 5 0 5-491 m G -367 m G -119 m G single particle excitation spectrum: molecule dissociation 0 1 10 100 f (k H z)

Excitation spectrum: BCS side collective excitation pair dissociation ΔB=5 mg N tilde (khz ms mg -2 ) 5 0 1 0 1 253 mg 378 mg excitation spectrum shows pairing containing information about crossover regime, no theoretical model available yet 0 0.05 626 mg 0.00 1 10 100 f (khz)

Exctitation spectrum ν (khz) ν (khz) 100 80 60 40 20 0 20 15 10 5 0 ν max ν 0-800 -400 0 400 800 ΔB (mg) maximum position threshold position BEC side: dissociation threshold according to molecule binding energy BCS side: nonzero maximum pairing

Conclusion An atomic Fermi gas provides experimental access to the BCS-BEC crossover region. Fermi gas molecular BEC interconversion has been explored. Condensates of fermionic atom pairs have been achieved! Next Cooper pairs with strong interactions BEC with extremely weakly bound molecules Many opportunities for further experimental and theoretical work...

Current group members: M. Greiner J. Goldwin S. Inouye C. Regal J. Smith M. Olsen

The End.