Mass Reconstruction Techniques for Resonances in W ± W ± Scattering

Similar documents
Results on BSM limits in Electroweak VBS Measurements

Optimizing the sensitivity for anomalous quartic gauge couplings in the event selection of WWss

WW scattering in the lep-lep final state at 14 TeV including pile-up

Vector boson scattering and triboson studies at ATLAS. Junjie Zhu University of Michigan May 25, 2017

Searching for the Higgs at the LHC

Monte Carlo for Vector Boson Scattering: Standard Modell and anomalous gauge couplings

Physics at Hadron Colliders

VBF SM Higgs boson searches with ATLAS

First studies towards top-quark pair. dilepton channel at s = 13 TeV with the CMS detector

Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD. Abstract

Top quark pole mass measurements in ATLAS

Cristiano Alpigiani Shanghai Jiao Tong University Shanghai, 18 May 2017

Identification of the Higgs boson produced in association with top quark pairs in proton-proton

ATLAS Discovery Potential of the Standard Model Higgs Boson

Collider Searches for Dark Matter

Measurements and prospects at LHC

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

PoS(EPS-HEP2011)250. Search for Higgs to WW (lνlν, lνqq) with the ATLAS Detector. Jonas Strandberg

Exotic W + W Z Signals at the LHC

Measurements of the production of a vector boson in association with jets in the ATLAS and CMS detectors

arxiv: v1 [hep-ex] 7 Jan 2019

STUDY OF HIGGS EFFECTIVE COUPLINGS AT ep COLLIDERS

Theoretical Predictions For Top Quark Pair Production At NLO QCD

Measurement of W-boson Mass in ATLAS

Generic Dark Matter 13 TeV. Matteo Cremonesi FNAL On behalf of the ATLAS and CMS Collaborations Moriond EWK - March 18, 2016

Discovery Physics at the Large Hadron Collider

Discovery potential of the SM Higgs with ATLAS

Exploring Inert Scalars at CLIC

arxiv: v1 [hep-ex] 8 Jan 2018

A Study of the Higgs Boson Production in the Dimuon Channelat 14 TeV

Search for a SM-like Higgs boson. Zijun Xu Peking University ISHP, Beijing Aug 15, 2013

Results on top physics by CMS

Discussion of QCD aspects of multi boson production measured with the ATLAS detector

Higgs Searches at CMS

Overview of the Higgs boson property studies at the LHC

On behalf of the ATLAS and CMS Collaborations

Theory of anomalous couplings. in Effective Field Theory (EFT)

Top quark at LHC. M. Villa. Bologna, oggi

Jet Reconstruction and Energy Scale Determination in ATLAS

Search for a new spin-zero resonance in diboson channels at 13 TeV with the CMS experiment

Searching for New High Mass Phenomena Decaying to Muon Pairs using Proton-Proton Collisions at s = 13 TeV with the ATLAS Detector at the LHC

WW scattering at the LHC Part 2 simulations

From ZZ 4l to Vector Boson Scattering at LHC

PoS(CORFU2016)060. First Results on Higgs to WW at s=13 TeV with CMS detector

Top quark pair property measurements and tt+x, using the ATLAS detector at the LHC

Reconstruction and identification of hadronic τ decays with ATLAS

Production of multiple electroweak bosons at CMS

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Electroweak Symmetry Breaking without Higgs Boson.

Jet reconstruction in W + jets events at the LHC

Search for gluino-mediated stop and sbottom pair production in events with b-jets and large missing transverse momentum

1. a) What does one mean by running of the strong coupling, and by asymptotic freedom of QCD? (1p)

ATLAS-CONF October 15, 2010

Mono Vector-Quark Production at the LHC

Probing SUSY Dark Matter at the LHC

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

Summary Introduction Description of the Resonances s-channel Processes Fusion Processes Drell-Yan Processes Conclusions

LHC resonance searches in tt Z final state

Top quark mass at ATLAS and CMS

Single top production at ATLAS and CMS. D. Lontkovskyi on behalf of the ATLAS and CMS Collaborations La Thuile, March, 2018

Boosted top quarks in the ttbar dilepton channel: optimization of the lepton selection

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Prospects On Standard Model And Higgs Physics At The HL-LHC

Higgs Production at LHC

Top quark pair properties in the production and decays of t t events at ATLAS

Search for Invisible Decay of Higgs boson at LHC

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

High Energy Tests of the Electroweak Theory

Measurement of jet production in association with a Z boson at the LHC & Jet energy correction & calibration at HLT in CMS

Measurement of Properties of Electroweak Bosons with the DØ Detector

SEARCH FOR ASSOCIATED PRODUCTION OF THE HIGGS BOSON IN THE H W W CHANNEL WITH A FULLY LEPTONIC FINAL STATE

Top production measurements using the ATLAS detector at the LHC

Search for heavy BSM particles coupling to third generation quarks at CMS

Mono-X, Associate Production, and Dijet searches at the LHC

Probing p p WWW production and anomalous quartic gauge couplings at CERN LHC and future collider

High p T physics at the LHC Lecture III Standard Model Physics

Department of Physics and Astronomy 1082 Malott,1251 Wescoe Hall Dr. Lawrence, KS

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

Search for exotic Higgs-boson decays in events with at least one photon, missing transverse momentum,

Higgs and Z τ + τ in CMS

Recent Results on New Phenomena and Higgs Searches at DZERO

Precision measurements of the top quark mass and width with the DØ detector

Triple Gauge Couplings and Quartic Gauge Couplings

Anomalous Gauge Couplings. Abstract

Search for the Standard Model Higgs boson decaying to b quark with CMS experiment

The search for the (SM) Higgs Boson

PoS(Kruger 2010)048. B X s/d γ and B X s/d l + l. Martino Margoni SLAC-PUB Universita di Padova and INFN

Genetic Invariant Mass for Reconstruction of Resonance Decays

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

Search for the Higgs boson in fermionic channels using the CMS detector

Search for top squark pair production and decay in four bodies, with two leptons in the final state, at the ATLAS Experiment with LHC Run2 data

Measuring the Higgs CP property at LHC and CEPC

Dark Matter in ATLAS

Koji TSUMURA (NTU à Nagoya U.)

arxiv: v1 [hep-ex] 28 Aug 2017

Analysis of Top Quarks Using a Kinematic Likelihood Method

Higgs Property Measurement with ATLAS

SUSY Phenomenology & Experimental searches

Search for the Higgs Boson In HWW and HZZ final states with CMS detector. Dmytro Kovalskyi (UCSB)

Constraints on Higgs-boson width using H*(125) VV events

Transcription:

Mass Reconstruction Techniques for Resonances in W ± W ± Scattering Stefanie Todt (stefanie.todt@tu-dresden.de) Institut fuer Kern- und Teilchenphysik, TU Dresden DPG Wuppertal March 11, 2015 bluu

Vector boson scattering at the LHC longitudinal scattering of weak bosons directly connected to mechanism of electroweak symmetry breaking (EWSB) sensitive to BSM physics: aqgcs, heavy resonances weak-boson self-couplings Higgs contributions + include non-vbs and non-resonant diagrams SM-EW VVjj process channel of like-charge W ± W ± scattering favourable in the context of the LHC experiments first evidence for Vector Boson Scattering (VBS) in the processes W ± W ± W ± W ± (arxiv:1405.6241) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 1 / 11

Vector boson scattering at the LHC longitudinal scattering of weak bosons directly connected to mechanism of electroweak symmetry breaking (EWSB) sensitive to BSM physics: aqgcs, heavy resonances weak-boson self-couplings Higgs contributions + include non-vbs and non-resonant diagrams SM-EW VVjj process first evidence for Vector Boson Scattering (VBS) in the processes W ± W ± W ± W ± (arxiv:1405.6241) see talk from Ulrike Schnoor T 67.4 Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 1 / 11

mass m and coupling g of resonances free parameters variation of resonance mass m [500 GeV, 1200 GeV] fixed coupling g = 2.5 (g [0, 2.5]) blub blub Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 2 / 11 Heavy resonances in VBS new physics in EWSB is introduced via an effective field theory approach isospin conservation in high energy limit five possible resonances: type weak isospin I spin J electric charge Q width Γ res /Γ 0 σ 0 0 0 6 f 0 2 0 1 5 ρ 1 1, 0, + 4 v 2 3 M 2 φ 2 0,, 0, +, ++ 1 t 2 2,, 0, +, ++ 1 30 partial widths Γ 0 for resonances decaying into longitudinally polarized vector bosons: Γ 0 = g2 64π m3 v 2

Heavy resonances in VBS W ± W ± jj new physics in EWSB is introduced via an effective field theory approach isospin conservation in high energy limit five possible resonances: type weak isospin I spin J electric charge Q width Γ res /Γ 0 σ 0 0 0 6 f 0 2 0 1 5 ρ 1 1, 0, + 4 v 2 3 M 2 φ 2 0,, 0, +, ++ 1 t 2 2,, 0, +, ++ 1 30 resonant scattering of two like-charge W ± bosons resonant scattering in s-channel for doubly charged isotensor resonances: broad scalar φ resonance or narrow tensor t resonance Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 2 / 11

Mass reconstruction: X ±± W ± W ± l ± l ± νν Invariant mass from relativity: mx 2 = mww 2 = P µ WW P µ WW P µ WW : composite four-momentum of W± W ± system Problem: P µ WW = Pµ l 1 + P µ l 2 + P µ ν 1 + P µ ν 2 separate momenta of neutrinos unknown q ν1, q ν2 6 degrees of freedom p Tmiss measurement: 2 constraints p Tmiss = q Tνi Solution: perform minimization over free parameters (arxiv:15.2977) find smallest resonance mass consistent with measured p Tmiss allows for concrete information from every event lower mass bound on resonance mass: m X mww event (if true event topology is chosen) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 3 / 11

Mass reconstruction: Transverse projections Calculation of transverse masses define projected (2+1)-momenta analogous to four-momenta: four momentum: P µ = (E, p x, p y, p z ) (2+1)-momentum: p α = (e, p x, p y ) Projection of energy component: mass-preserving projection e = m 2 + p 2 T = E 2 p 2 z p α p α = m 2 massless projection e o = p T p α o p oα = 0wwlwwwwwwwwwww Transverse mass: m 2 1 = (p + q ) α (p + q ) α m 2 o1 = (p o + q o ) α (p o + q o ) α Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 4 / 11

Mass variables Order of operations (summation of particles, projection) does matter for energy component of P µ : m 2 1 = (p + q ) α (p + q ) α m 2 1 = (P µ + Q µ ) (P µ + Q µ ) projection discards information early projection weakens bound additionally discard mass information (m o1 ) weakens bound even more = m 1 m 1 = m o1 m 1o Additional constraint for heavy resonances: one or both W ± bosons are produced on m W mass shell m 1 Star (for WW ) and m 1 bound (for both W on-shell) (arxiv:18.3468, arxiv:11.2452) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 5 / 11

Mass variables Traditional transverse mass variables: m vis invariant mass of lepton pair (i.e. m ll ) m eff invariant mass of lepton pair + E miss T m 2 eff(p Tl1, p Tl2, p Tmiss ) = ( p Tl1 + p Tl2 + p Tmiss ) 2 = m 2 o1 + ( p 1T + p Tmiss ) 2 m vec invariant mass of lepton pair + E miss T m 2 vec(p l1, p l2, p Tmiss ) = ( p l1 + p l2 + p Tmiss ) 2 (only transverse plane (hep-ph/96544)) (with z-component of leptons) ( p Tl1 + p Tl2 + p Tmiss ) 2 ( p zl1 + p zl2 ) 2 m col collinear approach (R.K. Ellis et al., Nucl. Phys. B 297, 221 (1988)) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 6 / 11

Comparison of resonance types: true m WW MC study with event generator WHIZARD and K-matrix unitarisation at s = 8 TeV (CERN-THESIS-2015-018) cross section / GeV 2 3 W±W±jj EW cross section / GeV 2 3 W±W±jj EW Φ, m=750, g=2.5 t, m=1200, g=2.5 4 Φ, m=500, g=2.5 4 t, m=00, g=2.5 t, m=750, g=2.5 Φ, m=00, g=2.5 t, m=500, g=2.5 5 0 200 400 600 800 00 1200 1400 Φ resonance (broader) m {500, 750, 00} GeV g = 2.5 m WW 5 0 200 400 600 800 00 1200 1400 t resonance (narrow) m {500, 750, 00, 1200} GeV g = 2.5 m WW truth m WW : invariant mass of the W ± W ± system at parton level (w/o parton shower) reconstructed with true (associated) neutrinos (i.e. m l ± ν l l ± ν l ) reference: SM-EW m WW distribution (in red) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 7 / 11

Comparison of mass variables: reconstructed m WW fb 30 GeV signal dσ reco dm WW 60 50 40 30 3 Φ resonance, m = 500 GeV, Γ = 64 GeV, g = 2.5 mass bound variables mass variables without mass bound Φ, m=500 GeV, g=2.5 mass bound variables m o1 m 1o m 1T m 1Tstar m 1Tbound fb 30 GeV signal dσ reco dm WW 50 40 30 3 Φ, m=500 GeV, g=2.5 mass var. w/o bound m vis m eff m vec m col 20 20 0 0 200 300 400 500 600 700 800 reco m WW [GeV] 0 0 200 300 400 500 600 700 800 reco m WW [GeV] m 1, m 1 bound and m o1 drop around resonance mass saturated lower mass bound (respect generic width of resonance) m 1 bound shifted to higher invariant masses with respect to m 1 m eff, m vec, m col fail to give lower mass bound m vis : unsaturated lower mass bound due to minimal information input (no p Tmiss ) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 8 / 11

Discovery potential events at particle level with simulation of detector resolution for E miss T Signal: pp l ± νl ± νjj final state with resonance Background: only SM-EW pp l ± νl ± νjj final state (no contribution from W ± W ± -QCD, WZ) optimize for best statistical significance S B in reconstructed mass window m WW discovery potential 1 60 GeV dn 1T dm WW 1 1 2 t, m=500 GeV, g=2.5 ± W W ± jj EW best significance interval 1 L = 20 fb, s = 8 TeV 3 4 5 0 200 400 600 800 00 1200 1400 m1t WW [GeV] Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 9 / 11

Comparison of Discovery potential: Mass variables Φ resonance, g = 2.5 t resonance, g = 2.5 S discovery potential B 2 Φ resonance, g=2.5 mass bound variables m o1 m 1T m 1Tbound mass var. w/o bound m vec S discovery potential B t resonance, g=2.5 mass bound variables m 1T m 1Tbound mass var. w/o bound m eff m vec 500 600 700 800 900 00 10 1200 resonance mass [GeV] 500 600 700 800 900 00 10 1200 resonance mass [GeV] Best mass variable in terms of discovery potential: for broader resonance (Φ): m o1 (best background rejection) for narrow resonance (t): m 1 bound or m 1 (most kinematic information) only small differences between the different mass variables for different coupling parameters of the resonances Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering / 11

Summary modelling of heavy resonances in W ± W ± scattering with WHIZARD (EFT approach with K-matrix unitarisation) study of different resonances and mass reconstruction variables study discovery potential against SM-EW pp l ± l ± νν background best mass variables: for broader resonance (Φ): m o1 for narrow resonance (t): m 1 bound and m 1 Thanks for your attention! Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 11 / 11

Summary modelling of heavy resonances in W ± W ± scattering with WHIZARD (EFT approach with K-matrix unitarisation) study of different resonances and mass reconstruction variables study discovery potential against SM-EW pp l ± l ± νν background best mass variables: for broader resonance (Φ): m o1 for narrow resonance (t): m 1 bound and m 1 Thanks for your attention! Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 11 / 11

Backup Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

Heavy resonances in VBS new physics in EWSB is introduced via an effective field theory approach effective chiral Lagrangian as perturbative expansion in some new physics energy scale Λ SM evolves as low-energy limit (= leading term) of the new theory model-independent parametrization of high-energy VBS add new degrees of freedom for any possible heavy resonance L = L SM + resonances effective theory new resonant scattering amplitudes rise with energy break unitarity at some energy E > Λ add unitarisation formalism manually: K-matrix unitarisation = Monte Carlo studies with Whizard event generator (features generic effective theory with resonances and K-matrix unitarisation) (arxiv:0806.4145) L r Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

Resonances in W ± W ± W ± W ± need to be of electrical charge ++ or Φ: scalar (Spin 0), isotensor (Isospin 2) t: tensor (Spin 2), isotensor (Isospin 2) arxiv:1307.8170 (Simplified Models - Snowmass 2013) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

W ± W ± jj l ± l ± ννjj final state Signal process: scalar φ resonance tensor t resonance with or same kinematic topology as VBS two energetic forward jets (initial quarks radiating off Ws) both W bosons decay leptonically two same-sign central leptons missing p T from 2 neutrinos in the final state l ± (1) ν tagging jet (4) y tagging jet (3) l ± (2) ν Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

Minimization Example: M 1T { } M1 2 = min M 2 1 p z miss ( ( M 2 1 = Mll 2 + p2 1T + q1t2 + q 1z2 + ) ) 2 2 q 2T2 + q 2 2z (q1z + q 2z ) 2 4 Contraints: ( p T + p Tmiss ) 2 p Tmiss = q Ti mw 2 = 2 ( p i q ) it2 + q iz2 p it q it p iz q iz Free choices: total z-component of invisible particles p miss z minimization: equal rapidities of visible and invisible system: y = y miss frame-independence of y y = 0 p z = 0 invariant mass of invisible particle collection (ν 1, ν 2 ) /M: ansatz /M = χ otherwise minimization sets it to 0 Problems: W mass constraint leads to quadratic equation in any constraining parameter (same issue as for p z reconstruction in W mass measurement) Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

Mass formulas ( ) 2 m1 (p 2 Tl1, p Tl2, p Tmiss ) = Mll 2 + p2 1T + p Tmiss ( p 1T + p Tmiss) 2 m 2 o1(p Tl1, p Tl2, p Tmiss ) = ( p Tl1 + p Tl2 + p Tmiss ) 2 ( p 1T + p Tmiss ) 2 = m 2 eff ( p 1T + p Tmiss ) 2 = m 2 1(massless leptons) m 2 1o(p Tl1, p Tl2, p Tmiss ) = ( p Tl1 + p Tl2 + p Tmiss ) 2 ( p 1T + p Tmiss ) 2 m 2 vec(p l1, p l2, p Tmiss ) = ( p l1 + p l2 + p Tmiss ) 2 ( p Tl1 + p Tl2 + p Tmiss ) 2 ( p zl1 + p zl2 ) 2 m 2 eff(p Tl1, p Tl2, p Tmiss ) = ( p Tl1 + p Tl2 + p Tmiss ) 2 m 2 vis(p l1, p l2 ) = M 2 ll M ll invariant mass of dilepton system p 1 vector sum of lepton momenta p l1, p l2 p 1T vector sum of lepton transverse momenta p Tl1, p Tl2 Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

Collinear mass m col assumption: decay products of W are emitted collinear possibility to reconstruct the momentum of both neutrinos compute fraction x i of W momentum carried away from its visible decay product (lepton) (use momentum conservation in transverse plane) only 0 < x i < 1 are physical m WWcol cannot always be calculated p W T,i = pl T,i x i m 2 WWcol =(p W1 + p W1 ) 2 mwwcol 2 =2 (mw 2 + p W1 p W2 ) mwwcol 2 =2 m W 2 + m 2 W + ( pl1 T x 1 ) 2 m 2 W + ( pl2 T x 2 ) 2 pl1 T p l1 T x 1 x 2 m WWcol fomular holds only for onshell W s which is not true in all the cases Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

Comparison of mass variables: reconstructed m WW fb 40 GeV signal dσ reco dm WW 25 20 15 3 5 t resonance, m = 500 GeV, Γ = 2 GeV, g = 2.5 mass bound variables mass variables without mass bound t, m=500 GeV, g=2.5 mass bound variables m o1 m 1o m 1T m 1Tstar m 1Tbound 0 0 0 200 300 400 500 600 700 800 reco m WW [GeV] fb 40 GeV signal dσ reco dm WW 3 20 t, m=500 GeV, g=2.5 18 16 14 12 8 6 4 2 mass var. w/o bound m vis m eff m vec m col 0 0 0 200 300 400 500 600 700 800 reco m WW [GeV] φ and t resonance: maxima shifted to higher m WW for φ, difference in shape (spin dependence of mass variables) same observations for higher resonance masses and lower coupling parameters Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

Comparison of mass variables: m WW,reco m WW,true Φ resonance, m = 500 GeV, Γ = 64 GeV, g = 2.5 mass bound variables mass variables without mass bound fb 18 GeV true ) m WW signal dσ reco 2 WW 1 Φ, m=500 GeV, g=2.5 mass bound variables m o1 m 1o m 1T m 1Tstar m 1Tbound fb 18 GeV true ) m WW signal dσ reco WW 1 Φ, m=500 GeV, g=2.5 2 d(m mass var. w/o bound m vis m eff m vec m col d(m 3 3 200 0 0 0 200 reco true m WW m WW [GeV] 200 0 0 0 200 reco true m WW m WW [GeV] difference between reconstructed and true m WW : clear distinction between mass bound variables and other mass variables note: not resonance mass - t resonance mtconstr are all those events in the peak here, were mass was overestimated because there never were two onshell W Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

Comparison of mass variables: m WW,reco m WW,true t resonance, m = 500 GeV, Γ = 2 GeV, g = 2.5 mass bound variables mass variables without mass bound fb 30 GeV true ) m WW signal dσ reco 2 WW t, m=500 GeV, g=2.5 mass bound variables m o1 m 1o m 1T m 1Tstar m 1Tbound fb 30 GeV true ) m WW signal dσ reco 2 WW t, m=500 GeV, g=2.5 d(m mass var. w/o bound m vis m eff m vec m col d(m 3 3 200 0 0 0 200 reco true m WW m WW [GeV] 200 0 0 0 200 reco true m WW m WW [GeV] difference between reconstructed and true m WW : clear distinction between mass bound variables and other mass variables note: not resonance mass - t resonance mtconstr are all those events in the peak here, were mass was overestimated because there never were two onshell W Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

Comparison of mass variables: relative width σ m reco WW /<mreco WW > Φ resonance, g = 2.5 t resonance, g = 2.5 σ reco reco/<m > mww WW 1.0 0.9 0.8 mass bound variables m o1 m 1o m 1T σ reco reco/<m > mww WW 1.0 0.9 0.8 mass bound variables m o1 m 1o m 1T 0.7 m 1Tbound 0.7 m 1Tbound 0.6 0.6 0.5 0.5 0.4 0.4 0.3 Φ resonance, g=2.5 0.3 t resonance, g=2.5 0.2 500 600 700 800 900 00 10 1200 resonance mass [GeV] 0.2 500 600 700 800 900 00 10 1200 resonance mass [GeV] for both resonance types: m 1 and m 1 bound best resolution especially for high resonance masses statistical errors are too small to be visible mass resolution 25 35% for both resonance types Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

Comparison of Discovery potential: Resonances g = 2.5, m o1 discovery potential S B 2 Φ resonance, m=500 GeV t resonance, m=500 GeV m o1 1 0.5 1.0 1.5 2.0 2.5 resonance coupling φ resonance has higher discovery potential than t resonance due to higher total cross section Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11

Object and event selection criteria Leptons p T > 30 GeV η < 2.5 Jets p T > 30 GeV η < 4.5 Event selection criteria exactly two charged dressed leptons, a minimum of two jets, both leptons have the same electric charge, both leptons have to have a minimum distance of R 0.3 to any reconstructed jet in the event and to each other. Stefanie Todt Institut fuer Kern- und Teilchenphysik, TU Dresden Mass Reconstruction Techniques for Resonances in W ± W ± Scattering 12 / 11