PS 11 GeneralPhysics I for the Life Sciences

Similar documents
Chapter 9-10 Test Review

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Unit 8 Notetaking Guide Torque and Rotational Motion

Rotation Quiz II, review part A

Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems

Circular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion

Rotational Motion What is the difference between translational and rotational motion? Translational motion.

Lecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

We define angular displacement, θ, and angular velocity, ω. What's a radian?

Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

Test 7 wersja angielska

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

AP Physics 1 Rotational Motion Practice Test

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Physics 131: Lecture 22. Today s Agenda

PHYS 111 HOMEWORK #11

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Use the following to answer question 1:

Physics 131: Lecture 22. Today s Agenda

= o + t = ot + ½ t 2 = o + 2

Rolling, Torque & Angular Momentum

Slide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m?

Slide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133

Chapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction

Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?

Chapter 8 Lecture Notes

Circular Motion Test Review

Chapter 10: Dynamics of Rotational Motion

Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Lecture 3. Rotational motion and Oscillation 06 September 2018

Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chap10. Rotation of a Rigid Object about a Fixed Axis

AP Physics 1: Rotational Motion & Dynamics: Problem Set

Rotation. PHYS 101 Previous Exam Problems CHAPTER

31 ROTATIONAL KINEMATICS

ΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω

Work and kinetic Energy

PHYSICS 149: Lecture 21

Chapter 12: Rotation of Rigid Bodies. Center of Mass Moment of Inertia Torque Angular Momentum Rolling Statics

Slide 1 / 37. Rotational Motion

Q1. For a completely inelastic two-body collision the kinetic energy of the objects after the collision is the same as:

Rotational Motion and Torque

Announcements Oct 27, 2009

TORQUE. Chapter 10 pages College Physics OpenStax Rice University AP College board Approved.

Chapter 8 Rotational Motion

Rotational Dynamics, Moment of Inertia and Angular Momentum

. d. v A v B. e. none of these.

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM.

Physics 201, Practice Midterm Exam 3, Fall 2006

Sample Physics Placement Exam

Rotational Mechanics Part III Dynamics. Pre AP Physics

Physics. Chapter 8 Rotational Motion

Recap: Solid Rotational Motion (Chapter 8) displacement velocity acceleration Newton s 2nd law τ = I.α N.s τ = F. l moment of inertia mass size

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

UNIT HW ROTATION ANSWER KEY

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

Rotational Motion About a Fixed Axis

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Angular Motion Unit Exam Practice

Rotational Motion. Lecture 17. Chapter 10. Physics I Department of Physics and Applied Physics

Advanced Higher Physics. Rotational motion

Chapter 8 Rotational Motion and Equilibrium

Lecture Presentation Chapter 7 Rotational Motion

Chapter 8- Rotational Motion

Webreview Torque and Rotation Practice Test

1 MR SAMPLE EXAM 3 FALL 2013

Uniform Circular Motion

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium

Honors Physics Review

Centripetal Acceleration & Angular Momentum. Physics - 4 th Six Weeks

Unless otherwise specified, use g = 9.80 m/s2

Physics 131: Lecture 21. Today s Agenda

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 8. Rotational Motion

Momentum Review. Lecture 13 Announcements. Multi-step problems: collision followed by something else. Center of Mass

Circular motion, Center of Gravity, and Rotational Mechanics

Name: Date: Period: AP Physics C Rotational Motion HO19


Midterm 3 Review (Ch 9-14)

Physics 201 Midterm Exam 3

Name: Date: 5. A 5.0-kg ball and a 10.0-kg ball approach each other with equal speeds of 20 m/s. If

Delve AP Physics C Practice Exam #1 Multiple Choice Section

Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8

Ch 8. Rotational Dynamics

APC PHYSICS CHAPTER 11 Mr. Holl Rotation

Review for 3 rd Midterm

Chapter 9: Rotational Dynamics Tuesday, September 17, 2013

Page 1. Name:

Chap. 10: Rotational Motion

Transcription:

PS 11 GeneralPhysics I for the Life Sciences ROTATIONAL MOTION D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T F E B R U A R Y 0 1 4

Questions and Problems for Contemplation Chapter 8 Questions: 1, 4, 8, 10, 15, 18,, 4 Problems: 1,, 4, 8, 10, 15,, 7, 30, 38, 45, 5, 55, 61, 64 General Problems: 7, 80, 81

Describing Rotational Motion Angular displacement q Let O be the axis of rotation How far the object has rotated Only directions possible: clockwise(-) and counter-clockwise(+) Measured in radians 1 radian (rad) is the angle subtended by an arc whose length is equal to the radius of motion θ l r

Distance traveled Arc length traversed l rq For one complete revolution l r q can be expressed in revolutions 1 rev rad

Example: Bike Wheel A bike wheel rotates 4.5 revolutions. How many radians has it rotated? θ 4.5 rad revs 8 rev rad If the wheel has a diameter of 45 cm, what is the distance traveled by a point on the rim of the wheel? d 45 cm l q 8 rad 630 cm

Example: Bird of Prey A bird s eye can distinguish objects that subtend an angle no smaller than 3 10-4 rad. How many degrees is this? 4 360 θ 310 rad 0.017 rad How small an object can the bird just distinguish when flying at a height of 100m? For small angles (<15), arc length and chord length are nearly the same 4 l rq (100m)(310 rad) 3 cm

Angular Velocity w Average w D w q Dt Instantaneous w Dt must be very small Velocity v of a point on a rotating wheel v rw Changes direction as vector turns Increases in proportion to distance from the axis of rotation

Angular Acceleration a Average a Instantaneous a a Make Dt as small as possible Tangential acceleration D w Dt a ra tan Radial acceleration a R v r ( rw) r rw

Review of Linear and Angular Quantities Frequency = number of complete revolutions per second = f w = f Period = time required to complete one revolution = T = 1/f

Equations of Motion Zero angular acceleration a = 0, w = constant Uniform circular motion q = wt + q o Linear velocity is not constant Magnitude is constant: v = wr Direction is changing Acceleration is not constant a tan = 0 but a R = rw = constant (centripetal) Direction is changing

Example: Earth s Rotation How fast is the earth s equator turning? w = /T = ( rad)/84,600s = 7.7 x 10-5 rad/s v = rw = (6,380 km)(7.7 x 10-5 rad/s) = 464 m/s How will your speed change as you go to the North or South pole? v = (r cos f)w = (464 cos f) m/s f = 14.5, v = 449 m/s f = 30, v = 40 m/s f = 60, v = 3 m/s f = 90, v = 0 m/s

The Coriolis Effect As you go from the equator towards the N pole, you are moving faster than the ground you are moving into: veer to your right (earth rotates west to east) As you go from the N pole towards the equator, you are moving slower than the ground you are moving into: veer to your right Clockwise flow! To or from the S pole: veer to the left! Counterclockwise flow!

Example: Hard Drive The platter of the hard drive of a computer rotates at 700 rpm. What is the angular velocity of the platter? 700 rev 1 min 10rev w f 754 min 60 sec s rad s If the reading head of the drive is 3.00 cm from the axis of rotation, how fast is the disk moving right under the head? v rw (310 m)(754rad / s).6m / s

Example (continued) If a single bit requires 0.50 mm of length along the direction of motion, how many bits per second can the writing head write when it is 3.00 cm from the axis? The number of bits passing the head per second is.6m / s 6 4510 bits/ 6 0.5010 m/ bit or 45 megabits/s (Mbps) s

Constant Angular Acceleration a = constant w = w o + at q = q o + w o t + ½ at Eliminate t between w and q w = w o + aq

Total Acceleration a total = a tan + a R a tan Constant magnitude, changing direction a R Variable magnitude, variable direction

Example: Centrifuge A centrifuge motor is accelerated from rest to 0,000 rpm in 30s. Determine its angular acceleration and how many revolutions it makes while it is accelerating. Solution Assuming constant angular acceleration a w wo t 100rad / 30s s 0 70rad / s

Example continued Where the final angular velocity w is rad 0000rev / min w f 100rad / rev 60s / m The angular displacement in 30s is then s q 0 (1/ )(70rad / s )(30s) 3.1510 4 rad We divide by to convert to revolutions 4 3.1510 rad 3 q 5.010 rev rad / rev

Rolling Motion Translational + rotational motion No Slipping Static friction between object and rolling surface v rw

Example: Bicycle A bicycle slows down uniformly from a velocity of 8.40 m/s to rest over a distance of 115 m. The overall diameter of the tire is 68.0 cm. Determine the initial angular velocity of the wheels. v o 8.40m / s w 4.7 rad o r 0.340m / s

Example (continued) Determine the number of revolutions each wheel undergoes before stopping. The rim of the wheel turns 115m before stopping. Thus, 115m 115m 53.8 rev r (0.340m) Determine the angular acceleration of the wheel a w wo q 0 (4.7rad / s) (rad / rev)(53.8rev ) 0.90rad / s

Example continued Determine the time it took the bicycle to stop w wo 0 4.7rad / s t 7. 4s a 0.90rad / s Note: when the bike tire completes one revolution, the bike advances a distance equal to the outer circumference of the tire (no slipping or sliding).

Announcements FINAL EXAM Wednesday, March 19 7.30-10.30 F-113 Long Test 4 Thursday, March 13 6.00 7.30 Room TBA c/o Paulo

Center of Mass You can reduce an object to a point and describe its translational motion by considering the motion of this point (called its center of mass)

Determining Center of Mass Consider masses m 1, m, m 3, with coordinates (x 1, y 1 ), (x, y ), (x 3, y 3 ), i i i i i cm m m x m m m m x m x x m x 3 1 3 3 1 1 i i i i i cm m m y m m m m y m y m y y 3 1 3 3 1 1

CM for a Leg Determine the center of mass of a leg when a) stretched out and b) bent at 90. Assume the person is 1.70 m tall. Solution a) Straight leg Essentially 1-D Measure distance from hip joint xcm (1.5)(9.6) (9.6)(33.9) (3.4)(50.3) 1.5 9.6 3.4 0.4 units CM is 5.1-0.4 = 31.7 units from base of foot For a height of 17 cm, x cm = 54.5 cm above the bottom of the foot

CM of Leg b) Bent leg xcm (1.5)(9.6) (9.6)(3.6) (3.4)(3.6) 1.5 9.6 3.4 14.9 units ycm (3.4)(1.8) (9.6)(18.) (1.5)(8.5) 1.5 9.6 3.4 3.0 units For a height of 17 cm x cm = (17 cm)(0.149) = 5.6 cm y cm = (17 cm)(0.3) = 39.6 cm Center of mass of bent leg is 39.6 cm above the floor and 5.6 cm from the hip joint!

CM Trajectory Center of mass of swimmer in flight follows projectile motion (parabolic) trajectory Center of mass of wrench follows constant velocity trajectory

Torque What causes an object to rotate? Torque = force x lever arm r F rf sinq

More Torque Units: Nm (Newton-meter) Reserve J for work and energy Torque is a vector quantity Direction determined by the right hand rule

Newton s First law Translational Equilibrium All forces cancel out: SF = 0 Rotational Equilibrium Torques must balance out: SG = 0 When is an object in equilibrium?

Newton s Second Law F = ma G = Ia I = moment of inertia a = angular acceleration Only two possible directions Counter-clockwise rotation Clockwise rotation

Moment of Inertia of Particles For a single moving object with mass m = rf = rma = rmra =mr a I = mr For several objects rigidly attached to each other S = (Sm i r i )a I = Sm i r i

Changing Moment of Inertia Determine the change in the moment of inertia of a particle as the radius of its orbit doubles Solution I I i f mr m(r) mr 4mR 1 4 It increases by I f Ii 4 1 100% 100% I 1 i 300%

Changing Your I Vertical axis of rotation Arms on the side R = 5 cm, M = 9.6 kg I side MR ( 9.6kg)(0.5m) 0.60kgm Raise your arms in a crucifixion pose R = 57.5 cm, M = 9.6 kg I cross MR 433% increase ( 9.6kg)(0.575m) 3.0kgm

Moments of Inertia for Various Objects

Rotational Kinetic Energy 1 1 1 ) ( ) ( ) ( w w i i i i i i r m m r m v KE 1 w I KE rotational 1 1 I CM Mv CM KE Total w

Example: Ball Rolling Down an Inclined Plane Determine the speed of a solid sphere of mass M and radius R when it reaches the bottom of an inclined plane if it starts from rest at a height H and rolls without slipping. Assume no slipping occurs. Compare the result to an object of the same mass sliding down a frictionless inclined plane.

Solution Initial mechanical energy PE = MgH KE trans = 0 KE rot = 0 Final mechanical energy PE = 0 KE trans = ½ Mv KE rot = ½ Iw Conservation of Energy MgH = ½ (Mv + Iw )

Solution (continued) I = (/5)MR for a solid sphere rotating about an axis through its center of mass w = v/r Thus MgH = ½ Mv + ½(/5)MR (v/r) (1/ + 1/5) v = gh v = [(10/7)gH] 1/ v does not depend on the mass and radius of the sphere!!

Frictionless Incline Ball slides down the incline and does not roll Thus, ½ Mv = MgH v = (gh) 1/ The speed is greater! None of the original PE is converted into rotational energy.

Work Done on a Rotating Body W = FDl = F rdq W = Dq Power P = W/Dt P = Dq/Dt = w

Angular Momentum L L = Iw Newton s second law becomes Thus, I a I D w Dt I w I Dt w o DL Dt

Conservation of Angular Momentum If the net torque acting on a rotating object is zero, then its angular momentum remains constant. 0 0 L i L DL Dt L f I w i i L I f f i w f

The Ice Skater How can the ice skater spin so fast? w f Ii w i f I

The Diver How can the diver make somersaults? Does she have to rotate initially? What trajectory does she follow?

The Hanging Wheel Why is the wheel standing up? Why does it turn around about the point of support?

Rotating Disk Demo What happens when you tilt the rotating disk? HINT: dl dt

Drunk Driver Test/Tightrope Artist Follow the line walk Increase your moment of inertia to minimize rotations

Quiz 8 1. A 4 kg mass sits at the origin, and a 10 kg mass sits at x = + 1 m. Where is the center of mass on the x-axis? (a) + 7 m (b) + 10.5 m (c) + 14 m (d) + 15 m. An object moving in a circular path experiences (a) free fall. (b) constant acceleration. (c) linear acceleration. (d) centripetal acceleration. 3. A boy and a girl are riding on a merry-go-round which is turning at a constant rate. The boy is near the outer edge, and the girl is closer to the center. Who has the greater angular velocity? a) The boy b) The girl c) Both have the same non-zero angular velocity. d) Both have zero angular velocity.

Quiz 8 4. A wheel starts at rest, and has an angular acceleration of 4 rad/s. Through what angle does it turn in 3 s? a) 36 rad b) 18 rad c) 1 rad d) 9 rad 5. A wheel of diameter 6 cm turns at 1500 rpm. How far will a point on the outer rim move in s? a) 314 cm b) 4084 cm c) 8995.5 cm d) 17990.8 cm 6. What is the centripetal acceleration of a point on the perimeter of a bicycle wheel of diameter 70 cm when the bike is moving 8 m/s? a) 91 m/s b) 183 m/s c) 06 m/s d) 66 m/s 7. A bicycle is moving 4 m/s. What is the angular speed of a wheel if its radius is 30 cm? a) 0.36 rad/s b) 1. rad/s c) 4.8 rad/s d) 13.3 rad/s

Quiz 8 8. An ice skater is in a spin with his arms outstretched. If he pulls in his arms, what happens to his kinetic energy? a) It increases. b) It decreases. c) It remains constant but non-zero. d) It remains zero. 9. What is the quantity used to measure an object's resistance to changes in rotation? a) mass b) moment of inertia c) linear momentum d) angular momentum 10. A wheel of moment of inertia of 5.00 kg-m starts from rest and accelerates under a constant torque of 3.00 N-m for 8.00 s. What is the wheel's rotational kinetic energy at the end of 8.00 s? a) 57.6 J b) 64.0 J c) 78.8 J d) 1 J