2017Ψ9 ADVANCES IN MATHEMATICS (CHINA) Sep., 2017

Similar documents
Sublinear operators with rough kernel generated by Calderón-Zygmund operators and their commutators on generalized local Morrey spaces

Boundedness for Marcinkiewicz integrals associated with Schrödinger operators

On absence of solutions of a semi-linear elliptic equation with biharmonic operator in the exterior of a ball

ESSENTIAL NORM OF AN INTEGRAL-TYPE OPERATOR ON THE UNIT BALL. Juntao Du and Xiangling Zhu

Journal of Inequalities in Pure and Applied Mathematics

A NOTE ON VERY WEAK SOLUTIONS FOR A CLASS OF NONLINEAR ELLIPTIC EQUATIONS

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS

On the Poisson Approximation to the Negative Hypergeometric Distribution

BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS. Loukas Grafakos and Stephen Montgomery-Smith University of Missouri, Columbia

A STABILITY RESULT FOR p-harmonic SYSTEMS WITH DISCONTINUOUS COEFFICIENTS. Bianca Stroffolini. 0. Introduction

GROWTH ESTIMATES THROUGH SCALING FOR QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS

Product Rule and Chain Rule Estimates for Hajlasz Gradients on Doubling Metric Measure Spaces

Asymptotically Lacunary Statistical Equivalent Sequence Spaces Defined by Ideal Convergence and an Orlicz Function

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS

Jordan Journal of Mathematics and Statistics (JJMS) 9(1), 2016, pp BOUNDEDNESS OF COMMUTATORS ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

ON LACUNARY INVARIANT SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULUS FUNCTIONS

SOME GENERAL NUMERICAL RADIUS INEQUALITIES FOR THE OFF-DIAGONAL PARTS OF 2 2 OPERATOR MATRICES

Integral operator defined by q-analogue of Liu-Srivastava operator


Some Remarks on the Boundary Behaviors of the Hardy Spaces

Measure Estimates of Nodal Sets of Polyharmonic Functions

A THREE CRITICAL POINTS THEOREM AND ITS APPLICATIONS TO THE ORDINARY DIRICHLET PROBLEM

FRACTIONAL HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVE ARE

Results on the Commutative Neutrix Convolution Product Involving the Logarithmic Integral li(

An Estimate of Incomplete Mixed Character Sums 1 2. Mei-Chu Chang 3. Dedicated to Endre Szemerédi for his 70th birthday.

HE DI ELMONSER. 1. Introduction In 1964 H. Mink and L. Sathre [15] proved the following inequality. n, n N. ((n + 1)!) n+1

On the ratio of maximum and minimum degree in maximal intersecting families

STUDY OF SOLUTIONS OF LOGARITHMIC ORDER TO HIGHER ORDER LINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS WITH COEFFICIENTS HAVING THE SAME LOGARITHMIC ORDER

MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

Enumerating permutation polynomials

arxiv: v2 [math.ca] 13 Apr 2012

Math 124B February 02, 2012

ON THE INVERSE SIGNED TOTAL DOMINATION NUMBER IN GRAPHS. D.A. Mojdeh and B. Samadi

Jordan Journal of Mathematics and Statistics (JJMS) 5(4), 2012, pp

ON INDEPENDENT SETS IN PURELY ATOMIC PROBABILITY SPACES WITH GEOMETRIC DISTRIBUTION. 1. Introduction. 1 r r. r k for every set E A, E \ {0},

Miskolc Mathematical Notes HU e-issn Tribonacci numbers with indices in arithmetic progression and their sums. Nurettin Irmak and Murat Alp

arxiv: v1 [math.ca] 31 Aug 2009

Available online through ISSN

Lacunary I-Convergent Sequences

On the ratio of maximum and minimum degree in maximal intersecting families

ONE-POINT CODES USING PLACES OF HIGHER DEGREE

Semicanonical basis generators of the cluster algebra of type A (1)

Research Article On Alzer and Qiu s Conjecture for Complete Elliptic Integral and Inverse Hyperbolic Tangent Function

Compactly Supported Radial Basis Functions

Fixed Point Results for Multivalued Maps

arxiv: v2 [math.ag] 4 Jul 2012

Brief summary of functional analysis APPM 5440 Fall 2014 Applied Analysis

Do not turn over until you are told to do so by the Invigilator.

New problems in universal algebraic geometry illustrated by boolean equations

Mean Curvature and Shape Operator of Slant Immersions in a Sasakian Space Form

arxiv: v1 [math.ca] 12 Mar 2015

Chaos and bifurcation of discontinuous dynamical systems with piecewise constant arguments

On the Kolmogorov forward equations within Caputo and Riemann-Liouville fractions derivatives

Numerical approximation to ζ(2n+1)

Banach Journal of Mathematical Analysis ISSN: (electronic)

Several new identities involving Euler and Bernoulli polynomials

CBMO Estimates for Multilinear Commutator of Marcinkiewicz Operator in Herz and Morrey-Herz Spaces

Pearson s Chi-Square Test Modifications for Comparison of Unweighted and Weighted Histograms and Two Weighted Histograms

arxiv: v1 [math.nt] 28 Oct 2017

Functions Defined on Fuzzy Real Numbers According to Zadeh s Extension

Perturbation to Symmetries and Adiabatic Invariants of Nonholonomic Dynamical System of Relative Motion

ON SPARSELY SCHEMMEL TOTIENT NUMBERS. Colin Defant 1 Department of Mathematics, University of Florida, Gainesville, Florida

On the Quasi-inverse of a Non-square Matrix: An Infinite Solution

arxiv: v1 [math.co] 6 Mar 2008

JANOWSKI STARLIKE LOG-HARMONIC UNIVALENT FUNCTIONS

On the integration of the equations of hydrodynamics

3.1 Random variables

Exceptional regular singular points of second-order ODEs. 1. Solving second-order ODEs

Hölder Continuity for Local Minimizers of a Nonconvex Variational Problem

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4

MATH 220: SECOND ORDER CONSTANT COEFFICIENT PDE. We consider second order constant coefficient scalar linear PDEs on R n. These have the form

Unobserved Correlation in Ascending Auctions: Example And Extensions

YUXIANG LI DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIJING , P.R.CHINA.

Mathematical Model of Magnetometric Resistivity. Sounding for a Conductive Host. with a Bulge Overburden

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

Gradient-based Neural Network for Online Solution of Lyapunov Matrix Equation with Li Activation Function

9.1 The multiplicative group of a finite field. Theorem 9.1. The multiplicative group F of a finite field is cyclic.

FREE TRANSVERSE VIBRATIONS OF NON-UNIFORM BEAMS

RADIAL POSITIVE SOLUTIONS FOR A NONPOSITONE PROBLEM IN AN ANNULUS

An analytical proof of Hardy-like inequalities related to the Dirac operator

THE NUMBER OF TWO CONSECUTIVE SUCCESSES IN A HOPPE-PÓLYA URN

A CHARACTERIZATION ON BREAKDOWN OF SMOOTH SPHERICALLY SYMMETRIC SOLUTIONS OF THE ISENTROPIC SYSTEM OF COMPRESSIBLE NAVIER STOKES EQUATIONS

Energy Levels Of Hydrogen Atom Using Ladder Operators. Ava Khamseh Supervisor: Dr. Brian Pendleton The University of Edinburgh August 2011

COLLAPSING WALLS THEOREM

Hardy-Littlewood maximal operator in weighted Lorentz spaces

PHYS 301 HOMEWORK #10 (Optional HW)

f h = u, h g = v, we have u + v = f g. So, we wish

Solving Some Definite Integrals Using Parseval s Theorem

BOUNDARY REGULARITY FOR THE POISSON EQUATION IN REIFENBERG-FLAT DOMAINS. Antoine Lemenant. Yannick Sire

On Polynomials Construction

A dual-reciprocity boundary element method for axisymmetric thermoelastodynamic deformations in functionally graded solids

A Backward Identification Problem for an Axis-Symmetric Fractional Diffusion Equation

7 Wave Equation in Higher Dimensions

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Analytical solutions to the Navier Stokes equations

Doubling property for the Laplacian and its applications (Course Chengdu 2007)

Existence and Uniqueness of Positive Radial Solutions for a Class of Quasilinear Elliptic Systems

SUFFICIENT CONDITIONS FOR MAXIMALLY EDGE-CONNECTED AND SUPER-EDGE-CONNECTED GRAPHS DEPENDING ON THE CLIQUE NUMBER

ON THE ASYMPTOTIC BEHAVIO R OF SOLUTIONS OF LINEAR DIFFERENCE EQUATION S

Transcription:

Λ46 Λ5Ω ff fl Π Vol. 46, No. 5 2017Ψ9 ADVANCES IN MATHEMATICS CHINA) Sep., 2017 doi: 10.11845/sxjz.2015219b Boundedness of Commutatos Geneated by Factional Integal Opeatos With Vaiable Kenel and Local Campanato Functions on Genealized Local Moey Spaces MO Huixia, XUE Hongyang School of Sciences, Beijing Univesity of Posts and Telecommunications, Beijing, 100876, P. R. China) Abstact: Suppose that T Ω,α is the factional integal opeato with vaiable kenel. We pove the boundedness fo T Ω,α on the genealized local Moey spaces LM {x 0} p,ϕ. The multilinea commutatos geneated by T Ω,α and local Campanato functions ae also consideed. Keywods: factional integal; vaiable kenel; commutato; local Campanato function; genealized local Moey space MR2010) Subject Classification: 42B20; 42B25 / CLC numbe: O174.2 Document code: A Aticle ID: 1000-09172017)05-0755-10 0 Intoduction Suppose that is the unit sphee in R n n 2) equipped with the nomalized Lebesgue measue dσ. We say that a function Ωx, z) defined on R n R n belongs to the space L R n ) L s ), if Ωx, z) satisfies the following conditions: i) Fo any x, z R n, Ωx, λz) =Ωx, z) fo all λ>0; ii) Ω L R n ) L s ) := sup x R n Ωx, z ) s dσz )) 1 s <. Then the factional integal opeato with vaiable kenel is defined by Ωx, x y) T Ω,α fx) =p.v. n α fy)dy, 0.1) R n x y whee 0 <α<n. Moeove, let b =b 1,b 2,,b m ), whee b i L loc R n )fo1 i m. Then the multilinea commutato geneated by b and T Ω,α canbedefinedasfollows: T m b Ωx, x y) Ω,α fx) =p.v. b i x) b i y)) fy)dy. 0.2) R x y n α n i=1 In 1971, Muckenhoupt and Wheeden [9] studied the p, q)-boundedness of T Ω,α. In [3], Ding studied the weak estimate fo T Ω,α with powe weights. And, in [10], Shao and Wang consideed Received date: 2015-12-22. Revised date: 2016-06-22. Foundation item: The wok is suppoted by NSFC No. 11601035, No. 11471050). E-mail: huixmo@bupt.edu.cn

756 ADVANCES IN MATHEMATICS CHINA) Vol. 46 the boundedness of T Ω,α on weighted Moey spaces. Recently, the commutatos geneated by factional integal opeatos with vaiable kenel have also attacted much attention, see [2, 4, 11 12] etc. Moeove, the classical Moey spaces M p,λ wee fist intoduced by Moey in [8] to study the local behavio of solutions to second ode elliptic patial diffeential equations. Moeove, in [1], Balakishiyev et al. intoduced the local genealized Moey spaces LM {x0} p,ϕ,anheyalso studied the boundedness of the homogeneous singula integal opeatos with ough kenel on these spaces. In [7], Mo and Xue studied the boundedness of the commutatos geneated by singula integal opeatos with vaiable kenel and local Campanato functions on genealized local Moey spaces. Motivated by the woks of [1, 7, 10], we conside the boundedness of the factional integal opeato T Ω,α with vaiable kenel on the local genealized Moey spaces LM {x0} p,ϕ. Futhemoe, we also obtain the boundedness of the commutatos geneated by T Ω,α and local Campanato functions on the local genealized Moey spaces LM {x0} p,ϕ. 1 Some Notations and Lemmas Definition 1.1 [1] Let ϕx, ) be a positive measuable function on R n 0, ) and1 p. Fo any fixed x 0 R n, a function f L q loc is said to belong to the local Moey spaces, if And, we denote f LM p,ϕ LM {x0} p,ϕ =supϕx 0,) 1 Bx 0,) 1 p f L p Bx 0,)) <. >0 LM {x0} p,ϕ R n )= { f L q loc Rn ): f {x LM 0 } < }. p,ϕ Accoding to Definition 1.1, we ecove the local Moey space LM {x0} p,λ ϕx 0,)= λ n p : M p,λ = M p,ϕ. ϕx,)= λ n p unde the choice Definition 1.2 [1] belong to the space LC {x0} f LC Let 1 q< and 0 λ< 1 n. A function f Lq loc Rn )issaio local Campanato space), if 1 =sup >0 Bx 0,) 1+λq Bx 0,) ) 1 fy) f Bx0,) q q dy <, whee Define f Bx0,) = 1 fy)dy. Bx 0,) Bx 0,) LC {x0} Rn )= { f L q loc Rn ): f {x LC 0 } < }.

No. 5 Mo H. X. and Xue H. Y.: Commutatos Geneated by Factional Integal Opeatos 757 Remak 1.1 [1] Obviously, CBMO q R n )=LC {0} q,0 Rn ), CBMO {x0} q R n )=LC {x0} q,0 Rn ). Moeove, one can imagine that the behavio of CBMO {x0} q R n ) may be quite diffeent fom that of BMOR n ), since thee is no analogy of the John-Nienbeg inequality of BMO fo the spaces CBMO {x0} q R n ). Lemma 1.1 [1] 1 Bx 0, 1 ) 1+λq Let 1 <q<, 0 < 2 < 1 and b LC {x0}.then Bx 0, 1) ) 1 bx) b Bx0, 2) q q dx C 1+ln ) 1 b {x LC 0 }. 2 And, fom this inequality, we have b Bx0, 1) b Bx0, 2) C 1+ln ) 1 Bx 0, 1 ) λ b {x LC 0 }. 2 In this section, we use the following statement on the boundedness of the weighted Hady opeato: H w gt) := gs)ws)ds, 0 <t<, t whee w is a fixed non-negative and measuable function on 0, ). Lemma 1.2 [5 6] Let v 1,v 2 and w be positive almost eveywhee and measuable functions on 0, ). The inequality ess sup v 2 t)h w gt) C ess sup v 1 t)gt) 1.1) holds fo some C>0and all non-negative and non-deceasing g on 0, ) if and only if ws) B := ess sup v 2 t) t ess sup v 1 τ) ds<. s<τ < Moeove, if C is the minimum value of C in 1.1), then C = B. Lemma 1.3 [9] Let Ω L R n ) L s ), s>1, and fo any x R n, Ωx, z )dσz ) =0,wheez = z z and z Rn \{0}. Assume that 0 <α<n,1 s <p< n α and 1 <q<, such that 1 q = 1 p α n, then T Ω,α is bounded fom L p R n )tol q R n ), whee s = s s 1 is the conjugate exponent of s. We fomulate ou main esults in Sections 2 and 3. 2 Factional Integal Opeatos With Vaiable Kenel In this section, we conside the boundedness of the factional integal opeatos with vaiable kenel on genealized local Moey spaces. Theoem 2.1 Let Ω L R n ) L s ),s>1, and fo any x R n, Ωx, z )dσz ) =0, whee z = z z and z Rn \{0}. Assume that 0 <α<n,1 s <p< n α and 1 <q<, such that 1 q = 1 p α n. Then the inequality T Ω,α f L q Bx 0,)) n q f L p Bx 0,t))t n q 1

758 ADVANCES IN MATHEMATICS CHINA) Vol. 46 holds fo any ball Bx 0,)andallf L p loc Rn ). Poof Let B = Bx 0,). We wite f = f 1 + f 2, whee f 1 = fχ 2B and f 2 = fχ 2B) c. Thus, we have T Ω,α f Lq B) T Ω,α f 1 Lq B) + T Ω,α f 2 Lq B). Since T Ω,α is bounded fom L p R n )tol q R n ) see Lemma 1.3), then we have T Ω,α f 1 L q B) f L p 2B) n q f L p Bx 0,t)) t n q. 2.1) +1 Moeove, it is obvious that Ωx, x ) Ls Bx 0,t)) = t+ x x0 0 Ωx, u) s du B0,t+ x x 0 ) n 1 d Ωx, u ) s dσu ) Ω L L s ) B0,t+ x x 0 ) 1 s. ) 1 s ) 1 s 2.2) Note that 1 2 x 0 y x y 3 2 x 0 y fo x B, y 2B) c. Thus, by 0.1), 2.2), the Fubini theoem and Hölde s inequality, we have fy) Ωx, x y) T Ω,α f 2 x) 2B) c x 0 y n α dy fy) Ωx, x y) dy 2B) c x 0 y tn+1 α fy) Ωx, x y) dy x 0 y t Bx 0,t) fy) Ωx, x y) dy. f Lp Bx 0,t)) Ωx, x ) Ls Bx 0,t)) Bx 0,t) 1 1 p 1 s f L p Bx 0,t)) B0,t+ x x 0 ) 1 s Bx 0,t) 1 1 p 1 s f L p Bx 0,t)) t n q +1. 2.3) Theefoe, T Ω,α f 2 Lp B) n q So, combining 2.1) and 2.4), we have f Lp Bx 0,t)) t n q. 2.4) +1 T Ω,α f L p B) n q f L p Bx 0,t)) t n q +1. Thus, we complete the poof of Theoem 2.1.

No. 5 Mo H. X. and Xue H. Y.: Commutatos Geneated by Factional Integal Opeatos 759 Theoem 2.2 Let Ω L R n ) L s ),s>1, and fo any x R n, Ωx, z )dσz ) =0, whee z = z z and z Rn \{0}. Assume that 0 <α<n,1 s <p< n α and 1 <q<, such that 1 q = 1 p α n. If functions ϕ, ψ : Rn 0, ) 0, + ) satisfy the inequality ess inf t<τ < ϕx 0,τ)τ n p t n q +1 Cψx 0,), 2.5) whee C does not depend on, then the opeato T Ω,α is bounded fom LM {x0} p,ϕ to LM {x0} q,ψ. Poof Take v 1 t) =ϕx 0,t) 1 t n p,v2 t) =ψx 0,t) 1,gt) = f Lp Bx 0,t)) and wt) = t n q 1, then fom 2.5) we have ws)ds ess sup v 2 t) t ess sup v 1 τ) <. s<τ < Thus, fom Lemma 1.2, it follows that Theefoe, ess sup T Ω,α f LM q,ψ = f {x LM 0 }. p,ϕ Thus we complete the poof of Theoem 2.2. v 2 t)h w gt) C ess sup v 1 t)gt). =supψx 0,) 1 Bx 0,) 1 q TΩ,α f L q Bx 0,)) >0 sup ψx 0,) 1 f L p Bx 0,t)) >0 sup ϕx 0,) 1 n p f L p Bx 0,)) >0 3 Commutatos of Factional Integal Opeatos With Vaiable Kenel In this section, we conside the boundedness of the multinea commutatos geneated by factional integal opeatos with vaiable kenel and Campanato functions on genealized local Moey spaces. Theoem 3.1 Let Ω L R n ) L s ),s>1, and fo any x R n, Ωx, z )dσz ) =0, whee z = z z and z Rn \{0}. Let 0 <α<n,1 s <p< n α and 1 <q,p 1,p 2,,p m <, such that 1 q = m i=1 1 p i + 1 p α n and m i=1 1 p i + 1 p 1 s. Let 1 p = 1 p α n,x 0 R n and b i LC {x0} p i,λ i fo 0 <λ i < 1 n,i=1, 2,,m. Then the inequality T b Ω,α f L q Bx 0,)) m i=1 b i LC p i,λ i n q holds fo any ball Bx 0,), whee λ = λ 1 + λ 2 + + λ m. t n q +1 1+ln t ) m n nλ f L pbx0,t))t p 1

760 ADVANCES IN MATHEMATICS CHINA) Vol. 46 Poof Without loss of geneality, it is sufficient fo us to show that the conclusion holds fo m =2. Let B = Bx 0,). And, we wite f = f 1 + f 2, whee f 1 = fχ 2B,f 2 = fχ 2B) c. Thus, we have b T 1,b 2) Ω,α f Lq B) b T 1,b 2) Ω,α f Lq 1 B) + b T 1,b 2) Ω,α f Lq 2 =: I + II. B) Let us estimate I and II, espectively. It is easy to see that b T 1,b 2) Ω,α f Lq 1 B) = b 1 b 1 ) B )b 2 b 2 ) B )T Ω,α f 1 L q B) + b 1 b 1 ) B )T Ω,α b 2 b 2 ) B )f 1 ) L q B) + b 2 b 2 ) B )T Ω,α b 1 b 1 ) B )f 1 ) L q B) 3.1) + T Ω,α b 1 b 1 ) B )b 2 b 2 ) B )f 1 ) Lq B) =: I 1 +I 2 +I 3 +I 4. Since 1 p = 1 p α n, it is obvious that 1 q = 1 p 1 + 1 p 2 + 1 p. And, fom Definition 1.2, it is easy to see that b i b i ) B L p ib) C n p +nλ i i b i {x LC 0 } p i,λ i fo i =1, 2. 3.2) Thus, using Hölde s inequality, Lemma 1.3 and 3.2), we have I 1 b 1 b 1 ) B L p 1 B) b 2 b 2 ) B L p 2 B) T Ω,α f 1 L p B) b 1 b 1 ) B L p 1 B) b 2 b 2 ) B L p 2 B) f Lp 2B) b 1 b 1 ) B L p 1 B) b 2 b 2 ) B L p 2 B) ñ p b 1 LC n q 1+ln t f L p Bx 0,t)) t ñ p +1 ) 2 t λ1+λ2)n n p 1 f L p Bx 0,t)). 3.3) Moeove, fom Lemma 1.1, it is easy to see that b i b i ) B L p i2b) C n p i +nλ i b i LC p i,λ i fo i =1, 2. 3.4) And, let 1 < p, q < such that 1 q = 1 p 1 + 1 q and 1 p = 1 p 2 + 1 p. It is easy to see that 1 q = 1 p α n. Then similaly to the estimate of 3.3), we have I 2 b 1 b 1 ) B L p 1B) T Ω,α b 2 b 2 ) B )f 1 ) L q B) b 1 b 1 ) B L p 1B) b 2 b 2 ) B )f 1 L p R n ) b 1 b 1 ) B L p 1B) b 2 b 2 ) B L p 2 2B) f Lp 2B) b 1 {x LC 0 } b 2 {x p 1,λ LC 0 } n q t λ1+λ2)n n p 1 f Lp Bx 1 0,t)).

No. 5 Mo H. X. and Xue H. Y.: Commutatos Geneated by Factional Integal Opeatos 761 Similaly, I 3 b 1 LC n q t λ1+λ2)n n p 1 f Lp Bx 0,t)). Moeove, let 1 < q < such that 1 q = 1 q n α. It is easy to see that 1 q = 1 p 1 + 1 p 2 + 1 p. Thus, by Lemma 1.3, Hölde s inequality and 3.4), we obtain I 4 = T Ω,α b 1 b 1 ) B )b 2 b 2 ) B )f 1 ) L q B) b 1 b 1 ) B )b 2 b 2 ) B )f 1 L q R n ) b 1 b 1 ) B L p 12B) b 2 b 2 ) B L p 22B) f Lp 2B) b 1 {x LC 0 } b 2 {x p 1,λ LC 0 } n q t λ1+λ2)n n p 1 f 1 L p Bx 0,t)). Theefoe, combining the estimates of I 1, I 2, I 3 and I 4, we have I b 1 LC n q t λ1+λ2)n n p 1 f L p Bx 0,t)). Let us estimate II. It is analogue to 3.1). We have b T 1,b 2) Ω f L 2 q B) = b 1 b 1 ) B )b 2 b 2 ) B )T Ω,α f 2 Lq B) + b 1 b 1 ) B )T Ω,α b 2 b 2 ) B )f 2 ) L q B) + b 2 b 2 ) B )T Ω,α b 1 b 1 ) B )f 2 ) L q B) + T Ω,α b 1 b 1 ) B )b 2 b 2 ) B )f 2 ) Lq B) =: II 1 +II 2 +II 3 +II 4. Since 1 p = 1 p n α, it is easy to see that 1 q = 1 p 1 + 1 p 2 + 1 p. Thus, using Hölde s inequality and 2.4), we have II 1 b 1 b 1 ) B L p 1B) b 2 b 2 ) B L p 2B) T Ω,α f 2 L p B) b 1 b 1 ) B L p 1B) b 2 b 2 ) B L p 2B) ñ p b 1 LC n q 1+ln t f Lp Bx 0,t)) t ñ p +1 ) 2 t λ1+λ2)n n p 1 f Lp Bx 0,t)).

762 ADVANCES IN MATHEMATICS CHINA) Vol. 46 Fo x B, using Lemma 1.1, it is analogue to 2.3). We have T Ω,α b 2 b 2 ) B )f 2 )x) fy) b 2 y) b 2 ) B Ωx, x y) n α dy 2B) c x 0 y b 2 y) b 2 ) B Ωx, x y) fy) dy < x 0 y <t Bx 0,t) b 2 y) b 2 ) B Ωx, x y) fy) dy b 2 b 2 ) B L p 2 Bx0,t)) Ωx, x ) L s Bx 0,t)) f Lp Bx 0,t)) Bx 0,t) 1 1 p 2 1 s 1 p 1+ln t ) t nλ2 ñ p 1 f L p Bx. 0,t)) Let 1 < q <, such that 1 q = 1 p 1 + 1 q. Then, using Hölde s inequality and 3.5), we have 3.5) So, II 2 b 1 b 1 ) B L p 1 B) T Ω,α b 2 b 2 ) B )f 2 ) L q B) b 1 {x LC 0 } b 2 {x p 1,λ LC 0 } n q t λ1+λ2)n n p 1 f Lp Bx 1 0,t)). Similaly, we have II 3 b 1 LC n q t λ1+λ2)n n p 1 f L p Bx 0,t)). Let us estimate II 4. Fo x B, using Hölde s inequality and Lemma 1.1, it is analogue to 3.5). We have T Ω,α b 1 b 1 ) B )b 2 b 2 ) B )f 2 )x) fy) b 1 y) b 1 ) B b 2 y) b 2 ) B Ωx, x y) n α dy 2B) c x 0 y b 1 y) b 1 ) B b 2 y) b 2 ) B Ωx, x y) fy) dy < x 0 y <t b 1 b 1 ) B L p 1 b 2 b 2 ) B L p 2 Bx0,t)) Ωx, x ) L s Bx 0,t)) f Lp Bx 0,t)) Bx 0,t) 1 1 p 1 1 p 1 2 s 1 p b 1 LC 1+ln t ) t nλ2 ñ p 1 f L p Bx 0,t)). 3.6) II 4 = T Ω,α b 1 b 1 ) B )b 2 b 2 ) B )f 2 ) Lq B) b 1 LC n q t λ1+λ2)n n p 1 f Lp Bx 0,t)).

No. 5 Mo H. X. and Xue H. Y.: Commutatos Geneated by Factional Integal Opeatos 763 Theefoe, combining the estimates of II 1, II 2, II 3 and II 4, we have II b 1 LC q 1,λ 1 q 2,λ 2 n q t λ1+λ2)n n p 1 f L p Bx 0,t)). So, fom the estimates of I and II, we obtain b T 1,b 2) Ω,α f L q Bx 0,)) b 1 {x LC 0 } b 2 {x p 1,λ LC 0 } n q t λ1+λ2)n n p 1 f Lp Bx 1 0,t)). Thus, we complete the poof of Theoem 3.1. Theoem 3.2 Let Ω L R n ) L s ),s>1, and fo any x R n, Ωx, z )dσz ) = 0, whee z = z z fo any z R n \{0}. Let 0 < α < n, 1 s < p < n α and 1 < p 1,p 2,,p m,q <, such that 1 q = m i=1 1 p i + 1 p α n and m i=1 1 p i + 1 p 1 s. Let 1 p = 1 p α n, x 0 R n and b i LC {x0} p i,λ i fo 0 <λ i < 1 n,i=1, 2,,m. If functions ϕ, ψ : R n 0, ) 0, + ) satisfy the inequality 1+ln t ) m ess inf ϕx 0,s)s n p t<s< t ñ p nλ+1 Cψx 0,), whee λ = m i=1 λ i and the constant C>0doesnotdepend on. Then the commutato T b Ω,α is bounded fom LM {x0} p,ϕ to LM{x0} q,ψ. Poof Take v 1 t) =ϕx 0,t) 1 t n p,v2 t) =ψx 0,t) 1,gt) = f L q Bx 0,t)) and wt) = 1+ln t )m t nλ ñ p 1. It is easy to see that ws)ds ess sup v 2 t) t ess sup v 1 τ) <. s<τ < Thus, by Lemma 1.2, we have ess sup v 2 t)h w gt) C ess sup v 1 t)gt). So, T b Ω,α f {x LM 0 } q,ψ =supψx 0,) 1 Bx 0,) 1 q TΩ,α f L q Bx 0,)) >0 m b i {x LC 0 } sup ψx 0,) 1 1+ln t ) m t nλ n p 1 f L p i,λ i p Bx 0,t)) = i=1 m b i {x LC 0 } i=1 >0 sup p i,λ i >0 m b i {x LC 0 } f {x p i,λ LM 0 }. p,ϕ i i=1 ϕx 0,) 1 n p f L p Bx 0,))

764 ADVANCES IN MATHEMATICS CHINA) Vol. 46 Thus, we complete the poof of Theoem 3.2. Acknowledgements The authos expess thei gatitude to the efeees fo thei vey valuable comments. Refeences [1] Balakishiyev, A.S., Guliyev, V.S., Gubuz, F. and Sebetci, A., Sublinea opeatos with ough kenel geneated by Caldeón-Zygmund opeatos and thei commutatos on genealized local Moey spaces, J. Inequal. Appl., 2015, 2015: 61, 18 pages. [2] Chen, Y.P., Ding, Y. and Li, R., The boundedness fo commutato of factional integal opeato with ough vaiable kenel, Potential Anal., 2013, 381): 119-142. [3] Ding, Y., Weak type bounds fo a class of ough opeatos with powe weights, Poc. Ame. Math. Soc., 1997, 12510): 2939-2942. [4] Ding, Y., Chen, J.C. and Fan, D.S., A class of integal opeatos with vaiable kenels on Hady spaces, Chinese Ann. Math. Se. A, 2002, 233): 289-296 in Chinese). [5] Guliyev, V.S., Local genealized Moey spaces and singula integals with ough kenel, Azeb. J. Math., 2013, 32): 79-94. [6] Guliyev, V.S., Genealized local Moey spaces and factional integal opeatos with ough kenel, J. Math. Sci. N. Y.), 2013, 1932): 211-227. [7] Mo, H.X. and Xue, H.Y., Commutatos geneated by singula integal opeatos with vaiable kenels and local Campanato functions on genealized local Moey spaces, Commun. Math. Anal., 2016, 192): 32-42. [8] Moey, C.B.J., On the solutions of quasi-linea elliptic patial diffeential equations, Tans. Ame. Math. Soc., 1938, 431): 126-166. [9] Muckenhoupt, B. and Wheeden, R.L., Weighted nom inequalities fo singula and factional integals, Tans. Ame. Math. Soc., 1971, 161: 249-258. [10] Shao, X.K. and Wang, S.P., Boundedness of factional opeatos with vaiable kenels on weighted Moey spaces, J. Anhui Univ. Nat. Sci., 2015, 391): 21-24 in Chinese). [11] Zhang, P. and Chen, J.C., A class of integal opeatos with vaiable kenels on the Hez-type Hady spaces, Chinese Ann. Math. Se. A, 2004, 255): 561-570 in Chinese). [12] Zhang, P. and Zhao, K., Commutatos of integal opeatos with vaiable kenels on Hady spaces, Poc. Indian Acad. Sci. Math. Sci., 2005, 1154): 399-410. ν &flοßμχß)1.$ Campanato fi '»ο"ffi1/ff,$ Moey %ψο-#* 435, 62 ±ffiξ fiφfiffl, ±, 100876) 0+ R T Ω,α T=8NC>@U<F@Va. 7W`QO T Ω,α _A[K: Moey MG LM {x0} p,ϕ >]IY, JZ9DLPO T Ω,α ^K: Campanato BUS;>?XYHEa_A[ K: Moey MG>]IY. ρ! @U<F@; 8NC; HEa; K: Campanato BU; A[K: Moey MG