Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature)

Similar documents
Chapter 13 Conjugated Unsaturated Systems

Organic Chemistry II / CHEM 252 Chapter 13 Conjugated Unsaturated Systems

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

and Ultraviolet Spectroscopy

Conjugated Systems. With conjugated double bonds resonance structures can be drawn

There are several possible arrangements for a molecule which contains two double bonds (diene): 1. Isolated: (two or more single bonds between them)

Conjugated Dienes and Ultraviolet Spectroscopy

Chapter 13 Conjugated Unsaturated Systems

Organic Chemistry: CHEM2322

Chapter 14: Conjugated Dienes

Conjugated Dienes. Chapter 14 Organic Chemistry, 8 th Edition John E. McMurry

Exam. Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch 14 Conjugated Dienes and UV Spectroscopy

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Conjugated Dienes. Chapter 14 Organic Chemistry, 8 th Edition John E. McMurry

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA

17.1 Classes of Dienes

Chapter 15 Dienes, Resonance, and Aromaticity

17.1 Classes of Dienes

11/5/ Conjugated Dienes. Conjugated Dienes. Conjugated Dienes. Heats of Hydrogenation

Lecture Notes Chem 51B S. King I. Conjugation

ORGANIC - BRUICE 8E CH.8 - DELOCALIZED ELECTRONS AND THEIR EFFECT

Chem 263 Notes Sept. 26, 2013

3) The delocalized π system in benzene is formed by a cyclic overlap of 6 orbitals. A) s B) p C) sp D) sp2 E) sp3

CONJUGATED PI SYSTEMS AND PERICYCLIC REACTIONS

3 - CONJUGATION. More than one double bond can be in a given compound: n=0

1. Which of the following reactions would have the smallest energy of activation?.

Diels-Alder Cycloaddition

Review and Preview. Coursepack: pp (14.6 is FYI only)

Dr. Dina akhotmah-232 1

Dienes & Polyenes: An overview and two key reactions (Ch )

ORGANIC - BROWN 8E CH DIENES, CONJUGATED SYSTEMS, AND PERICYCLIC REACTIONS

Chapter 14: Conjugated Dienes and Ultraviolet Spectroscopy Diene: molecule with two double bonds Conjugated diene: alternating double and single bonds

THE DIELS-ALDER REACTION

CHEMISTRY MIDTERM # 2 ANSWER KEY July 10, 2002

ADDITION OF HYDROGEN HALIDES TO CONJUGATED DIENES A. 1,2- and 1,4-Additions 700 CHAPTER 15 DIENES, RESONANCE, AND AROMATICITY

Learning Guide for Chapter 17 - Dienes

Loudon Chapter 15 Review: Dienes and Aromaticity Jacquie Richardson, CU Boulder Last updated 1/28/2019

Ethers. Chapter 14: Ethers, Epoxides, & Sulfides. General Formula: Types: a) Symmetrical: Examples: b) Unsymmetrical: Examples: Physical Properties:

Homework for Chapter 17 Chem 2320

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

CHEMISTRY Topic #3: Addition Reactions of Conjugated Dienes Spring 2017 Dr. Susan Findlay

Pericyclic reactions

Chapter 14: Dienes and Conjugation. Topics Dienes: Naming and Properties. Conjugation. 1,2 vs 1,4 addition and the stability of the allyl cation

Covalent Bonding: Orbitals

MO THEORY FOR CONJUGATED MOLECULES

Chem 263 Sept 22, Beta-carotene (depicted below) is the orange-red colour in carrots. β-carotene

Lesmahagow High School CfE Advanced Higher Chemistry. Unit 2 Organic Chemistry and Instrumental Analysis. Molecular Orbitals and Structure

UNIT TWO BOOKLET 1. Molecular Orbitals and Hybridisation

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Introduction to Alkenes and Alkynes

Conjugated Systems. Organic Compounds That Conduct Electricity

Terms used in UV / Visible Spectroscopy

22. The Diels-Alder Cycloaddition Reaction

Also called an olefin but alkene is better General formula C n H 2n (if one alkene present) Can act as weak nucleophiles

10.12 The Diels-Alder Reaction. Synthetic method for preparing compounds containing a cyclohexene ring

Class XI Chapter 13 Hydrocarbons Chemistry

Chapter 27 Pericyclic Reactions

New σ bond closes a ring. Loss of one π bond and gain of one σ bond

Pericyclic Reactions and Organic Photochemistry S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras

Electrocyclic and Cycloaddition Reactions

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

Chapter 19: Alkenes and Alkynes

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes

Reactions of Alkenes and Alkynes

COURSE OBJECTIVES / OUTCOMES / COMPETENCIES.

CEM 351 3rd EXAM/Version A Friday, November 21, :50 2:40 p.m. Room 138, Chemistry

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

Chapter 15 Reactions of Aromatic Compounds

Exam Analysis: Organic Chemistry, Midterm 1

4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY

17.3 REACTIONS INVOLVING ALLYLIC AND BENZYLIC ANIONS

Chapter 3 Alkenes and Alkynes. Excluded sections 3.15&3.16

Exam I Review Solution Set

Conjugated Systems & Pericyclic Reactions

Advanced Organic Chemistry

Lecture 22 Organic Chemistry 1

Pericyclic Reactions and Organic Photochemistry S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras

PAPER No. 5: REACTION MECHANISM MODULE No. 2: Types of Organic Reaction Mechanisms

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016

The General Stabilization Effect of Conjugation (Section 15.1, 2, 3, 8, 9) Conjugated (more stable)

Detailed Course Content

Lecture 21 Organic Chemistry 1

Chapter 3. Alkenes And Alkynes

What is the major product of the following reaction?

Diels-Alder Reaction

Benzene and Aromatic Compounds

Organic Chemistry. Radical Reactions

3 - CONJUGATION. More than one double bond can be in a given compound: n=0

Terms used in UV / Visible Spectroscopy

Alkynes Nomenclature of Alkynes

Química Orgânica I. Organic Reactions

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Hour Examination # 1

Chapter Nine. Chapter Nine. Chemical Bonds: A Preview. Chemical Bonds. Electrostatic Attractions and Repulsions. Energy of Interaction

Allylic and Benzylic Reactivity

ELECTROPHILIC ADDITIONS OF ALKENES AS THE COUNTERPART OF ELIMINATIONS

CHAPTER 3 ALKENES, ALKYNES & CONJUGATE DIENES

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid

Transcription:

What is a conjugated system? Chapter 13 Conjugated Unsaturated Systems Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital may be empty (a carbocation The p orbital may hold one electron (a radical) The p orbital may hold two electrons (carbanion ) +,., - Allyl The p orbital may be part of another multiple bond AllylicSubstitution and the Allylic Radical Reaction of propenewith bromine depends on reaction conditions At low temperature the halogen adds across the double bond At high temperature or at very low concentration of halogen an allylicsubstitution occurs AllylicChlorination (High Temperature) Allylic chlorination occurs at high temperature in the gas phase High temp induces a free radical chain reaction Initiation step produces a low concentration of chlorine radical In the first propagation step an allyl radical is formed In the second propagation step the allyl radical reacts with molecular chlorine Why selectivity for allylic position? Allylic radicals form readily because they are more stable than ordinary primary, secondary, tertiary radicals This trend is reflected in C-H bond dissociation energies Allylicomination with N-omosuccinimide Propeneundergoes allylicbromination with N- bromosuccinimide(nbs) in the presence of light or peroxides The relative stability of some carbon radicals is as follows: The radical reaction is initiated by a small amount of bromine radical formed by exposure of NBS to light or peroxides 1

The propagation steps for allylicbromination with NBS are: A bromine radical reacts with propeneto produce an allylicradical and H H reacts with NBS to produce a bromine molecule A molecule of bromine reacts with a propeneradical to regenerate a bromine radical Predict the product NB S R OOR?? A. B. C. D. Molecular Orbital Description of the Allyl Radical When an allylic hydrogen is abstracted, the developing p orbital on the allylic sp 2 carbon overlaps with the p orbitals of the alkene The new p orbital is conjugated with the double bond p orbitals The radical electron and the p electrons of the alkene are delocalized over the entire conjugated system Delocalization of charge and electron density leads to increased stability The three p orbitals of the allylic system combine to form three molecular orbitals (MOs) The bonding MO contains two spin-paired electrons and this orbital increases bonding between the carbons The nonbonding orbital contains a lone electron which is located at carbons 1 and 3 only net result Resonance Description of the Allyl Radical The allyl radical has two contributing resonance forms These resonance forms can be interconverted via electron shifts The resonance structures are equivalent Overall stability of the species is greater than either structure alone 3 Use of Allylic Halogenation generally limited to symmetrical alkenes NBS ROOR. +. 6 B r The true structure of the allyl radical as suggested by resonance theory is as follows 2

The Allyl Cation The molecular orbital description of the allyl cation is similar to the allyl radical except it contains one fewer electrons Stability arises from sharing of the positive charge by C1 and C3 Resonance theory predicts that the allyl cation is a hybrid of equivalent structures D and E Both molecular orbital theory and resonance theory suggest that structure F (below) is the best representation for the allyl cation Stability is roughly that of a tertiary carbocation Summary of the Rules for Resonance Individual resonance structures are not a true representation of the real structure of a molecule A hybrid of all major resonance structures gives an indication of the true structure What is a hybrid? + Lab Poodle Labradoodle Summary of Rules for Resonance Individual resonance structures are not a true representation of the real structure of a molecule A hybrid of all major resonance structures gives an indication of the true structure Only electrons may be moved in resonance structures, not atoms Only p and nonbonding electrons are moved All resonance structures must be proper Lewis structures All resonance structures must have the same number of paired and unpaired electrons All atoms that are part of the delocalized p-electron system must lie in a plane or be nearly planar Not a viable geometry The actual energy of the molecule is lower than the energy calculated for any one contributing resonance structure Allyl cation has much lower energy than either contributing structures 4 or 5 Not a valid resonance form of allyl radical 3

A system with equivalent resonance structures is particularly stable Example: the allyl cation The more stable a resonance structure is, the more important it is and the more it contributes to the hybrid Estimating the Relative Stability of Resonance Structures Structures with more covalent bonds are more important Structures in which all atoms have complete octets are more important Separation of charge decreases stability Dienes andpolyunsaturated Hydrocarbons Alkadienes (dienes) contain two double bonds Polyunsaturated compounds can be classified as being cumulated, conjugated or isolated Conjugated dienes affect each other when they react, isolated double bonds react separately 1,3-Butadiene: Electron Delocalization Bond Lengths of 1,3-Butadiene The double bonds of 1,3-butadiene have the expected length of regular double bonds The central bond is much shorter than a regular carbon-carbon single bond Ethane has a carbon-carbon bond length of 1.54 Å The central bond in 1,3-butadiene is shorter than that in ethene for two reasons 1. The s bond between C2 and C3 is made from sp 2 -sp 2 overlap 2. There is significant overlap between the C2-C3 p orbitals Conformations of 1,3-Butadiene There are two possible planar conformations of 1,3- butadiene called s-cis and s-trans s Indicates the conformations originate from rotation around a single bond s-trans is more stable because it is less stericallyhindered Molecular Orbital Picture of 1,3-Butadiene The first p bonding molecular orbital in 1,3-butadiene shows significant overlap of the p orbitals between C2 and C3 The second p bonding molecular orbital in 1,3-butadiene is the highest occupied molecular orbital (HOMO) and shows no overlap between C2 and C3 4

The Stability of Conjugated Dienes 1,3-butadiene has a lower heat of hydrogenation by 15 kj mol - 1 than two molecules of 1-butene Hydrogenation they lead to the same product Lower heat of hydrogenation means 1,3-butadiene is more stable Ultraviolet-Visible Spectroscopy Conjugated compounds absorb energy in the ultraviolet (UV) and visible (Vis) regions on the electromagnetic spectrum The wavelength of radiation absorbed and the intensity of the absorption depend on the structure of the molecule UV-Vis Spectrophotometers A UV-Vis spectrum is typically measured from 200-800 nm, spanning the near UV and visible regions Wavelength of maximum absorption (l max ) reported in nanometers (nm) Molar absorptivity (e) is also reported as the intensity of the absorption A is the observed absorbance, C is the molar concentration of the sample and l is length of the sample cell in centimeters Example: UV absorption spectrum of 2,5-dimethyl-2,4-hexadiene in methanol at a concentration of 5.95 x 10-5 M in a 1.0 cm cell Origins of UV absorption In UV-Vis spectroscopy the electrons are excited from lower energy levels to higher ones An electron is excited from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) Alkenes have absorptions below 200 nm because the energy difference between the HOMO and LUMO is large In conjugated dienes these energy levels are closer together and the wavelengths of absorption are longer than 200 nm Ethene:? max = 171 nm 1,3-butadiene:?max = 217 nm Extended conjugated systems The longer the conjugated system, the smaller the energy difference between the HOMO and the LUMO Smaller energy gap = longer l max in the UV-vis spectrum b-carotene has 11 conjugated double bonds and an absorbance maximum at 497 nm which is in the blue-green region of the visible spectrum b-carotene is perceived as red-orange, the complementary color of blue-green Carbonyl compounds absorb light in the UV region An unshared (n) electron on oxygen is promoted to a p* orbital Absorption is weak because orbitalsare of different types and geometries 5

Electrophilic Addition to Conjugated Dienes When 1,3-butadiene reacts with one equivalent of HCl at room temperature, two products are obtained Step 1: HCl adds a proton to a terminal carbon to give a most stable cation: the allyliccation allylic cation Step 2: chloride can react at either end of the allyl cation 1,2-addition 1,4-addition Other electrophilic reagents add to conjugated dienes similarly Product mixture is temperature dependent When H adds to 1,3-butadiene: Low temperature (e.g., -80 o C) favors 1,2-addition product High temperature (e.g., 40 o C) favors 1,4-addition product When the mixture of products formed at low temperature is heated, the product ratios change to favor 1,4-addition product Kinetic Control versus Thermodynamic Control of a Chemical Reaction Kinetic control At lower temperatures: the proportion of products is determined by the relative rate of forming each product 1,2-addition product is formed faster DG for formation of 1,2-addition product is lower Energy Diagram Thermodynamic control At higher temperatures: equilibrium is established and the most stable product predominates In an equilibrium, stability of products is the determining factor The more stable 1,4-addition product becomes favored Enough energy is available to overcome DG barriers for formation of 1,2- and 1,4-addition products and for the reverse reactions 1,4 product is more stable because it has a disubstituteddouble bond 1,2-addition product is formed faster because the allyl cation has more charge density at the 2 o rather than the 1 o carbon 6

The Diels -Alder Reaction General form of the Diels-Alder Reaction A 1,4-Cycloaddition Reaction of Dienes Heating 1,3-butadiene and maleicanhydride gives a 6-membered ring product in 100% yield 1. Always produces a 6-membered ring with a double bond 2. Two new s bonds are formed at the expense of two p bonds 3. The conjugated dieneis a 4p-electron system 4. The dienophile ( dienelover ) is a 2p-electron system 5. The reaction is also called a 4+2 cycloaddition Factors Favoring the Diels-Alder Reaction The simplest possible example of a Diels-Alder reaction goes at very low yield and requires high temperatures Conformation Requirement for the Diels-Alder Reaction The dienemust be in s-cis conformation A dienophile with electron-withdrawing groups gives better yields It also helps if the dienehas electron-releasing groups s-trans conformation doesn t align well with dienophile would lead to a strained trans bond in the 6-membered ring Cyclic dienesreact well as they must be in the s-cisconformation The Diels-Alder Reaction is stereospecific Syn addition with retention of configuration in both the Some typical dienes and dienophiles dienophile and the diene 7

Molecular orbital basis for Diels-Alder Reaction Synchronous formation of new bonds is facilitated by favorable overlap of HOMO of each partner with the LUMO of the other Cyclopentadiene is so reactive it spontaneously undergoes Diels-Alder reaction with itself at room temperature This dimer can be cracked (a retro-diels-alder reaction) by heating Introduces another point of selectivity 2 possible structures for the dimer endo Endo products are favored in Diels-Alder reactions Maleic anhydride and cyclopentadiene The Diels-Alder reaction occurs primarily in an endo rather than an exo fashion when the reaction is kinetically controlled A group that is exo in a bicyclic ring system is anti to the longest bridge (exo= out, opposite) A group that is endo is on the same side as the longest bridge Secondary orbital interactions between the LUMO of the carbonyl groups and the HOMO of the cyclopentadiene carbons at the C2 and C3 positions of the diene favor the endo configuration Use of Diels-Alder to make Steroids The need to synthesize 6-membered rings is very common and an ideal application for Diels-Alder reactions 8

Intramolecular Diels-Alder Reactions Intramolecular reactions are those in which the reacting groups are part of the same molecule What dieneand dienophile would be need to make the compound below CO 2 Et CO 2 Et 9