Trigonometry and modelling 7E

Similar documents
Trigonometric Functions Mixed Exercise

h (1- sin 2 q)(1+ tan 2 q) j sec 4 q - 2sec 2 q tan 2 q + tan 4 q 2 cosec x =

Trigonometric Functions 6C

Review Exercise 2. , æ. ç ø. ç ø. ç ø. ç ø. = -0.27, 0 x 2p. 1 Crosses y-axis when x = 0 at sin 3p 4 = 1 2. ö ø. æ Crosses x-axis when sin x + 3p è

a 2 = 5 Þ 2cos y + sin y = Þ 2cos y = sin y 5-1 Þ tan y = 3 a

( ) ( ) or ( ) ( ) Review Exercise 1. 3 a 80 Use. 1 a. bc = b c 8 = 2 = 4. b 8. Use = 16 = First find 8 = 1+ = 21 8 = =

Q Scheme Marks AOs Pearson Progression Step and Progress descriptor. and sin or x 6 16x 6 or x o.e

( ) Trigonometric identities and equations, Mixed exercise 10

Trigonometry (Addition,Double Angle & R Formulae) - Edexcel Past Exam Questions. cos 2A º 1 2 sin 2 A. (2)

7.1 Right Triangle Trigonometry; Applications Objectives

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Proof by induction ME 8

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios 9E. b Using the line of symmetry through A. 1 a. cos 48 = 14.6 So y = 29.

Review exercise

Preview from Notesale.co.uk Page 2 of 42

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 20 (LEARNER NOTES)

Q Scheme Marks AOs Pearson. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Lesson-3 TRIGONOMETRIC RATIOS AND IDENTITIES

AMB121F Trigonometry Notes

Solutionbank Edexcel AS and A Level Modular Mathematics

Chapter 5: Introduction to Limits

4-3 Trigonometric Functions on the Unit Circle

Taylor Series 6B. lim s x. 1 a We can evaluate the limit directly since there are no singularities: b Again, there are no singularities, so:

= + then for all n N. n= is true, now assume the statement is. ) clearly the base case 1 ( ) ( ) ( )( ) θ θ θ θ ( θ θ θ θ)

REVIEW, pages

( y) ( ) ( ) ( ) ( ) ( ) Trigonometric ratios, Mixed Exercise 9. 2 b. Using the sine rule. a Using area of ABC = sin x sin80. So 10 = 24sinθ.

Q Scheme Marks AOs. Attempt to multiply out the denominator (for example, 3 terms correct but must be rational or 64 3 seen or implied).

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 4

14 April Kidoguchi, Kenneth

C3 Exam Workshop 2. Workbook. 1. (a) Express 7 cos x 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < 2

I, SUMMATIVE ASSESSMENT I, / MATHEMATICS X / Class X

Constant acceleration, Mixed Exercise 9

Review exercise 2. 1 The equation of the line is: = 5 a The gradient of l1 is 3. y y x x. So the gradient of l2 is. The equation of line l2 is: y =

( ) ( ) 2 1 ( ) Conic Sections 1 2E. 1 a. 1 dy. At (16, 8), d y 2 1 Tangent is: dx. Tangent at,8. is 1

Inverse Circular Functions and Trigonometric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Verulam School. C3 Trig ms. 0 min 0 marks

QUESTION x = 15 answer (3) For drawing the radius vector in the correct quadrant 1/3. sin α > 0 in second quadrant

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 2: Coordinate geometry in the (x, y) plane

Mark scheme Mechanics Year 1 (AS) Unit Test 7: Kinematics 1 (constant acceleration)

GAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME MATHEMATICS GRADE 12 SESSION 19 (LEARNER NOTES)

Chapter 6: Extending Periodic Functions

1a States correct answer: 5.3 (m s 1 ) B1 2.2a 4th Understand the difference between a scalar and a vector. Notes

Ch. 4 - Trigonometry Quiz Review

Q Scheme Marks AOs Pearson ( ) 2. Notes. Deduces that 21a 168 = 0 and solves to find a = 8 A1* 2.2a

Regent College Maths Department. Core Mathematics 4 Trapezium Rule. C4 Integration Page 1

As we know, the three basic trigonometric functions are as follows: Figure 1

Increasing and Decreasing Functions and the First Derivative Test

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Solutions to Homework Problems from Section 7.5 of Stewart

Version 1.0. General Certificate of Education (A-level) June Mathematics MPC3. (Specification 6360) Pure Core 3. Final.

Version 1,0. General Certificate of Education (A-level) June 2012 MPC3. Mathematics. (Specification 6360) Pure Core 3. Mark Scheme

Paper Reference. Core Mathematics C3 Advanced. Monday 16 June 2014 Morning Time: 1 hour 30 minutes

Pure Mathematics Year 1 (AS) Unit Test 1: Algebra and Functions

Solutions Exam 4 (Applications of Differentiation) 1. a. Applying the Quotient Rule we compute the derivative function of f as follows:

General Certificate of Education Advanced Level Examination January 2010

Review of Essential Skills and Knowledge

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 1

Math 1060 Midterm 2 Review Dugopolski Trigonometry Edition 3, Chapter 3 and 4

Finds the value of θ: θ = ( ). Accept awrt θ = 77.5 ( ). A1 ft 1.1b

25 More Trigonometric Identities Worksheet

Math Section 4.3 Unit Circle Trigonometry

Sec 4 Maths. SET A PAPER 2 Question

Honors Precalculus A. Semester Exam Review

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

Trigonometric Identities Exam Questions

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 8: Exponentials and Logarithms

Mark scheme Pure Mathematics Year 1 (AS) Unit Test 8: Exponentials and Logarithms

Version 1.0. General Certificate of Education (A-level) January 2011 MPC3. Mathematics. (Specification 6360) Pure Core 3.

THE COMPOUND ANGLE IDENTITIES

Draft Version 1 Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1

Core Mathematics 2 Trigonometry

Trigonometry 1st Semester Review Packet (#2) C) 3 D) 2

A level Exam-style practice

Version 1.0: abc. General Certificate of Education. Mathematics MPC3 Pure Core 3. Mark Scheme examination - January series

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

PhysicsAndMathsTutor.com PMT

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac

Differentiation 9I. 1 a. sin x 0 for 0 x π. So f ( x ) is convex on the interval. [0, π]. f ( x) 6x 6 0 for x 1. So f ( x ) is concave for all x

Mark Scheme (Results) Summer Pearson Edexcel GCE In Mechanics M1 (6677/01)

weebly.com/ Core Mathematics 3 Trigonometry

Mathematics (JAN13MPC301) General Certificate of Education Advanced Level Examination January Unit Pure Core TOTAL

Algebra II B Review 5

0606 ADDITIONAL MATHEMATICS

a b = a a a and that has been used here. ( )

Inverse Trigonometric Functions

PMT. Version. General Certificate of Education (A-level) January 2013 MPC3. Mathematics. (Specification 6360) Pure Core 3. Final.

Advanced Math (2) Semester 1 Review Name SOLUTIONS

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

A2 MATHEMATICS HOMEWORK C3

CK- 12 Algebra II with Trigonometry Concepts 1

Math Section 4.3 Unit Circle Trigonometry

C4 mark schemes - International A level (150 minute papers). First mark scheme is June 2014, second mark scheme is Specimen paper

10. Trigonometric equations

Mathematics Revision Guide. Shape and Space. Grade C B

SPM Past Year Questions : AM Form 5 Chapter 5 Trigonometric Functions

Trigonometric Identities. Sum and Differences

School Year

Mark Scheme (Results) January Pearson Edexcel International Advanced Level. Core Mathematics 3 (6665A) January 2014 (IAL)

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal)

π 2π More Tutorial at 1. (3 pts) The function y = is a composite function y = f( g( x)) and the outer function y = f( u)

Transcription:

Trigonometry and modelling 7E sinq +cosq º sinq cosa + cosq sina Comparing sin : cos Comparing cos : sin Divide the equations: sin tan cos Square and add the equations: cos sin (cos sin ) since cos sin sinq + 6 cosq cos cos sin sin Comparing sin : sin () Comparing cos : 6 cos () Divide () by () : tan 6 So. ( d.p.) sinq - cosq cos cos sin sin Comparing sin : sin () Comparing cos : cos () Divide () by () : tan So 4.8 ( d.p.) 4 a Let cosq - sinq º cos(q +a) cos cos sin sin Compare cos : cos () Compare sin : sin () Divide () by () : tan π Square and add : 4 π So cos sin cos b This is the graph of y = cosq, translated by to the left and then stretched in the π y direction by scale factor. Meets y-ais at (0, ) π 7π Meets -ais at,0,,0 6 6 a Let 7cosq - 4sinq º cos(q +a) cos cos sin sin Compare cos : cos 7 () Compare sin : sin 4 () Divide () by () : tan 7.7 ( d.p.) 4 7 Square and add: 4 7 So 7 cos 4sin cos( 7.7 ) b Graph meets y-ais where q = 0, i.e. y = 7cos0-4sin0 = 7 so coordinates are (0, 7) c Maimum value of cos(q + 7.7 ) is when cos(q + 7.7 ) = So maimum is Minimum value is (-) = - Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free.

d i The line y = will meet the graph twice in 0 60, so there are solutions. ii As the maimum value is it can never be 6, so there are 0 solutions. iii As - is a minimum, line y = - only meets curve once, so only solution. 6 a Let sin cos sin sin cos cos sin Comparing sin : cos () Comparing cos : sin () Divide () by () sin tan cos So 7.6 ( d.p.) cos sin (cos sin ) 0 0 0, 7.6 ( d.p.) b Use the value of to d.p. in calculating values of to avoid rounding errors 0 sin( 7.6 ) sin( 7.6 ) 0 sin 9. ( d.p.) 0 As 0 60, the interval for 7.6 is 7.6 7.6 4.6 So 7.6 80 9., and 7.6 60 9. 7.6 40.77, 99. 69., 7.7 ( d.p.) 7 a Set cos sin cos( ) cos sin cos cos sin sin Comparing sin : sin () Comparing cos : cos () Divide () by () sin tan cos So.07 ( d.p.) cos sin (cos sin ) So cos sin cos(.07) b cos(.07).. cos(.07). cos.06 ( d.p.) As 0 π, the interval for.07 is.07.07 π.07 So.07.06, π.06.07.06,.977 0.60,.44 ( d.p.) Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free.

8 a Write 6sin +8cos in the form sin( ), where 0, 0 90 So 6sin 8cos sin cos cos sin Compare sin : cos 6 () Compare cos : sin 8 () 4 Divide () by (): tan. ( d.p.) 6 8 0 So 6sin 8cos 0sin(. ) Solve 0sin(. ), in the interval 0 60 so sin(. ). 60, 0 6.9, 66.9 ( d.p.) b Let cosq - sinq º cos(q +a) cos cos sin sin Compare cos : cos () Compare sin : sin () Divide () by () : tan 6. ( d.p.) Solve cos( 6. ), in the interval 0 90 so cos( 6. ) for 6. 6. 6. c Let 8cosq +sinq º cos(q -a) sin cos cos sin Compare cos : cos 8 () Compare sin : sin () Divide () by () : tan 8 6.9 ( d.p.) 8 7 Solve 7 cos( 6.9 ) 0, in the interval 0 60 0 So cos 6.9, 7 6.9 6.9 98.07 cos 0.97 ( d.p.) 7 So 6.9.97,.97 8.0,.9 ( d.p.) 6. 06.0,.90 49.8, 97.6 6.6, 6.9 ( d.p.) Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free.

8 d Let sin cos sin sin cos cos sin Compare sin : cos () Compare cos : sin () Divide () by () : tan 67.8 ( d.p.) Solve sin 67.8 6., in the interval 60 60 So sin 67.8, 47.4 67.4.6 From quadrant diagram: 67.8 0, 0 8.6, 7.8 6., 74.8 ( d.p.) 9 a Set sin 4cos sin( ) sin 4cos sin cos cos sin Compare sin : cos () Compare cos : sin 4 () 4 Divide () by () : tan. ( d.p.) 4 So sin 4cos sin(. ) b The minimum value of sin 4cos is. This occurs when sin(. ). 70 07.7 ( d.p.) c sin(. ), in the interval 0 80 So sin(. ), in the interval.. 06.87..4,68.46, 7.4.6,7.9,4.6 ( d.p.) - cosq 0 a As sin q = and cos cos So sin cos 6sin cos cos cos (sincos ) cos cos sin 4cos sin Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free. 4

0 b Write sinq - 4cosq in the form sin( ) The maimum value of sin( ) is The minimum value of sin( ) is You know that 4 so So maimum value of 4cos sin is 6 and minimum value of 4cos sin is 4 c 4cos sin sin 4cos Write sinq - 4cosq in the form sin( ) So sin( ) sin(. ) (By solving in same way as Question 9, part a) Look for solutions in the interval.. 06.87..8, 0.8 4.8,8.4 ( d.p.) a Let cosq + sinq º cos(q -a) cos cos sin sin Compare cos : cos () Compare sin : sin () Divide () by (): tan 8.4 ( d.p.) 0 0.6 Solve 0 cos( 8.4 ), in the interval 0 60 cos( 8.4 ) 0 8.4 0.77, 09. 69., 7.7 ( d.p.) b Squaring cosq = - sinq gives 9cos q = 4 + sin q - 4sinq Þ 9(- sin q) = 4 + sin q - 4sinq Þ 0sin q - 4sinq - = 0 c 0sin q - 4sinq - = 0 4 6 sin 0 4 6 For sin, sin is positive, 0 so is in the first and second quadrants. 69., 80 69. 69., 0.8 ( d.p.) 4 6 For sin, sin is negative, 0 so is in the third and fourth quadrants. 80 (. ), 60 (. )., 7.7 ( d.p.) So solutions of quadratic in (b) are 69., 0.8,., 7.7 ( d.p.) d In squaring the equation, you are also including the solutions to cosq = -( - sinq), which when squared produces the same quadratic. The etra two solutions satisfy this equation. Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free.

a cot cosec cos sin sin Multiplying both sides by sin gives cossin b cossin Set sin cos sin( ) sin cos cos sin So cos and sin sin tan cos tan 6.7 ( d.p.) So sin( 6.7) sin( 6.7), in the interval 6.7 6.7 86.7 6.7 6.7,.4 0,6.9 ( d.p.) As both cot and cosec are undefined at 0, 6.9 is the only solution. a cos sin 4 coscos sinsin 4 4 sin sin cos sin sin sin cos sin sin sin cos sin b cos sin Set sin cos sin( ) sin cos cos sin So cos and sin sin tan cos tan π 6 4 π sin 6 π sin, in the interval 6 π π π 6 6 6 6 4 a Set 9cos 40sin cos( ) cos cos sin sin b i So cos 9 and sin 40 sin 40 tan cos 9 40 tan 9 So 77.0 ( d.p.) cos sin 40 9 (cos sin ) 68 4 So 9cos 40sin 4cos( 77.0 ) 8 g( ) 0 4cos( 77.0 ) The minimum value of g( ) is when cos( 77.0 ) 8 8 So the minimum value is 0 4 9 Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free. 6

4 b ii The minimum occurs when cos( 77.0 ) 77.0 0 77.0 a Set cos sin cos( ) cos cos sin sin So cos and sin sin tan cos tan So.6 ( d.p.) cos sin (cos sin ) 69 b cos(.6 ) 6. 6. cos(.6 ), in the interval.6.6 8.6.6 0, 40 48.7, 08.7 ( d.p.) c d 4cos 0sin cos cos 4 sin cos sin a =, b = and c = 4cos 0sin cos cos sin From part (a) cos sin cos(.6 ) The minimum value is therefore when cos(.60 ) It is ( ) Pearson Education Ltd 07. Copying permitted for purchasing institution only. This material is not copyright free. 7