THE INFLUENCE OF THERMAL ACTIONS AND COMPLEX SUPPORT CONDITIONS ON THE MECHANICAL STATE OF SANDWICH STRUCTURE

Similar documents
NUMERICAL ANALYSIS OF SANDWICH PANELS SUBJECTED TO POINT LOADS

Aim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels

Current research of Division of Metal Structures at Poznan University of Technology

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

INTRODUCTION TO STRAIN

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

14. *14.8 CASTIGLIANO S THEOREM

3. Stability of built-up members in compression

Mechanics of Materials CIVL 3322 / MECH 3322

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

Lab Exercise #5: Tension and Bending with Strain Gages

[5] Stress and Strain

Beam Bending Stresses and Shear Stress

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

Advanced Structural Analysis EGF Section Properties and Bending

Strength of Material. Shear Strain. Dr. Attaullah Shah

The University of Melbourne Engineering Mechanics

Lecture 15 Strain and stress in beams

6. Bending CHAPTER OBJECTIVES

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

A study of the critical condition of a battened column and a frame by classical methods

Mechanics of Solids. Mechanics Of Solids. Suraj kr. Ray Department of Civil Engineering

Basic Energy Principles in Stiffness Analysis

[8] Bending and Shear Loading of Beams

2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft

Members Subjected to Torsional Loads

NON-LINEAR BEHAVIOUR OF FOAM CORED CURVED SANDWICH PANELS SUBJECTED TO THERMO- MECHANICAL LOADING

BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED, FLAT, RECTANGULAR SANDWICH PANELS UNDER BIAXIAL COMPRESSION

National Exams May 2015

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

Dynamic and buckling analysis of FRP portal frames using a locking-free finite element

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

HIGHLY ADAPTABLE RUBBER ISOLATION SYSTEMS

CHAPTER 4: BENDING OF BEAMS

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Multi Linear Elastic and Plastic Link in SAP2000

N = Shear stress / Shear strain

Chapter Two: Mechanical Properties of materials

CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

Mechanics of Materials

STUDY ON THE RESPONSE OF ELASTOMERIC BEARINGS WITH 3D NUMERICAL SIMULATIONS AND EXPERIMENTAL VALIDATION

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Stresses in Curved Beam

7.4 The Elementary Beam Theory

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Design of a fastener based on negative Poisson's ratio foam adapted from

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

CHAPTER -6- BENDING Part -1-

Mechanical Design in Optical Engineering

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

CHAPTER 5 Statically Determinate Plane Trusses

Available online at ScienceDirect. Procedia Engineering 172 (2017 )

Lecture 11: The Stiffness Method. Introduction

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Finite Element Modelling with Plastic Hinges

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

Mechanics of Materials Primer

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS

Dynamic Response Of Laminated Composite Shells Subjected To Impulsive Loads

Table of Contents. Preface... 13

MECE 3321: Mechanics of Solids Chapter 6

DESIGN OF BEAMS AND SHAFTS

TESTING AND ANALYSIS OF COMPOSITE SANDWICH BEAMS

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Analytical Strip Method for Thin Isotropic Cylindrical Shells

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

Samantha Ramirez, MSE

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

Chapter 3. Load and Stress Analysis

CHAPTER 5. Beam Theory

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012

CHAPTER OBJECTIVES CHAPTER OUTLINE. 4. Axial Load

MINIMUM WEIGHT STRUCTURAL SANDWICH

1 Static Plastic Behaviour of Beams

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

1.050: Beam Elasticity (HW#9)

Delft Applied Mechanics Course: Statics AE1-914-I. 18 August 2004, 9:00 12:00

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

EE C247B / ME C218 INTRODUCTION TO MEMS DESIGN SPRING 2014 C. Nguyen PROBLEM SET #4

Entrance exam Master Course

RODS: THERMAL STRESS AND STRESS CONCENTRATION

A *69>H>N6 #DJGC6A DG C<>C::G>C<,8>:C8:H /DA 'D 2:6G - ( - ) +"' ( + -"( (' (& -+" % '('%"' +"-2 ( -!"',- % )% -.C>K:GH>IN D; AF69>HH>6,-+

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

needed to buckle an ideal column. Analyze the buckling with bending of a column. Discuss methods used to design concentric and eccentric columns.

Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS

STRENGTH OF MATERIALS-I. Unit-1. Simple stresses and strains

Transcription:

Journal of Applied Mathematics and Computational Mechanics 013, 1(4), 13-1 THE INFLUENCE OF THERMAL ACTIONS AND COMPLEX SUPPORT CONDITIONS ON THE MECHANICAL STATE OF SANDWICH STRUCTURE Jolanta Błaszczuk 1, Zbigniew Pozorski 1 Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland Institute of Structural Engineering, Poznan University of Technology Poznań, Poland 1 jolanta.blaszczuk@im.pcz.pl, zbigniew.pozorski@put.poznan.pl Abstract. The paper concerns the problem of the influence of thermal actions on the structural behavior of sandwich panels with unspecified elastic supports. An ordinary sandwich panel theory is used. The boundary conditions have the arbitrary form of elastic supports. The solution of a statically undetermined system with limitations of horizontal displacement and rotation is derived. The illustrative examples are presented and the problem solution is discussed. Keywords: sandwich panels, thermal actions, boundary conditions, elastic supports Introduction Due to their specific structure, sandwich panels have good load capacity at low deadweight and excellent thermal insulation. The separation of rigid faces by the thick and light core results in the significant role of thermal actions. These actions bring on displacements, strains and stresses in the structure. This applies in particular to the statically undetermined systems. The influence of thermal actions in this case is usually greater than other impacts. In the generally accepted theory [1-3], the behavior of the sandwich beam can be described by ordinary differential equations and relatively simple boundary conditions. In fact, sandwich beams and plates are spatial systems with complex support conditions. These conditions are usually different at the upper and lower faces of sandwich. For some time there has been discussion on the accuracy of the theoretical assumptions concerning the boundary conditions. Many controversies surround the effect of admission or restriction of the horizontal displacement of the structure. Complex boundary conditions can be taken into account by using higher- -order global-local theories [4-6], but their application usually requires sophisticated computational tools. The issue of taking into account appropriate boundary conditions is particularly important in the case of thermal actions that have the nature of distortions [7] and

14 J. Błaszczuk, Z. Pozorski reach the extreme values in case of fire. The restraint of the structure deformations causes internal forces and stresses [8]. It was shown in [9, 10] that the structural response can be very sensitive due to the variation of support conditions. Also geometrical shape variations of the structure can have an influence on the load capacity and displacements of sandwich panels [11]. The paper presents the proposal of a refined classical sandwich beam theory, which allows for the easy definition of various boundary conditions. The solution of the thermally loaded undetermined system with arbitrary elastic supports is derived. The problem of the restriction of the horizontal displacement of the structure is in focus. The parametric studies of the influence of different boundary conditions on the internal forces, stresses and deformation of the sandwich structure are presented and discussed. 1. Formulation of the problem Consider sandwich beam (1D structure) with flat facings and a thick and soft core. In the case of the beam subjected to distributed transverse load q and initial curvature θ, the classical constitutive equations have the form of two differential equations: M = BS ( γ w θ), (1) V = G C AC γ. () The curvature θ is induced by the difference T T 1 between the temperatures in lower and upper sandwich faces. The vertical displacement w, shear strain γ, bending moment M and shear force V are functions of the position coordinate x (x, z - coordinates, u, w - displacements). The transverse load q and the curvature θ can also be functions of x. The G C and A C denote the shear modulus and the cross- -sectional area of the core. The term B S represents the bending stiffness of the facings with respect to the global center line of the sandwich panel. In the case of flat and thin faces B S expresses total bending stiffness. The only variable in the classical theory is the position coordinate x. The typical boundary conditions refer to vertical displacements, rotations caused by bending or internal forces: a) simply support - vertical displacement and bending moment at the support (point x 0 ) equal to zero: ( x ) =, w ( x ) ( x ) 0 w γ, (3) 0 0 0 0 = b) clamping - vertical displacement and rotation caused by bending equal to zero: ( x ) =, w ( x ) ( x ) 0 w γ, (4) 0 0 0 0 =

c) free end: The influence of thermal actions and complex support conditions on the mechanical state of 15 ( x ) =, w ( ) 0 w x. (5) 0 0 0 = The boundary conditions (3)-(5) are idealized. In practice, there are elastic supports, which allow the displacements proportional to the forces occurring in the supports. This also applies to horizontal displacements. In general, the horizontal support conditions for the two sandwich faces tend to be independent and different. Fig. 1. The scheme of the horizontal elastic supports independently imposed on two rigid sandwich faces; k 1, k - modules of support elasticity The method of taking into account elastic vertical supports was extensively discussed in [9]. This paper focuses on the problem of the restriction of the horizontal displacement of the structure. The horizontal supporting is assumed as elastic (displacement linearly proportional to the force) and independently imposed on two rigid sandwich faces. The considered type of the support is schematically shown in Figure 1.. The solution of the thermally loaded system with elastic supports Consider the symmetric sandwich panel that is in the initial temperature T 0. The core is not sensitive to temperature change. An increase or decrease in temperature causes a linearly proportional expansion or contraction of sandwich faces, respectively. The size of the faces, expansion or contraction determines the thermal expansion coefficient α of the material of faces. As a result of thermal effects, the temperature of the upper face changed to T 1, whereas the lower face temperature changed to T. Any change in temperature can be expressed as the sum of the two effects: uniform change T N and uneven change T M : T + T 1 T N = T0, (6) T M = T T 1. (7) Uniform increase/decrease of temperature in the case of a (thermally) homogeneous or symmetrically non-homogeneous structure is responsible for the expansion/contraction L of the structural element of the original length L:

16 J. Błaszczuk, Z. Pozorski L = α T N. (8) L Uneven temperature change causes the curvature of the structural element: T θ = α M, (9) e where e denotes the distance between centroids of sandwich faces (see Fig. ). Deformation of the free element subjected to thermal excitation is presented in Figure. When the deformation of the structure is limited, internal forces appear. Fig.. Deformation of the free element subjected to thermal excitation a) b) Fig. 3. The one-span basic system with the restriction of the horizontal displacement: a) boundary conditions, b) unknown support forces and displacements Consider the one-span basic system presented in Figure 3a with the restriction of the horizontal displacement. The structure is symmetric and the sandwich faces have the same thickness. The elasticity of the horizontal supports may take any value. It is assumed that upper and lower horizontal supports have the elasticity coefficients k 1 and k, respectively. The structure is subjected to a temperature

The influence of thermal actions and complex support conditions on the mechanical state of 17 change - the initial temperature was T 0, the current temperature is T 1 in the upper face and T in the lower face. The thermal action and the restriction of the horizontal displacement cause the horizontal support forces H 1 and H. The support forces, as also the internal forces and structure deformations, depend on the geometrical and mechanical parameters of the system, thermal actions and support stiffness. Unknown horizontal displacements at the upper and lower supports are denoted as 1 and, respectively. The unknown forces H 1 and H can be represented by the unknown axial force X 1 and bending moment X (see Fig. 3b): X1 X H1 = e, (10) H = X1 X + e. (11) From the other point of view, the forces H 1 and H are proportional to the respective support stiffness k and displacement. The final displacements 1, depend on the forces X 1, X and temperature changes T N, T M : e k1 1 = k1 X1δ 11 + δ1n + ( X δ δ ), (1) H1 = M e = k = k X1δ 11 + δ1n + ( X δ + δ M). (13) H The following terms denote displacements at the end support: δ 11 - the horizontal displacement of the structure induced by the virtual force X 1= 1, δ - the rotation of the structure induced by the virtual moment X = 1, δ 1N - the horizontal displacement of the free structure induced by T N, δ M - the rotation of the free structure induced by T M. In the case of the structure presented in Figure 3a, the horizontal displacements and rotations have the form: 1 L 1 L δ 11 = =, (14) E A + E A D F1 F1 F F F 1 L δ =, (15) B S L δ 1 N = α T N, (16) T L δ M M = α, (17) e

18 J. Błaszczuk, Z. Pozorski where the denominator E F1 A F1 + E F A F in (14) represents the axial stiffness of the both sandwich faces (E - Young modulus of the face material, A - the area of the cross-section of the face). The subscripts F1, F refer to the upper and lower face. For the simplicity of the presentation, the denominator in (14) is marked with the symbol D F. Comparing the right-hand sides of equations (10)-(11) to (1)-(13), taking into account (14)-(17), we finally arrive at the solution: X kbs TN + kbs TM + k1ke L TN + k1bs TN k1bs TM 1 = α LDF, (18) 8DF BS + 4k LBS k LBS k k e L k e LDF k e 1 + 4 + 1 + 1 + LDF k D T + k D T + k k L T k D T + k D T X F N F M 1 M 1 F N 1 F M = eα LBS. (19) 8DF BS + 4k LBS k LBS k k e L k e LDF k e 1 + 4 + 1 + 1 + LDF The support forces H 1 and H are determined using (10), (11). The stresses (negative stress denotes compression) in the upper and lower face are: σ σ F1 F H = A 1 F1 H = A F, (0). (1) 3. The influence of the restriction of the horizontal displacement To demonstrate the impact of restrictions of the horizontal displacements at supports, the one-span sandwich beam presented in Figure 3a is analyzed. The following geometrical parameters of the beam were assumed: span L = 3.0 m, width b = 1.0 m, depth d = 0.10 m, upper and lower face thickness t = 0.0005 m, distance between centroids of sandwich faces e = 0.0995 m. The Young modulus of the faces is E F1 = E F = 10 GPa and thermal expansion coefficient α = 1 10 6 1/ C. The temperature conditions simulate the typical case of interactions occurring in the summer: T 1 = 65 C, T = 0 C and the temperature of the structure installation T 0 = 10 C. Various stiffness coefficients of the elastic supports were considered from practically rigid support (k = 1 000 000 kn/m) to the susceptible support (k = 100 kn/m). The elasticity of the supports is common in engineering practice. Figure 4 presents the stress level in the upper face (S1) and in the lower face (S) as the function of the elasticity coefficient of the upper horizontal support k 1. Figure 4a presents the solution for the elasticity coefficient of the lower horizontal support k = 1 000 000 kn/m, whereas Figure 4b demonstrates the solution for k = 10 000 kn/m.

The influence of thermal actions and complex support conditions on the mechanical state of 19 a) 0 stress in faces [Pa] S1 k 1, 1000000 kn m S k 1, 1000000 kn m 5.10 7 1. 10 8 1.5.10 8 0.10 8 4.10 8 6.10 8 8.10 8 1.10 9 k 1 support elasticity [N/m] b) 0 stress in faces [Pa] S1 k 1, 10000 kn m S k 1, 10000 kn m 5.10 7 1. 10 8 1.5.10 8 0.10 8 4.10 8 6.10 8 8.10 8 1.10 9 k 1 support elasticity [N/m] Fig. 4. The stress level in the upper face (S1 - solid line) and in the lower face (S - dashed line) as the function of the elasticity coefficient of the upper horizontal support k 1 : a) elasticity coefficient of the lower horizontal support k = 1 000 000 kn/m, b) k = 10 000 kn/m The solutions presented in Figure 4 are very interesting. The stress level in the lower face (S) depends on the value k but does not depend on the elasticity coefficient of the upper support k 1. The graph S is constant with respect to k 1. Analogically, the stress in the upper face will be constant with respect to the variable k. It is noteworthy that X 1 and X in (18), (19) are dependent on both k 1 and k. In the case of rigid supports (Fig. 4a) the stresses in the upper and lower face reach 19.5 and 3.55 MPa, respectively. These values are huge from the mechanical point of view. The stress values in the faces for the selected parameters k 1, k are shown in Table 1.

0 J. Błaszczuk, Z. Pozorski The stress in the upper face (σ F1 ) and in the lower face (σ F ) in MPa, for selected values of parameters k 1, k Table 1 Stress in faces σ [MPa] Upper face support elasticity k 1 [kn/m] 1 000 000 10 000 100 1 000 000 σ F1 = 19.5 σ F = 3.55 σ F1 = 17.3 σ F = 3.55 σ F1 = 0.198 σ F = 3.55 Lower face support elasticity k [kn/m] 10 000 σ F1 = 19.5 σ F = 3.150 σ F1 = 17.3 σ F = 3.150 σ F1 = 0.198 σ F = 3.150 100 σ F1 = 19.5 σ F = 0.004 σ F1 = 17.3 σ F = 0.004 σ F1 = 0.198 σ F = 0.004 It should be noted that the rigid horizontal supports generate high stresses in the sandwich faces and large horizontal forces H 1, H. Fortunately, in practice, the stiffness of the supports and stresses is more likely such as in the selected cell of the Table 1, namely stresses σ F1 = 0.198 MPa and σ F = 3.150 MPa. In this case the horizontal forces are H 1 = 0.099 kn and H = 1.575 kn. Screws should transfer these forces from the sandwich to the substructure. The horizontal displacements at the level of the upper and lower face reach 1 = 0.9886 mm and = 0.1575 mm. Such vulnerability of the substructure seems to be easily achievable. Despite this, in extreme situations, the impact of the restrictions of the horizontal displacements at the supports of sandwich panels should be carefully evaluated. Conclusions The derived formulas and presented results show that limitation of horizontal displacement and rotation at the supports significantly influence the mechanical state of sandwich beams. In the extreme situations (rigid supports and high thermal actions) the compression or tension in faces can be higher than 100 MPa. Installation temperature and uniform change of temperature (neglected so far in the static analysis) substantially change the stress and strain in systems with limited horizontal displacements at supports. Changing temperatures occurring within a year cause that the sandwich faces in a different period of time are tensioned or compressed. Fortunately, structural systems are characterized by certain vulnerability, which decreases the impact of thermal effects. References [1] Davies J.M., Lightweight Sandwich Construction, Blackwell Science Ltd., 001. [] Zenkert D., An Introduction to Sandwich Construction, London 1995.

The influence of thermal actions and complex support conditions on the mechanical state of 1 [3] EN 14509:010 Self-supporting double skin metal faced insulating panels - Factory - made products - Specifications, 010. [4] Frostig Y., Baruch M., Vilnay O., Sheinman I., High-order theory for sandwich-beam behavior with transversely flexible core, J. Eng. Mech. 199, 118(5), 106-1043. [5] Cho Y.B., Averill R.C., First-order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels, Composite Structures 000, 50, 1, 1-15. [6] Lezgy-Nazargah M., Shariyat M., Beheshti-Aval S.B., A refined high-order global-local theory for finite element bending and vibration analyses of laminated composite beams, Acta Mechanica 011, March, 17, 3-4, 19-4. [7] Kucz M., Rzeszut K., Polus Ł., Malendowski M., Influence of boundary conditions on the thermal response of selected steel members, Procedia Engineering 013, 57, 977-985. [8] Błaszczuk J., Pozorski Z., Engineering aspects of structural response of multi-span sandwich panels, Scientific Research of the Institute of Mathematics and Computer Science 010, (9), 5-15. [9] Studziński R., Pozorski Z., Garstecki A., Sensitivity analysis of sandwich beams and plates accounting for variable support conditions, Bulletin of the Polish Academy of Sciences - Technical Sciences 013, 61, 1, 01-10. [10] Sokolinsky V., Frostig Y., Boundary condition effects in buckling of soft core sandwich panels, J. Eng. Mech. 1999, 15(8), 865-874. [11] Chuda-Kowalska M., Influence of longitudinal edge profiling in sandwich panels on interpretation of experimental results, Scientific Research of the Institute of Mathematics and Computer Science 01, 4(11), 19-7.