Nonequilibrium Green s function (NEGF) method in thermal transport and some applications

Similar documents
Let s treat the problem of the response of a system to an applied external force. Again,

Linear Response Theory: The connection between QFT and experiments

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

Motion of Wavepackets in Non-Hermitian. Quantum Mechanics

Density Matrix Description of NMR BCMB/CHEM 8190

Lecture 2 M/G/1 queues. M/G/1-queue

Density Matrix Description of NMR BCMB/CHEM 8190

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

( ) () we define the interaction representation by the unitary transformation () = ()

Track Properities of Normal Chain

FI 3103 Quantum Physics

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

FTCS Solution to the Heat Equation

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

A NEW TECHNIQUE FOR SOLVING THE 1-D BURGERS EQUATION

Multi-Fuel and Mixed-Mode IC Engine Combustion Simulation with a Detailed Chemistry Based Progress Variable Library Approach

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

Chapter 6: AC Circuits

CS286.2 Lecture 14: Quantum de Finetti Theorems II

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

Mechanics Physics 151

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Implementation of Quantized State Systems in MATLAB/Simulink

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

Mechanics Physics 151

On One Analytic Method of. Constructing Program Controls

Mechanics Physics 151

Lecture 9: Dynamic Properties

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Graduate Macroeconomics 2 Problem set 5. - Solutions

Volatility Interpolation

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

THERMODYNAMICS 1. The First Law and Other Basic Concepts (part 2)

A DECOMPOSITION METHOD FOR SOLVING DIFFUSION EQUATIONS VIA LOCAL FRACTIONAL TIME DERIVATIVE

arxiv: v1 [math.pr] 6 Mar 2019

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

P R = P 0. The system is shown on the next figure:

( ) [ ] MAP Decision Rule

2.1 Constitutive Theory

Material Science Simulations using PWmat

Notes on the stability of dynamic systems and the use of Eigen Values.

Quantum Mechanical Foundations of Causal Entropic Forces

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015)

Diffusion of Heptane in Polyethylene Vinyl Acetate: Modelisation and Experimentation

On computing differential transform of nonlinear non-autonomous functions and its applications

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

Part II CONTINUOUS TIME STOCHASTIC PROCESSES

Comprehensive Integrated Simulation and Optimization of LPP for EUV Lithography Devices

Introduction ( Week 1-2) Course introduction A brief introduction to molecular biology A brief introduction to sequence comparison Part I: Algorithms

A New Generalized Gronwall-Bellman Type Inequality

δ N formalism for curvature perturbations

Math 128b Project. Jude Yuen

Solution in semi infinite diffusion couples (error function analysis)

Fall 2010 Graduate Course on Dynamic Learning

Born Oppenheimer Approximation and Beyond

e-journal Reliability: Theory& Applications No 2 (Vol.2) Vyacheslav Abramov

Response of MDOF systems

Dual Approximate Dynamic Programming for Large Scale Hydro Valleys

January Examinations 2012

Method of upper lower solutions for nonlinear system of fractional differential equations and applications

A Deterministic Algorithm for Summarizing Asynchronous Streams over a Sliding Window

Lecture 6: Learning for Control (Generalised Linear Regression)

Relative controllability of nonlinear systems with delays in control

Advanced Macroeconomics II: Exchange economy

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

On the numerical treatment ofthenonlinear partial differentialequation of fractional order

Chapter 2 Linear dynamic analysis of a structural system

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

Performance Analysis for a Network having Standby Redundant Unit with Waiting in Repair

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Real-time Quantum State Estimation Based on Continuous Weak Measurement and Compressed Sensing

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction

Comb Filters. Comb Filters

(Time-dependent) Mean-field approaches to nuclear response and reaction

2/20/2013. EE 101 Midterm 2 Review

Midterm Exam. Thursday, April hour, 15 minutes

SELFSIMILAR PROCESSES WITH STATIONARY INCREMENTS IN THE SECOND WIENER CHAOS

WiH Wei He

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Solution of the Schrödinger Equation for a Linear Potential using the Extended Baker-Campbell-Hausdorff Formula

Lecture 9: Advanced DFT concepts: The Exchange-correlation functional and time-dependent DFT

Electromagnetic waves in vacuum.

Non-equilibrium Green functions I

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

Generalized double sinh-gordon equation: Symmetry reductions, exact solutions and conservation laws

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment

Normal Random Variable and its discriminant functions

Sampling Procedure of the Sum of two Binary Markov Process Realizations

Transcription:

Nonequlbrum reen s funcon NEF mehod n hermal ranspor and some applcaons Jan-Sheng Wang Naonal Unversy of Sngapore

Oulne of he al Inroducon Mehod of nonequlbrum reen s funcons Applcaons Thermal currens n1d chan and nanoubes Transen problems Full counng sascs ICTP worshop 1

Fourer s law for hea conducon J κ T f [ ω] f e ω d Fourer Jean Bapse Joseph Baron 1768-183 3

Thermal conducance I κ σ I SJ S where I : hermal curren J : curren densy T σ : T T T σ : emperaure of lef and rgh lead conducance κ : conducvy S : cross secon area 4

Thermal ranspor of a juncon Juncon ef ead T gh ead T sem-nfne leads ICTP worshop 1 5

Models C C C n 1 T 1 T α α pα pα uαk uα u mx α C ac T αc uv u u u α C α j 1 1 Tuuu T uuuu 3 4 C C C C C C C n j j jl j l j jl α Juncon ef ead T gh ead T ICTP worshop 1 6

ICTP worshop 1 7 Force consan marx C C C C C V V K V V 11 1 1 11 1 1 11 1 1 1 K

Defnons of reen s funcons reaer/lesser reen s funcon > < j ' uj u ' j ' Tme-ordered/an-me ordered reen s funcon ' θ ' ' θ ' ' θ ' ' θ earded/advanced reen s funcon r a ' ' θ > > ' θ ' ' > < > < < < ' ' See ex boos e.g.. aug and A.-P. Jauho or J. ammer or S. Daa or D Venra ICTP worshop 1 8

Conour-ordered reen s funcon j ' Tu C j u ' d C Tr ρ Tu C j u ' e Conour order: he operaors earler on he conour are o he rgh. ICTP worshop 1 9

elaon o he real-me reen s funcons σ σ or σ ± σσ ' ' ' or < > > < ICTP worshop 1 1

ICTP worshop 1 11 Equaons for reen s funcons n ballsc sysems ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' < > < > K I K I K I K I K a r a r δ δ δ σδ δ σσ σσ σσ

Soluon for reen s funcons ' ' δ ' usng Fourer ransform: ra ra K I ra ra ω [ ω] K [ ω] I ra 1 ω ωi K cδω K dδω K [ ] 1 r a [ ω] [ ω] ω η I K η r a βω f e < > < r < c and d can be fxed by nal/boundary condon. ICTP worshop 1 1

Transform o neracon pcure j ' uj u ' '' d'' C Tr ρ Tu C j u ' e I n '' d'' I I C Tr ρitu C j u ' e ICTP worshop 1 13

Perurbave expanson of conour ordered reen s funcon j ' Tu C j u ' e 3 n '' d'' 1 TCuj u ' 1 n 1 d1 n 1 d1 n d! 1 1 Tu C j u ' Tu C j u ' Tlmn 1 3 ul 1 um un 3 d1dd3 3lmn 1 3 opq T u u u d d d opq 4 5 6 o 4 p 5 q 6 4 5 6 '... Tu u ' u u u u u u j C j l 1 m n 3 o 4 p 5 q 6 Wc's heorem Tu u Tu u Tu u Tu u ' C j l 1 C m p 5 C n 3 q 6 C o 4 See e.g. A.. Feer & J. D. Waleca. ICTP worshop 1 14

Dagrammac represenaon of he expanson ħ ħ ħ ' ' Σ ' dd conn 1 n 1 conn 1 ICTP worshop 1 15

Dagrammac represenaon of he nonlnear self-energy ICTP worshop 1 16

Explc expresson for self-energy σσ ' ' ' n j TjlmT σσ σσ rs lr ms lmrs dω ' Σ [ ω] [ ω'] [ ωω'] π OT 4 j σσ '' σ '' σ '' σσ ' jl mrs lm rs lmrs σ '' dω ' σδ σ '' T T [] [ ω'] π ICTP worshop 1 17

eneral expanson rule Sngle lne 3-lne verex n-double lne verex T ' j j jj 1 j 1 1 1 n n Tu C j uj uj n n ICTP worshop 1

Juncon sysems Three ypes of reen s funcons: g for solaed sysems when leads and cenre are decoupled for ballsc sysem for full nonlnear sysem overnng amlonans C V n C g α Equlbrum a T α C V reen s funcon Nonequlbrum seady sae esablshed ICTP worshop 1 19

ICTP worshop 1 Three regons C u u T u u u u u u u u T C C C ' ' 1 β α β α αβ

Dyson equaons and soluons g g Σ Σ V gv V gv C C C C C C Σ n ω η I K Σ η r C r Σ < r < a 1 n 1 Σ r r r ICTP worshop 1 1 1 Keldysh equaon Σ I Σ I Σ < r < a r r < a a n n n r < < Σ Σ n a

Energy curren Mer-Wngreen d I uv u d T C C 1 π C < C ω Tr V [ ] ωdω 1 r < < a Tr [ ω] Σ [ ] [ ] [ ] ω ω Σ ω ωdω π ICTP worshop 1

andauer/carol formula d ω Tr CCΓ CCΓ d r a r a I f f Γ Σ Σ α α α dω π I I I < r < a < Σ Σ f Γ f Γ Γ Γ a r r a ICTP worshop 1 3

ICTP worshop 1 4 Ballsc ranspor n a 1D chan Force consan marx Equaon of moon K 1 1 1 1 j j j j u u u u j

Soluon of g Surface reen s funcon ω η K g I η K g j j λ j 1 / < 1 1 λ ω η λ λ ICTP worshop 1 5

ead self energy and ransmsson λ T[ω] 1 Σ r r j ω K Σ Σ C 1 j λ 1 λ λ ω r a 1 < ω < 4 T[ ω] Tr Γ Γ oherwse ICTP worshop 1 6

ea curren and unversal hermal conducance I ωt[ ω] f f mn dω π max I f dω 1 σ lm ω f T T βω T T T π e 1 π T B σ T 3h ego and Krczenow 1998. ω ω ICTP worshop 1 7

1D nonlnear model Three-aom juncon wh cubc nonlneary FPU-α. From JSW Wang Zeng PB 74 3348 6. Cross from QMD: JSW Wang ü Eur. Phys. J. B 6 381 8. ICTP worshop 1 8

Carbon nanoube nonlnear effec The ransmssons n a one-un-cell carbon nanoube juncon of 8 a 3K. From J-S Wang J Wang N Zeng Phys. ev. B 74 3348 6. ICTP worshop 1 9

Transen problems T uv u > I Im < 1 ICTP worshop 1 3 1

Dyson equaon on conour from o Conour C ' dg V g ' 1 1 1 C d dg V g V ' C 1 1 1 C ICTP worshop 1 31

Transen hermal curren The me-dependen curren when he couplng s suddenly swched on. a Curren flow ou of lef lead b ou of rgh lead. Dos are wha predced from andauer formula. T3K.65 ev/å u wh a small onse.1. From E. C. Cuansng and J.-S. Wang Phys. ev. B 81 53 1. See also PE 8 1116 1. ICTP worshop 1 3

Fne lead problem Top : no onse a N N 1 b NN5 emperaure T1 1 3 K blac red blue. T1.1T T.9T. gh : wh onse.1 and smlarly for oher parameers. From E. C. Cuansng. and J.-S. Wang Phys. ev. E 86 3113 1. ICTP worshop 1 33

Full counng sascs FCS Wha s he amoun of energy hea Q ransferred n a gven me? Ths s no a fxed number bu gven by a probably dsrbuon PQ enerang funcon ξq Z ξ e P Q dq All momens of Q can be compued from he dervaves of Z. The objecve of full counng sascs s o compue Zξ. ICTP worshop 1 34

A bref hsory on full counng sascs. S. evov and. B. esov proposed he concep for elecrons n 1993; rederved for nonneracng elecron problems by I. Klch K. Schönhammer and ohers K. Sao and A. Dhar obaned he frs resul for phonon ranspor n 7 J.-S. Wang B. K. Agarwalla and. PB 11; B. K. Agarwalla B. and J.-S. Wang PE 1. ICTP worshop 1 35

Defnon of generang funcon based on wo-me measuremen Z Tr ρ' P a [ ] ρ' e ξ e ξ P ρ a a P a P a a >< a Conssen hsory quanum mechancs. rffhs. a > a a > U e.g. U e U / ICTP worshop 1 36

Approaches o compue Z Express Z as expecaon value of some effecve evoluon operaor over a conour Evaluae he expresson usng Feynman pah negral/nfluence funconal Feynman dagrammac expanson ICTP worshop 1 37

Produc nal sae β ρ ρ e α α [ P ] ρ' ρ α C Z Tr ρe e ξ ξ ξ ξ Tr ρe U e U Tr ρe U e U e ξ / ξ ξ / Tr ρuξ/ U ξ/ x U ' e U ' e x x ICTP worshop 1 38

ICTP worshop 1 39 Ux ' ' ' ' x u e u e u u V u e e e e e e Te e Te e U x x x x I C C T x C x C x C C x C C C x x x x d x d x x x

ICTP worshop 1 4 Schrödnger esenberg and neracon pcures I d I I I I Ae e A Te S S S S e A A AU U A U U w U I ' ' ' ' ' ' ' ] [ ' ' ' ' '' '' > > Ψ > Ψ > Ψ > Ψ > Ψ >< > Ψ > Ψ ρ Schrödnger pcure esenberg pcure Ineracon pcure

ICTP worshop 1 41 Compue Z n neracon pcure x A C C A A C x C C x C C C C x I x I C x I C d C g g g g Z V g V g d d d T e T U U Z C x I Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ ] Tr ln[1 1 ] 1 ln de[1 1 ] Tr ln[1 1 ln ] Tr[ 1 1 ' ' 1 1 Tr ] Tr[ ] Tr[ / / ρ ρ ρ ξ ξ -ξ/ ξ/

ICTP worshop 1 4 Imporan resul [ ] oherwse f / f / ' ' ' ' ln1 Tr 1 ln M M A x A C C A x x x x x g g Z < < < < Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ ξ ξ

ICTP worshop 1 43 ong-me resul evov-esov formula [ ] [ ] { } 1/ 1 1/ 1 ] [ 1 ] [ where 1 1 ln de 4 1 ln Tr 1 ln1 Tr 1 ln α α ω β α α α ω ξ ω ξ ω ξ ω ξ ω ξ ω ξ β α ω ω π ω α T e f e b e a f f e e f e f e I d Z B a a r a r M a K r A b a b a b a b a Σ Σ Γ Σ Σ Γ Γ Σ < >

ICTP worshop 1 44 Arbrary me ransen resul n long me ln Tr 1 ln ln Tr ln1 1 ln I Q Z Q Q Q Z Q Q Z Q Z M A n n n A Σ Σ ξ ξ ξ ξ ξ ξ

Numercal resuls 1D chan 1D chan wh a sngle se as he cener. 1eV/uÅ.1 T 31K T C 3K T 9K. ed lne rgh lead; blac lef lead. B. K. Agarwalla B. and J.-S. Wang PE 85 5114 1. ICTP worshop 1 45

FCS for coupled leads C K V V C C K V KC V g gv C V V K dω ln Z M ln de I e 1 f1 f e 1 f1 f Tg[ ] 4π { ξω ξω ω } r a a r α α α 1 1 Tg [ ω] ΓΓ Γ g g α If cener s absen V C C V r a T [ ω] T [ ω] Γ Γ g I hen From. B. K. Agarwalla and J.-S. Wang Phys. ev. E 86 11141 1; and arxv:18.4915 ICTP worshop 1 46

FCS n nonlnear sysems Can we do nonlnear? Yes we can. Formal expresson generalzes Mer- Wngreen Ineracon pcure defned on conour Some example calculaons ICTP worshop 1 47

Vacuum dagrams Dyson equaon neracon pcure ransformaon on conour ln Z 1 Σ Tr j ξ ξ Σ Σ A n I I n d I I T C 1 Tr ρ Tu C 1 u e Z ZZ ρ ρv V / Z I n M M I O V O V C[ ] V Te C x T C T C u V uc uv C u d 1 Z n ICTP worshop 1 48

Nonlnear sysem self-conssen resuls Σ n ' 3 λ ' δ ' Sngle-se 1/4λu 4 model cumulans. 1 ev/uå.1 K c 1.1 V C -1V C 1-.5 T 66 K T 41K. From. B. K. Agarwalla B. and J.-S. Wang arxv::11.798 ICTP worshop 1 49

Oher resuls We can also compue he cumulans for he projeced seady sae ρ Enropy producon Flucuaon heorem Zξ Z-ξ β -β The heory s appled equally well o elecron number of elecron energy ranspor ICTP worshop 1 5

Summary remars NEF s a powerful ool o handle hermal ranspor problems n nanosrucures Seady sae curren s obaned from andauer and Carol formula New resuls for ransen and full counng sascs. A ey quany s he self-energy Σ A ICTP worshop 1 51

roup members/acnowledgemens Fron lef o rgh Mr. Thngna Juzar Yahya Mr. Zhou angbo Mr. Bjay Kumar Agarwalla Dr. ee Meng ee Dr/Ms N Xaox Mr. Tan Kuo ang; Bac: Dr. Jose us arca Palacos Prof. Wang Jan Dr. Jang Jnwu Prof. Wang Jan-Sheng Dr. Zhang fa Mr. uanan Dr. Eduardo C. Cuansng. ICTP worshop 1 5

Than you see hp://saff.scence.nus.edu.sg/~phywjs/ for more nformaon