Available online at ScienceDirect. Energy Procedia 114 (2017 )

Similar documents
Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Faculty of Technology, Telemark University College, Kjølnes Ring 56, 3918 Porsgrunn, Norway. 2. Tel-Tek, Kjølnes Ring 30, 3918 Porsgrunn, Norway.

Miho Nitta a, Masaki Hirose a, Toru Abe a, Yukio Furukawa a, *, Hiroshi Sato b, Yasuro Yamanaka c

Postprint.

Heat of Absorption of CO 2 in Aqueous Solutions of DEEA, MAPA and their Mixture

Experimental study into carbon dioxide solubility and species distribution in aqueous alkanolamine solutions

Available online at ScienceDirect. Energy Procedia 114 (2017 )

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT USA

A rational approach to amine mixture formulation for CO 2 capture applications. Trondheim CCS Conference - 6 June 14 16, 2011 Graeme Puxty

Effect of alcohol chain length on carbon dioxide absorption into aqueous solutions of alkanolamines

CO 2 CAPTURE BY ABSORPTION IN ACTIVATED AQUEOUS SOLUTIONS OF N,N-DIETHYLETHANOLOAMINE

Available online at Energy Procedia 1 (2009) (2008) GHGT-9

Current status of R&D in post combustion CO 2 capture

ScienceDirect. Impact of heat stable salts on equilibrium CO 2 absorption

PCC3 CONFERENCE The role of bicarbonate(hco 3- ) in the VLE of DEAB and blended MEA-DEAB systems under

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat.

Reaction kinetics of carbon dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in aqueous solution obtained from the stopped flow method

Energy Procedia

Updating 8 m 2MPZ and Independence Models

Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

Carbon Dioxide Absorption into Aqueous Blends of Potassium Carbonate and Amine

Carbon dioxide removal by alkanolamines in aqueous organic solvents Hamborg, Espen S.; Derks, Peter W.J.; Elk, Edwin P. van; Versteeg, Geert F.

CO 2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Removal of Carbon Dioxide from Indoor Air Using a Cross- Flow Rotating Packed Bed

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Development of reactive chemical absorbents at the CSIRO

Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol

Viscosity data of aqueous MDEA [Bmim][BF 4 ] solutions within carbon capture operating conditions

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Absorption of carbon dioxide into a mixed aqueous solution of diethanolamine and piperazine

Prediction of N 2. O solubilities in alkanolamine solutions from density data

Available online at Energy Procedia 00 (2008) GHGT-9

Simulation of gas sweetening process using new formulated amine solutions by developed package and HYSYS

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

O solubility at high amine concentration and validation of O Analogy

Functionalized Tertiary Amines as SO2 Absorbents

Postprint.

Dynamic Modeling of the Solvent Regeneration Part of a CO 2 Capture Plant

Systematic selection of mixtures as postcombustion

Studies of N,N-Dibutyltrimethylenediamine and N, N, N Triethylenediamine for CO 2

Absorption of carbon dioxide into non-aqueous solutions of N-methyldiethanolamine

Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling

A NEW SOLVENT FOR CO2 CAPTURE R.

UNIT 3 CHEMISTRY. Fundamental Principles in Chemistry

A Thermodynamic Model for Determination of Carbon Dioxide Solubility and Ionic Speciation in Aqueous Alkanolamine Solutions

Benefits from the Rigorous Mass Transfer Rate Approach to Modelling Acid Gas Absorption Using Mixed Amines

Supplementary information

BMB/Bi/Ch 173 Winter 2018

NMR NEWS June To find tutorials, links and more, visit our website

Modeling of oxidative MEA degradation

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

GHGT-11. A Moisture Swing Sorbent for Direct Air Capture of Carbon Dioxide: Thermodynamic and kinetic. analysis

Supporting Information

Diego D. D. Pinto 1, Juliana G. M.-S. Monteiro 1, Birgit Johnsen 1, Hallvard F. Svendsen 1, Hanna Knuutila 1,* 7491 Trondheim, Norway

Application of GMA Equation of State to Study Thermodynamic Properties of 2- Amino-2-methyl-1-propanol as an Efficient Absorbent for CO 2

Faculté Polytechnique

Adam Wu, Jean Michel Lauzon, Indah Andriani, and Brian R. James*

COSY type experiments exploring through-bond homonuclear correlations

Modeling and Simulation of Absorption Column of Natural Gas Sweetening Unit by Mass Transfer Method

Simulation of CO 2 Removal by Potassium Taurate Solution

Laurea in Scienza dei Materiali Materiali Inorganici Funzionali. Carbon Capture and Storage CCS

Center for Sustainable Environmental Technologies, Iowa State University

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules

Continuous flow iodination using an automated computer-vision controlled liquid-liquid extraction system [Supporting Information]

Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture

ScienceDirect. Modelling CO 2 Water Thermodynamics Using SPUNG Equation of State (EoS) concept with Various Reference Fluids

Carbon Dioxide Capture by Basic Dry Water

different model parameter correlations and thermodynamic models

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Supporting Information

3.2 Calorimetry and Enthalpy

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

Kinetic Isotope Effects

ORGANIC - BROWN 8E CH.4 - ACIDS AND BASES.

Synthesis of Levulinic Acid based Poly(amine-co-ester)s

22 and Applications of 13 C NMR

Available online at Energy Procedia 1 (2009) (2008) GHGT-9

Some of our Applications: CO 2 to chemicals via reversible CO 2 capture, biomass pretreatment, biomass fractionation etc

UNIT 4 REVISION CHECKLIST CHEM 4 AS Chemistry

Technical Note. Introduction

Supplementary Information Supplementary Figures

Absorption kinetics of carbon dioxide into aqueous ammonia solution: Addition of hydroxyl groups for suppression of vaporization

Ammonium Sulfate as a Standard for 33S-NMR Spectra

Preliminary Evaluation of the SPUNG Equation of State for Modelling the Thermodynamic Properties of CO 2 Water Mixtures

BMB/Bi/Ch 173 Winter 2018

Analysis of Conformational Influences Within (2R,3R)-butanediol

Nuclear Magnetic Resonance

Fluorescence and Nuclear Magnetic Resonance (NMR) Spectroscopy

Basic One- and Two-Dimensional NMR Spectroscopy

NMR Studies of a Series of Shikimic Acid Derivatives

Carbon and Heteronuclear NMR on the Bruker

Reaction Monitoring in Chemical Engineering with Quantitative Online NMR Spectroscopy

Supramolecular chemical shift reagents inducing conformational transition: NMR analysis of carbohydrate homooligomer mixtures

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE

Big Idea #5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter.

A Thesis Submitted in Partial Fulfillment of the Award of the Degree. MASTER OF TECHNOLOGY (Research) In CHEMICAL ENGINEERING SHIVANI (610CH305)

New cases of prototropic tautomerism in substituted pyridines

Supplementary Figure 1. Protonation equilibria of the CO 2 in water.

Transcription:

Available online at www.sciencedirect.com ScienceDirect Energy Procedia 114 (2017 ) 1949 1955 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland CO 2 Capture by Aqueous 3-(Methylamino)propylamine in Blend with Tertiary Amines: an NMR Analysis Cristina Perinu, a* Ida M. Bernhardsen, b Hallvard F. Svendsen, b Klaus-J. Jens a a Faculty of Technology, University College of Southeast Norway, Postboks 235 NO-3603 Kongsberg, Norway b Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway Abstract Aqueous 3-(Methylamino)propylamine (MAPA) in blend with (Diethylamino)ethanol (DEEA) and other tertiary amines, which mainly differ from DEEA in the number of hydroxyl functions (-OH) and/or in the length and structure of their alkyl chain, are investigated. After absorption of carbon dioxide (CO 2) at 40 C, quantitative 13 C NMR experiments are performed to calculate the concentration of the species in each blend at equilibrium, together with qualitative NMR experiments for signal assignment. Speciation and absorption capacity data are discussed in terms of chemical structure and basicity of the tertiary amines. In general, it is observed that, at increasing pka of the tertiary amines (decreasing number of OH on the structure), there is a decrease of MAPA and primary and secondary MAPA carbamates, and an increase of MAPA dicarbamate, (bi)carbonate and of the absorption capacity. Within the molecules with the same number of OH but differently branched, some exceptions are found. 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 2017 The Authors. Published Elsevier Ltd. Peer-review under under responsibility responsibility of the of organizing the organizing committee committee of GHGT-13. of GHGT-13. Keywords: CO 2 capture; MAPA; tertiary amines; blends; NMR; basicity * Corresponding author. Tel.: +47 94262212 E-mail address: cristina.perinu@hit.no 1876-6102 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of the organizing committee of GHGT-13. doi:10.1016/j.egypro.2017.03.1326

1950 Cristina Perinu et al. / Energy Procedia 114 ( 2017 ) 1949 1955 1. Introduction Among various commercial processes available for separating carbon dioxide (CO 2) from gas mixtures, chemical absorption of CO 2 into aqueous amine solutions is the most common technology [1]. However, the energy penalty and the costs represent an issue of concern [2]. Chemical absorption involves one or more reversible reactions between CO 2 and aqueous amine solutions. Tertiary amines act as bases accepting a proton to form (bi)carbonates (bicarbonate/carbonate species), whereas primary and secondary amines can act as both nucleophiles and bases to form carbamates and (bi)carbonates [3]. Primary and secondary amines typically show reaction rates higher than tertiary amines, but the reaction with CO 2 is more exothermic. In order to improve the efficiency of the CO 2 absorption process, aqueous mixed amine solvents are of great interest as they offer the possibility of combining the best characteristics of the two or more single amines [4-6]. A blended amine system is usually based on the combination of the higher reaction rate of a Lewis base (nucleophile), i.e. a primary or a secondary amine, and the higher equilibrium capacity, lower reaction enthalpy and relatively improved CO 2 desorption performances of a tertiary amine. The aqueous system composed of 3-(Methylamino)propylamine (MAPA) (Figure 1) and (Diethylamino)ethanol (DEEA) (Figure 2) is a promising absorbent for CO 2 capture because of its high cyclic capacity, high CO 2 pressure during stripping, high equilibrium temperature sensitivity and relatively high reaction rate [7]. Figure 1. Chemical structure of MAPA, a diamine with one primary and one secondary amino group. Although a lot of data on MAPA, DEEA and their mixture are available in the literature [7-10], experimental insights at molecular level on the properties of these molecules are needed to support the development of even better systems. Nuclear Magnetic Resonance (NMR) is a non-invasive analytical method that allows direct measurements of specific nuclei of species. Depending on the type of NMR experiments, interpretation of NMR data gives information on chemical structure and dynamics of the molecules and, with some care, quantitative analyses are also possible. Several NMR studies on amine-co H 2O systems have been reported [11] and speciation of CO 2 loaded aqueous 2M MAPA and 5M DEEA, as both single amines and in blend, were also carried out [12]. The aim of the present work is to investigate the mechanisms of reactions underlying the process of chemical absorption of CO 2 by aqueous MAPA in blends with DEEA and other tertiary amines. In particular, the influence of the tertiary amines on the formation of bicarbonate and of MAPA carbamates is explored, together with the effect on the absorption capacity. The tertiary amines investigated in this study mainly differ from DEEA in the number of hydroxyl functions (-OH) and/or in the length and structure of their alkyl chain (Figure 2). It is known that structural features (like e.g. inductive, steric, electrostatic, mesomeric effects and others) influence the electron density on the nitrogen (-N) and, consequently, the basicity. Here, the increasing number of -OH in the structure of the tertiary amines results in an increase of the electron withdrawing inductive effect through bonds on the -N, leading to a pka decrease. The opposite is somehow true for the tertiary amines at increasing number of carbons on the alkyl chain. In t-bdea, the C(CH 3) 3 group exerts an electron donating inductive effect, more than the linear -(CH 2) 3CH 3 chain in BDEA (Figure 2). After CO 2 absorption experiments, the solutions at equilibrium are systematically analyzed by NMR spectroscopy. Quantitative 13 C NMR experiments are performed to calculate the concentration of the species in solution, whereas structural characterizations are carried out by means of qualitative 1D and 2D NMR experiments. Data on speciation and absorption capacity are presented and some hypotheses on the mechanism of the reactions between aqueous MAPA, tertiary amines and CO 2 are formulated.

Cristina Perinu et al. / Energy Procedia 114 ( 2017 ) 1949 1955 1951 Figure 2. Chemical structure and pka of the tertiary amines investigated in this study. 2. Materials and methods The following chemicals were used in the current study: 3-(Methylamino)propylamine ( 97%, CAS: 6291-84-5), (Diethylamino)ethanol ( 99.5%, CAS:100-37-8), N-Ethyldiethanolamine (98%, CAS:139-87-7), Triethanolamine ( 99%, CAS: 1071-6), N-Butyldiethanolamine ( 98.6%, CAS:1079-4), Acetonitrile (anhydrous 99.8%, CAS: 75-05-8) and Deuterium oxide (Deuterated water, 99.98 atom %±0.01 atom % D, CAS: 7789-20-0) from Sigma Aldrich; N-tert-Butyldiethanolamine ( 97%, CAS:2160-93-2) from TCI Europe; Nitrogen (99.9%, CAS:7727-37-9) and Carbon Dioxide (99.9%, CAS: 124-38-9) from Yara Praxair. They were utilized without any further purification. Screening absorption tests were conducted using a screening apparatus designed to operate at atmospheric conditions and up to 80 C, giving a fast and first-hand knowledge of the performance for each absorbent. In this work, we report data on the absorption process which was performed at 40 C with an inlet gas containing 10kPa partial pressure of CO 2. The experiments were terminated when 95% of the CO 2 was captured, i.e. 9.5kPa partial pressure of CO 2. Further details can be found in Bernhardsen et al. [13]. The pka values of the amines were measured by potentiometric titration at 25 C using the same apparatus as Kim et al. [14]. A 0.1 mol/l aqueous solution of HCl was used to titrate the amine solutions at concentration 0.01 mol/kg H 2O. For each amine, the measurement was performed two times and the average reported as the pka value. After the absorption experiments, NMR experiments were performed at 300.0 K on a Bruker 600 MHz Avance III HD equipped with a 5-mm cryogenic CP-TCI z-gradient probe. For the determination of the concentrations of the species formed in the equilibrated reaction mixtures, quantitative 13 C NMR experiments were performed by setting appropriate acquisition and processing parameters to obtain reliable area integrals. The 13 C NMR spectra were acquired with the inverse gated decoupling acquisition sequence, using a recycle delay time of 120 s and a pulse width of 11.4 μs (90 pulse angle). The method is described in detail in Perinu et al. [15]. In this study, the use of a 600 MHz instrument allowed to reduce the number of scans from 512 to 256. Deuterated water was used as lock solvent and was inside a coaxial insert, whereas Acetonitrile was chosen as internal reference standard. After 13 C NMR acquisition, the spectra were processed using MestreNova software v 7.1.1, as described in Perinu et al. [15]. The assignment of each signal to the corresponding carbon was performed by means of qualitative 1D (i.e. 1 H and 13 C) and 2D NMR experiments, i.e. COSY ( 1 J H-H, Correlation Spectroscopy), HSQC ( 1 J C-H, Heteronuclear Single Quantum Correlation) and HMBC ( 3 J C-H, Heteronuclear Multi Bond Correlation), on both pure single amines and on MAPA-tertiary amine-co H 2O systems.

1952 Cristina Perinu et al. / Energy Procedia 114 ( 2017 ) 1949 1955 3. Results and discussion Under certain conditions when loaded with CO 2, the MAPA-DEEA-CO H 2O system forms two liquid phases, one rich and one lean in CO 2[12]. In this work, MAPA and the tertiary amines were studied in blends at 1:3 ratio, at 1M and 3M concentrations, respectively, which give a single phase in all cases. This allowed fair comparison of all the amine systems under study, as not all of them have the ability to form two phases. After absorption of CO 2 at 40 C, by means of qualitative 1D and 2D NMR experiments, the following species were identified for all the blends at equilibrium: MAPA, primary MAPA carbamate (MAPACOO - (p)), secondary MAPA carbamate (MAPACOO - (s)), MAPA dicarbamate (MAPA(COO - ) 2), tertiary amine (3 Amine), tertiary organic amine carbonate (3 AmineOCOO - ) and (bi)carbonate. Each species is in equilibrium with the corresponding protonated form (Figure 3). Figure 3: Species formed in the blended amine systems (MAPA 1M/ 3 Amine 3M) after absorption of CO 2 at 40 C. Each species is in equilibrium with the corresponding protonated form. The fast exchanging proton species (neutral/protonated amines and carbonate/bicarbonate) appear with a common peak in the 13 C NMR spectra and the sum of their concentrations can be obtained. Various methods [11] could be utilized to distinguish between them but, in this work, they were not applied. However, for all of the blends, the carbon signal corresponding to carbonate/bicarbonate (CO 3 /HCO 3-, (bi)carbonate) resonates at a chemical shift value ranging from 161.2 to 162 ppm, suggesting that mainly bicarbonate is formed [15]. In Figure 4, the concentration (obtained from quantitative 13 C NMR experiments and expressed in mol/l) of each species formed in the different amine systems is reported. In each blend, a small amount of organic amine carbonate (3 AmineOCOO - ), ranging from 0.059 to 0.104 mol/l, was found. Due to overlapping peaks, for BDEA and TEA containing 2 and 3 hydroxyl functional groups respectively, it was not possible to establish if mono-, bi- and/or tricarbonate was formed. In line with the other amines under study, we here give the concentrations as monocarbonate. Organic carbonate comes from the direct reaction of CO 2 with the OH of the tertiary alkanolamines. This species can be formed at extremely high ph values (higher than 12)[16, 17] and there are some studies where they were found to be constant at increasing CO 2 loadings [18-20]. In our opinion, this suggests that the organic carbonate is formed at the beginning of the CO 2 absorption process where the ph is still high. At decreasing ph (increasing CO 2 loading), the reaction between CO 2 and the tertiary amines is towards (bi)carbonate formation. Looking at the main species at equilibrium and at the structure of the tertiary amines, it is possible to define a trend (for some species more evident than in others). Concerning MAPACOO - (p), MAPACOO - (s) and MAPA, a decrease in their concentrations at decreasing number of OH and at decreasing number of carbons in the alkyl chain of the tertiary amine structure is observed. Specifically, the trend is: MAPA-TEA>MAPA-BDEA>MAPA-t-BDEA>MAPA-EDEA>MAPA-DEEA, where MAPA-t- BDEA MAPA-EDEA for MAPACOO - (p). An exception is MAPA-BDEA MAPA-TEA for MAPACOO - (s) species.

Cristina Perinu et al. / Energy Procedia 114 ( 2017 ) 1949 1955 1953 On the contrary, MAPA(COO - ) 2 and HCO 3- /CO 3 decrease at increasing number of -OH and at increasing number of carbons in the alkyl chain of the tertiary amine structure, following this trend: MAPA-DEEA>MAPA- EDEA>MAPA-t-BDEA>MAPA-BDEA>MAPA-TEA (specifically, MAPA-BDEA MAPA-TEA for (bi)carbonate species). Figure 4. Amount of the species at equilibrium in aqueous MAPA 1M/ 3 amine 3M after CO 2 absorption at 40 C. In Figure 5, the pka value of the tertiary amines are plotted as function of the concentration of the main species at equilibrium in each blend after the absorption process. 40 C. Figure 5: pka of the tertiary amines as function of the concentration of the main species at equilibrium in each blend after CO 2 absorption at As a general tendency, it can be observed that at increasing pka of the tertiary amine, the amount of MAPACOO - (p), MAPACOO - (s) and MAPA decreases, whereas MAPA(COO - ) 2 and HCO 3- /CO 3 increase. However, BDEA/MAPA and t-bdea/mapa appear not to exactly follow this trend. This may probably be attributed to the structure of BDEA and t-bdea which have a -CH 2CH 2CH 2CH 3 chain and a tertiary carbon -C(CH 3) 3 group bound to the amino functional group. These features may influence the activity of the -N site.

1954 Cristina Perinu et al. / Energy Procedia 114 ( 2017 ) 1949 1955 The absorption capacity for each blend, calculated by NMR analyses and expressed in mole CO 2/mole amine groups, is reported in Figure 6. The trend is the same as for (bi)carbonate and MAPA(COO - ) 2 formations, both in terms of chemical structure and basicity of the tertiary amines (MAPA-DEEA>MAPA-EDEA>MAPA-t- BDEA>MAPA-BDEA>MAPA-TEA). Figure 6: Absorption capacity for each MAPA 1M/3 amine 3M-CO H 2O system. The absorption capacity and (bi)carbonate formation are somehow connected. With respect to the carbamate formation reactions, the (bi)carbonate formation allows capturing more moles of CO 2 per moles of amines leading to a larger absorption capacity. Based on the generic trend observed in this study (increase of MAPA(COO - ) 2, HCO 3 - /CO 3 and absorption capacity at increasing pka), it could be hypothesized that, in addition to charge balancing the formation of HCO 3- /CO 3 anions, the tertiary amines may also affect MAPA carbamate formation. They may do so by accepting a proton from protonated MAPA and from protonated MAPACOO - (p)/(s) and/or by acting (in the protonated form) as a counter ion of the MAPA carbamates species. In both cases, this would make the amino functional groups of MAPA, MAPACOO - (p) and MAPACOO - (s) available for reaction with CO 2, and could be the reason why, at increasing pka of the tertiary amines, more MAPA(COO - ) 2 is formed. These hypotheses need to be validated by further studies on the same molecules and with a larger selection of tertiary amines. For the development of improved amine systems, it is pivotal to investigate the role played by the basicity and the structure of the tertiary amines and to understand if they interact with the primary/secondary amines in the mechanism of CO 2 capture. 4. Conclusions In this work, five tertiary amines at 3M concentration in blend with MAPA 1M were investigated. After CO 2 absorption screening experiments, quantitative 13 C NMR experiments were performed on each blend at equilibrium to calculate the concentration of the species, together with qualitative NMR experiments for signal assignment. The following species were identified: MAPA, MAPACOO - (p), MAPACOO - (s), MAPA(COO - ) 2, 3 Amine, 3 AmineOCOO - and (bi)carbonate. Each species is in equilibrium with the corresponding protonated form. In general, it is observed that, at increasing pka of the tertiary amines (decreasing number of OH on the structure), there is a decrease of MAPACOO - (p), MAPACOO - (s) and MAPA and an increase of MAPA(COO - ) 2, HCO 3- /CO 3 and of the absorption capacity. Within the molecules with the same number of OH but differently branched alkyl groups, some exceptions are found.

Cristina Perinu et al. / Energy Procedia 114 ( 2017 ) 1949 1955 1955 Further studies are needed to deeply focus on the mechanism of reaction and design new amine solvent systems with improved properties. Acknowledgements The financial assistance and scholarships (C.P. and I.M.B.) provided by the Research Council of Norway (CLIMIT grant nr. 243620/E20) is gratefully acknowledged. References [1] Eimer D, Gas Treating: Absorption Theory and Practice. 2014: John Wiley and Sons. [2] Arshad MW, et al., Heat of absorption of CO 2 in phase change solvents: (diethylamino)ethanol and 3-(methylamino)propylamine. Journal of Chemical and Engineering Data, 2013. 58(7): p. 1974-1988. [3] Kortunov PV, Baugh LS, Siskin M, Calabro DC., In Situ Nuclear Magnetic Resonance Mechanistic Studies of Carbon Dioxide Reactions with Liquid Amines in Aqueous Systems: New Insights on Carbon Capture Reaction Pathways. Energy & Fuels, 2015. 29(9): p. 5919-5939. [4] Ballard M, Bown M, James S, Yang Q, NMR studies of mixed amines. Energy Procedia, 2011. 4(0): p. 291-298. [5] Barzagli F, Mani F, Peruzzini M, Continuous cycles of CO 2 absorption and amine regeneration with aqueous alkanolamines: a comparison of the efficiency between pure and blended DEA, MDEA and AMP solutions by 13 C NMR spectroscopy. Energy & Environmental Science, 2010. 3(6): p. 77779. [6] Zhang R, et al., Study of Formation of Bicarbonate Ions in CO Loaded Aqueous Single 1DMA2P and MDEA Tertiary Amines and Blended MEA 1DMA2P and MEA MDEA Amines for Low Heat of Regeneration. Industrial & Engineering Chemistry Research, 2016. 55(12): p. 3710-3717. [7] Pinto DDD, et al., Evaluation of a phase change solvent for CO 2 capture: Absorption and desorption tests. International Journal of Greenhouse Gas Control, 2014. 28(0): p. 318-327. [8] Sutar PN, Vaidya PD, Kenig EY, Activated DEEA solutions for CO 2 capture A study of equilibrium and kinetic characteristics. Chemical Engineering Science, 2013. 100(0): p. 234-241. [9] Monteiro JGMS, Majeed H, Knuutila H, Svendsen HF, Kinetics of CO 2 absorption in aqueous blends of N,N-diethylethanolamine (DEEA) and N-methyl-1,3-propane-diamine (MAPA). Chemical Engineering Science, 2015. 129: p. 145-155. [10] Hartono A, et al., Binary and ternary VLE of the (diethylamino)-ethanol (DEEA)/3-(methylamino)-propylamine (MAPA)/water system. Chemical Engineering Science, 2013. 101(0): p. 401-411. [11] Perinu C, Arstad B, Jens KJ, NMR spectroscopy applied to amine CO 2 H 2O systems relevant for post-combustion CO 2 capture: A review. International Journal of Greenhouse Gas Control, 2014. 20: p. 230-243. [12] Ciftja, A.F., A. Hartono, and H.F. Svendsen, Experimental study on phase change solvents in CO 2 capture by NMR spectroscopy. Chemical Engineering Science, 2013. 102: p. 378-386. [13] Bernhardsen IM, Krokvik IRT, Jens KJ, Knuutila H, Performance of MAPA promoted tertiary amine systems for CO 2 absorption: Influence of alkyl chain length and hydroxyl groups. Submitted to GHGT-13 conference for publication on Energy Procedia, 2017. [14] Kim I, Jens CM, Grimstvedt A, Svendsen HF, Thermodynamics of protonation of amines in aqueous solutions at elevated temperatures. The Journal of Chemical Thermodynamics, 2011. 43(11): p. 1754-1762. [15] Perinu C, Arstad B, Bouzga AM, Jens KJ, NMR-Based Carbamate Decomposition Constants of Linear Primary Alkanolamines for CO 2 Capture. Industrial & Engineering Chemistry Research, 2014. 53(38): p. 14571-14578. [16] Vaidya PD, Kenig EY, CO Alkanolamine Reaction Kinetics: A Review of Recent Studies. Chem. Eng. Technol., 2007. 30: p. 1467-1474. [17] Yu WC, Astarita G, Savage DW, Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine. Chemical Engineering Science, 1985. 40(8): p. 1585-1590. [18] Nitta M, et al., 13 C-NMR Study of Acid Dissociation Constant (pka) Effects on the CO 2 Absorption and Regeneration of Aqueous Tertiary Alkanolamine Piperazine Blends. Energy Procedia, 2014. 63: p. 1863-1868. [19] Nitta M, et al., 13 C-NMR Spectroscopic Study on Chemical Species in Piperazine Amine CO 2 H 2O System before and after Heating. Energy Procedia, 2013. 37: p. 869-876. [20] Hayashi K, Furukawa Y, Sato H, Yamanaka Y, 13 C-NMR Study of Acid Dissociation Constant (pka) Effects on the CO 2 Absorption and Regeneration of Aqueous Tertiary Alkanolamines. Energy Procedia, 2014. 63: p. 1876-1881.