Quantum Fluctuation Relations and the Arrow of Time

Similar documents
Doing small systems: Fluctuation Relations and the Arrow of Time

Fluctuation Theorem for Arbitrary Open. Quantum Systems. Peter Hänggi, Michele Campisi, and Peter Talkner

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012

Fluctuation, Dissipation and the Arrow of Time

Fluctuation, Dissipation and the Arrow of Time

Fluctuation, Dissipation and the Arrow of Time

Nonequilibrium thermodynamics at the microscale

Irreversibility and the arrow of time in a quenched quantum system. Eric Lutz Department of Physics University of Erlangen-Nuremberg

Fluctuation Theorems of Work and Entropy in Hamiltonian Systems

Gert-Ludwig Ingold. Differences can be negative. Motivation. Specific heat and dissipation. Path I. Path II. Casimir effect.

Beyond the Second Law of Thermodynamics

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

LANGEVIN EQUATION AND THERMODYNAMICS

Fluctuation relations and nonequilibrium thermodynamics II

arxiv: v2 [quant-ph] 1 Oct 2017

Stochastic thermodynamics

Emergent Fluctuation Theorem for Pure Quantum States

Grand Canonical Formalism

Energy Fluctuations in Thermally Isolated Driven System

Stochastic equations for thermodynamics

Fluctuation theorem in systems in contact with different heath baths: theory and experiments.

Information Thermodynamics on Causal Networks

Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences

J. Stat. Mech. (2011) P07008

Introduction to Fluctuation Theorems

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg

On thermodynamics of stationary states of diffusive systems. Giovanni Jona-Lasinio Coauthors: L. Bertini, A. De Sole, D. Gabrielli, C.

10. Zwanzig-Mori Formalism

Non-Equilibrium Fluctuations in Expansion/Compression Processes of a Single-Particle Gas

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle

TOWARD THERMODYNAMICS FOR NONEQUILIBRIUM STEADY STATES OR TWO TWISTS IN THERMODYNAMICS FOR NONEQUILBRIUM STEADY STATES

Dissipation and the Relaxation to Equilibrium

On the Asymptotic Convergence. of the Transient and Steady State Fluctuation Theorems. Gary Ayton and Denis J. Evans. Research School Of Chemistry

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

Second law, entropy production, and reversibility in thermodynamics of information

10. Zwanzig-Mori Formalism

Properties of the boundary rg flow

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors

(Dated: July 15, 2014)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

The Kelvin-Planck statement of the second law

S = S(f) S(i) dq rev /T. ds = dq rev /T

Thermodynamic equilibrium

An Outline of (Classical) Statistical Mechanics and Related Concepts in Machine Learning

Coupled quantum oscillators within independent quantum reservoirs

Collaborations: Tsampikos Kottos (Gottingen) Chen Sarig (BGU)

4.1 Constant (T, V, n) Experiments: The Helmholtz Free Energy

Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood

arxiv: v3 [cond-mat.stat-mech] 7 Jan 2015

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge

Aspects of nonautonomous molecular dynamics

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Quantum Thermodynamics

Quantum Dissipation: A Primer

Thermodynamics of feedback controlled systems. Francisco J. Cao

From Particles to Fields

Even if you're not burning books, destroying information generates heat.

Fluctuation theorem between non-equilibrium states in an RC circuit

The Jarzynski Equation and the Fluctuation Theorem

I.D The Second Law Q C

Linear-response theory and the fluctuation-dissipation theorem: An executive summary

Optimal Thermodynamic Control and the Riemannian Geometry of Ising magnets

Non-equilibrium phenomena and fluctuation relations

summary of statistical physics

Lecture 5: Temperature, Adiabatic Processes

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Maxwell's Demon in Biochemical Signal Transduction

Best-fit quasi-equilibrium ensembles: a general approach to statistical closure of underresolved Hamiltonian dynamics

Averaging II: Adiabatic Invariance for Integrable Systems (argued via the Averaging Principle)

Breaking and restoring the

arxiv: v1 [cond-mat.stat-mech] 10 Aug 2015

Lecture 10 Planck Distribution

Preliminary Examination - Day 1 Thursday, August 9, 2018

Principle of Minimal Work Fluctuations

arxiv: v1 [cond-mat.stat-mech] 6 Nov 2015

Equilibrium, out of equilibrium and consequences

Fluctuation theorems. Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009

Lecture 9 Overview (Ch. 1-3)

Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova

Characteristics of Work Fluctuations in Chaotic Systems

Thermal energies of classical and quantum damped oscillators coupled to reservoirs

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

arxiv: v1 [quant-ph] 9 Jul 2013

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

Fluctuation theorems: where do we go from here?

1 Algebraic preliminaries

The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises

Finite Temperature Field Theory

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

First Problem Set for Physics 847 (Statistical Physics II)

the renormalization group (RG) idea

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ

Hardwiring Maxwell s Demon Tobias Brandes (Institut für Theoretische Physik, TU Berlin)

From fully quantum thermodynamical identities to a second law equality

Statistical Mechanics and Thermodynamics of Small Systems

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

arxiv:hep-th/ v1 1 Sep 2003

COARSE-GRAINING AND THERMODYNAMICS IN FAR-FROM-EQUILIBRIUM SYSTEMS

Transcription:

Quantum Fluctuation Relations and the Arrow of Time Peter Hänggi, Institut für Physik, Universität Augsburg M. Campisi, P. Hänggi, and P. Talkner Colloquium: Quantum fluctuation relations: Foundations and applications Rev. Mod. Phys. 83, 771 791 (2011); Addendum and Erratum: Quantum fluctuation relations: Foundations and applications Rev. Mod. Phys. 83, 1653 (2011). M. Campisi and P. Hänggi Fluctuation, Dissipation and the Arrow of Time Entropy 13, 2024 2035 (2012).

Sekhar Burada Michele Campisi Gert Ingold Eric Lutz Manolo Morillo Peter Talkner Acknowledgments

The famous Laws Equilibrium Principle -- minus first Law An isolated, macroscopic system which is placed in an arbitrary initial state within a finite fixed volume will attain a unique state of equilibrium. Second Law (Clausius) For a non-quasi-static process occurring in a thermally isolated system, the entropy change between two equilibrium states is non-negative. Second Law (Kelvin) No work can be extracted from a closed equilibrium system during a cyclic variation of a parameter by an external source.

MINUS FIRST LAW vs. SECOND LAW -1st Law 2nd Law

Second Law Rudolf Julius Emanuel Clausius (1822 1888) Heat generally cannot spontaneously flow from a material at lower temperature to a material ilat higher h temperature. William Thomson alias Lord Kelvin (1824 1907) No cyclic process exists whose sole effect is to extract heat from a single heat bath at temperature T and convert it entirely to work. δq = T ds (Zürich, 1865)

Entropy S content of transformation Verwandlungswert d S = δq rev T ; δq irrev < δq rev V 2,T 2 I δq Γ rev Γ irrev T 0 V 1,T 1 S(V 2,T 2 ) S(V 1,T 1 ) Z Z S(V 2,T 2 ) S(V 1,T 1 )= Γ irrev Γ rev δq I C C = Γ 1 rev + Γ irrev T S δq t 0 NO! T

What are fluctuation and work theorems about? Small systems: fluctuations may become comparable to average quantities. Can one infer thermal equilibrium properties from fluctuations in nonequilibrium processes?

Equilibrium versus nonequilibrium processes Isothermal quasistatic process: e βh(t 0) /Z(t 0 ) BATH β weak contact SYSTEM H(t 0 ) xx xx xxquasixxstatic e βh(t f ) /Z(t f ) BATH β weak contact SYSTEM H(t f ) Non-equilibrium process: H(t 0 ) H(t f ) F = w = w p tf,t 0 (w) =? pdf of work t 0 t f t

T H = H(z, λ t ) λ 0 eq. ρ 0 (z) = e βh(z,λ 0 ) Z(λ 0 ) λ τ non-eq ρ τ (z) e βh(z,λ τ ) Z(λ τ ) λ : [0, τ] R protocol t λ t

MICROREVERSIBILITY OF TIME DEPENDENT SYSTEMS p z τ z 0 ϕ t,0[z 0; λ] Classical q ε(q, p) = (q, p) εz 0 ϕ τ t,0[εz τ ; λ] εϕ t,0 [z 0 ; λ] = ϕ τ t,0 [εz τ ; λ] εz τ i ψt = Ut,0[λ] i f Quantum Θ i Uτ t,0[ λ]θ f Θ f Θ = Time reversal operator U t,τ [λ] = Θ U τ t,0 [ λ]θ

CLASSICAL WORK p z τ z 0 ϕ t,0 [z 0 ; λ] εz 0 W [z 0 ; λ] = H(z τ, λ τ ) H(z 0, λ 0 ) = ϕ τ t,0 [εz τ ; λ] εz τ q dt λ H(ϕ t,0 [z 0 ; λ], λ t ) t λ t p[w ; λ] = dz 0 ρ 0 (z 0 )δ[w H(z τ, λ τ ) + H(z 0, λ 0 )] Work is a RANDOM quantity

JARZYNSKI EQUALITY C. Jarzynski, PRL 78 2690 (1997) e βw = e β F F = F (λ τ ) F (λ 0 ) = β 1 ln Z(λ τ ) Z(λ 0 ) Z(λ t ) = dz e βh(z,λt) Since exp is convex, then W F Second Law

INCLUSIVE VS. EXCLUSIVE VIEWPOINT C. Jarzynski, C.R. Phys. 8 495 (2007) H(z, λ t ) = H 0 (z) λ t Q(z) W = dtq t λ t = H(z τ, λ τ ) H(z 0, λ 0 ) Not necessarily of the textbook form d(displ.) (force) W 0 = dtλ t Qt = H 0 (z τ ) H 0 (z 0 ) z t = {H(z t, λ t ); z} G.N. Bochkov and Yu. E. Kuzovlev JETP 45, 125 (1977)

Canonical initial state Exclusive Work: p[w 0 ; λ] p[ w 0 ; λ] = eβw 0 Bochkov-Kuzovlev-Crooks e βw 0 = 1 Bochkov-Kuzovlev G.N. Bochkov, Y.E. Kuzovlev, Sov. Phys. JETP 45, 125 (1977); G.N. Bochkov, Y.E. Kuzovlev, Physica A 106, 443 (1981)

INCLUSIVE, EXCLUSIVE and DISSIPATED WORK W diss = W F e βw diss = 1 W, W 0, W diss are DISTINCT stochastic quantities p[x; λ] p 0 [x; λ] p diss [x; λ] They coincide for cyclic protocols λ 0 = λ τ M.Campisi, P. Talkner and P. Hänggi, Phil. Trans. R. Soc. A 369, 291 (2011)

GAUGE FREEDOM H (z, t) = H(z, t) + g(t) W = W + g(τ) g(0) F = F + g(τ) g(0) W, F are gauge dependent: not true physical quantities WARNING: be consistent! use same gauge to calculate W and F e βw = e β F e βw = e β F The fluctuation theorem is gauge invariant! Gauge: irrelevant for dynamics crucial for ENERGY-HAMILTONIAN connection

GAUGE FREE vs. GAUGE DEPENDENT EXPRESSIONS OF CLASSICAL WORK H = H 0 (z) λ t Q(z) + g(t) Inclusive work: W = H (z τ, τ) H (z 0, 0), g-dependent W phys = dtq t λt, g-independent W phys = W g(τ) + g(0) Exclusive work: W 0 = H 0 (z τ, λ τ ) H 0 (z 0, λ 0 ) = dtλ t Q t, g-independent Dissipated work: W diss = H (z τ, τ) H (z 0, 0) F, g-independent

QUANTUM WORK FLUCTUATION RELATIONS H(z, λ t ) H(λ t ) ρ(z, λ t ) ϱ(λ t ) = e βh(λt) Z(λ t ) Z(λ t ) Z(λ t ) = Tre βh(λt) [ ϕ t,0 [z 0 ; λ] U t,0 [λ] = T exp i W [z 0 ; λ]? t 0 ] dsh(λ s )

W[λ] = U t,0 [λ]h(λ t)u t,0 [λ] H(λ 0 ) = H H t (λ t ) H(λ 0 ) = t 0 dt λ t H H t (λ t ) λ t

WORK IS NOT AN OBSERVABLE P. Talkner et al. PRE 75 050102 (2007) Work characterizes PROCESSES, not states! (δw is not exact) Work cannot be represented by a Hermitean operator W W [z 0 ; λ] w = Em λτ E λ 0 n two-measurements E λt n =instantaneous eigenvalue: H(λ t ) ψ λt n = E λt n ψ λt n

Probability of inclusive quantum work recall: H(λ t )ϕ n,ν (λ t ) = e n (λ t )ϕ n,ν (λ t ), P n (t) = ν ϕ n,ν(λ t ) ϕ n,ν (λ t ) 1st measurement of energy: e n (λ 0 ) with prob p n = Tr P n (t 0 )ρ(t 0 ), state after measurement: ρ n = P n (t 0 )ρ(t 0 )P n (t 0 )/p n t 0 t f : ρ n (t f ) = U tf,t 0 ρ n U t f,t 0, i U t,t0 / t = H(λ t )U t,t0, U t0,t 0 = 1 2nd measurement of energy: e m (t f ) with prob. p(m n) = Tr P m (t f )ρ n (t f ) p tf,t 0 (w) = n,m δ(w [e m (λ τ ) e n (λ 0 )])p(m n)p n J. Kurchan, arxiv:cond-mat/0007360

Characteristic function of work G tf,t 0 (u) = dw e iuw p tf,t 0 (w) = e iuem(t f ) e iuen(t0) TrP m (t f )U tf,t 0 ρ n U t + f,t 0 p n m,n = m,n Tre iuh(t f ) P m (t f )U tf,t 0 e ih(t 0) ρ n U + t f,t 0 p n = Tre iuh H(t f ) e iuh(t 0) ρ(t 0 ) e iuh(t f ) e iuh(t 0) t0 H H (t f ) = U t f,t 0 H(t f )U tf,t 0, ρ(t 0 ) = n P n (t 0 )ρ(t 0 )P n (t 0 ), ρ(t 0 ) = ρ(t 0 ) [ρ(t 0 ), H(t 0 )] P. Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008) P.Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007)

Work is not an observable Note: G tf,t 0 (u) is a correlation function. If work was an observable, i.e. if a hermitean operator W existed then the characteristic function would be of the form of an expectation value G W (u) = e iuw = Tre iuw ρ(t 0 ) Hence, work is not an observable. P. Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008) P.Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007)

Choose u = iβ e βw = dw e βw p tf,t 0 (w) = Gt c f,t 0 (iβ) = Tre βh H(t f ) e βh(t0) Z 1 (t 0 )e βh(t 0) = Tre βh(t f ) /Z(t 0 ) = Z(t f )/Z(t 0 ) = e β F quantum Jarzynski equality

u u + iβ and time-reversal Z(t 0 )G c t f,t 0 (u) = Tr U + t f,t 0 e iuh(t f ) U tf,t 0 e i( u+iβ)h(t 0) = Tr e i( u+iβ)h(t f ) e βh(t f ) U + t 0,t f e i( u+iβ)h(t 0) U t0,t f = Z(t f )G c t 0,t f ( u + iβ) p tf,t 0 (w) p t0,t f ( w) = Z(t f ) Z(t 0 ) eβw β( F w) = e Tasaki-Crooks theorem white P. Talkner, and P. Hänggi, J. Phys. A 40, F569 (2007).

Microcanonical initial state ρ(t 0 ) = ω 1 E (t 0)δ(H(t 0 ) E), ω E (t 0 ) = Tr δ(h(t 0 E)) = e S(E,t 0)/k B ω E (t 0 ): Density of states, S(E, t 0 ): Entropy p mc t f,t 0 (E, w) = ω 1 E (t 0)Tr δ(h H (t f ) E w)δ(h(t 0 ) E) pt mc f,t 0 (E, w) pt mc 0,t f (E + w, w) = ω E+w (t f ) = e [S(E+w,t f ) S(E,t 0 )]/k B ω E (t 0 ) P.Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008)

PROBLEM Projective quantum measurement of: E =TOTAL energy N = TOTAL number of particles in MACROSCOPIC systems!!!

Measurements A projective measurement of an observable A = i a ip A i, P A i P A j = δ i,j P A i : ρ i P A i ρp A i while a force protocol is running leads to a change of the statistics of work but leaves unchanged the Crooks relation and the Jarzyninski equality. M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 105, 140601 (2010); M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. E 83, 041114, (2011).

OPEN QUANTUM SYSTEM: WEAK COUPLING β H S(λ t) H SB H B H(λ t ) = H S (λ t ) + H B + H SB p[ E, Q; λ] = E = Em λτ E λ 0 n ϱ(λ 0 ) = e βh(λ 0) /Y (λ 0 ) system energy change E B = E B µ E B ν = Q bath energy change δ[ E Em λτ + E λ 0 n ]δ[q + Eµ B Eν B ]p mµ nν [λ]pnν 0 m,n,µ,ν p[ E, Q; λ] p[ E, Q; λ] = eβ( E Q F S ) E = w + Q F S = β 1 ln Z S(λ τ ) Z S (λ 0 ) p[w, Q; λ] p[ w, Q; λ] = eβ(w F S ) P. Talkner, M. Campisi, P. Hänggi, J.Stat.Mech. (2009) P02025

Strong coupling: Quantum Treatment H(t) = H S (t) + H SB + H B Fluctuation Theorem for the total system: where: and p tf,t 0 (w) p t0,t f ( w) = Y (t f ) Y (t i ) eβw Y (t) = Tre β(h S (t)+h SB +H B ) w = e m (t f ) e n (t 0 ) e n (t)= instantaneous eigenvalues of total system

OPEN QUANTUM SYSTEM: STRONG COUPLING β H S(λ t) H SB H B H(λ t ) = H S (λ t ) + H SB + H B w = Em λτ E λ 0 n = work on total system=work on S Y (λ t ) = Tre βh(λt) = partition function of total system Z S (λ t ) = Y (λ t) Z B Tr S e βh S (λ t) = partition function of S F S (λ t ) = β 1 ln Z S (λ t ) proper free energy of open system p[w; λ] p[ w; λ] = Y (λ τ ) Y (λ 0 ) eβw = Z(λ τ ) Z(λ 0 ) eβw = e β(w F S ) M. Campisi, P. Talkner, and P. Hänggi, Phys. Rev. Lett. 102 210401 (2009)

Partition function Z S (t) = Y(t) Z B where Z B = Tr B e βh B

Free energy of a system strongly coupled to an environment Thermodynamic argument: F total system free energy F B bare bath free energy. F S = F F 0 B With this form of free energy the three laws of thermodynamics are fulfilled. G.W. Ford, J.T. Lewis, R.F. O Connell, Phys. Rev. Lett. 55, 2273 (1985); P. Hänggi, G.L. Ingold, P. Talkner, New J. Phys. 10,115008 (2008); G.L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 0611505 (2009).

An important difference Route I E. = E S = H S = Tr S+B(H S e βh ) Tr S+B (e βh ) Quantum Brownian motion and the 3 rd law Route II Z = Tr S+B(e βh ) Tr B (e βh B ) U = lnz β Specific heat and dissipation Two approaches Microscopic model Route I U = H H B B ] = E S + [ H SB + H B H B B Route II specific heat density of states Conclusions For finite coupling E and U differ!

Quantum Hamiltonian of Mean Force where also Z S (t) := Y (t) Z B = Tr S e βh (t) H (t) := 1 β ln Tr Be β(h S (t)+h SB +H B ) Tr B e βh B e βh (t) Z S (t) = Tr Be βh(t) Y (t) M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009).

ARROW OF TIME + : movie in forward direction : movie in backward direction frame t : λ t and Q t Forward: βw 0 1 Backward: After Seeing movie βw 0 1 (W 0 is odd under time reversal!) Prior: P(+) = 1/2; P( ) = 1/2 Posterior: P(+ W 0 ) = P(W 0 +)P(+) = P(W 0 ) P(W 0 +)P(+) = P(W 0 +)P(+) + P(W 0 )P( )

USING EXCLUSIVE WORK H(q, p; λ t ) = H 0 (q, p) λ t Q(q, p) λ t = 0 at t = 0; Protocol: λ t : 0 t = τ ϱ 0 (q, p) = e βh 0(q,p) /Z 0 (β) = F.-T. P[Γ, λ] = P[ Γ, λ]e βw 0 B.-K. (1977) W 0 = τ 0 dtλ t Q t λt = λ τ t = e βw 0 λ = 1 equality (2 nd Law) with exp(x) exp( x ) = e βw 0 λ e βw 0 λ = 0 β W 0 λ W 0 λ 0 inequality

ARROW OF TIME F.-T.: P(W 0 +) P(W 0 ) = exp(βw 0) W 0 Odd: P( W 0 ) = P(W 0 +) = P(+ W 0 ) = 1 e βw 0 + 1 1 0.75 P (+ W0) 0.5 0.25 0 10 5 0 5 10 W 0 [k BT ]

ARROW OF TIME 1) H 0 (q, p) H (q, p; t) : emergence of an arrow 2) preparation, here canonical determines its direction conventional : coarsegrainingofquantities< > breakingdet. balance Stoßzahlansatz initiali i molecular l chaos (Bogoliubov) Fokker Planck eqs.; master eqs. All containad hoc elements that induce thetime arrow : future past

Summary Classical and quantum mechanical expressions for the distribution of work for arbitrary initial states The characteristic function of work is given by a correlation function Work is not an observable. Fluctuation theorems (Crooks and Jarzynski) for thermal equilibrium states and microscopic reversibility Open Systems Strong coupling: Fluctuation and work theorems Weak coupling: Fluctuation theorems for energy and heat as well as work and heat Measurements do not affect Crooks relation and Jarzynski equality

References P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E, 75, 050102(R) (2007). P. Talkner, P. Hänggi, J Phys. A 40, F569 (2007). P. Talkner, P. Hänggi, M. Morillo, Phys. Rev. E 77, 051131 (2008). P. Talkner, P.S. Burada, P. Hänggi, Phys. Rev. E 78, 011115 (2008). P. Hänggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008). P. Talkner, M. Campisi, P. Hänggi, J. Stat. Mech., P02025 (2009). G.-L. Ingold, P. Talkner, P. Hänggi, Phys. Rev. E 79, 0611505 (2009). M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009). M. Campisi, P. Talkner, P. Hänggi, J. Phys. A 42, F392002 (2009). M. Campisi, D. Zueco, P. Talkner, Chem. Phys. 375, 187 (2010). M. Campisi, P. Talkner, P. Hänggi, Phil. Trans. Roy. Soc. 369, 291 (2011). M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 105, 140601 (2010). M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011). M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. E, 83, 041114 (2011). J. Yi, P. Talkner, Phys. Rev. E 83, 41119 (2011). J. Yi, P. Talkner, M. Campisi, Phys. Rev. E, 84, 011138 (2011).

A. Classical: w in = w ex = τ Definition of work dt dh(z(t), λ t) = H(z(t f ), λ τ ) H(z(t 0 ), λ 0 ) t 0 dt inclusive dt dh(z(t), λ 0) = H(z(t f ), λ 0 ) H(z(t 0 ), λ 0 ) t 0 dt exclusive τ z(t) z(t, z): Trajectory in phase space: ż = {H(z, λ t ), z} z z(t 0 ): Starting point taken from Z 1 (t 0 )e βh(λ 0) for H(z, λ t ) = H 0 (z) λ t Q(z): τ w in = w ex = t 0 τ t 0 dt Q(z(t)) λ t dt Q(z(t))λ t

INCLUSIVE VS. EXCLUSIVE VIEWPOINT C. Jarzynski, C.R. Phys. 8 495 (2007) H(z, λ t ) = H 0 (z) λ t Q(z) W = H(z τ, λ τ ) H(z 0, λ 0 ) = dtq t λ t W 0 = H 0 (z τ ) H 0 (z 0 ) = dtλ t Q t e βw 0 = 1 G.N. Bochkov and Yu. E. Kuzovlev JETP 45, 125 (1977)

Strong coupling: Example System: Two-level atom; bath : Harmonic oscillator H = ɛ ( 2 σ z + Ω a a + 1 ) ( + χσ z a a + 1 ) 2 2 H = ɛ 2 σ z + γ ɛ = ɛ + χ + 2 ( e βω ) β artanh sinh(βχ) 1 e βω cosh(βχ) γ = 1 ( 1 2e βω 2β ln cosh(βχ) + e 2βΩ ) (1 e βω ) 2 Z S = Tre βh S S = F S T F S = k b T ln Z S C S = T S S T M. Campisi, P. Talkner, P. Hänggi, J. Phys. A: Math. Theor. 42: 392002 (2009)

Entropy and specific heat Ω / ε (a) 2 Ω / ε (a) 1 1.8 0.9 1.6 0.8 χ/ε 1 0 1.4 1.2 1 χ/ε 1 0 0.7 0.6 0.5 Ω/ɛ = 3 0.8 0.4 1 0.6 1 0.3 0.4 0.2 0.2 0.1 Ω / ε 0 0 0.6 1.2 k B T/ε Ω / ε 0 0 0.6 1.2 k B T/ε Ω / ε (b) 2 Ω / ε (b) 2 1.8 1.6 1.5 χ/ε 0 S S =0 1.4 1.2 1 0.8 χ/ε 0 C S =0 1 Ω/ɛ = 1/3 S S <0 0.6 0.4 C S <0 0.5 0.2 0 Ω / ε 0 0.6 1.2 k B T/ε 0 Ω / ε 0 0.6 1.2 M. Campisi, P. Talkner, P. Hänggi, J. Phys. A: Math. Theor. 42: 392002 (2009) k B T/ε

Doing small systems: Fluctuation relations and the arrow of time Peter Hänggi, Institut für Physik, Universität Augsburg M. Campisi, P. Hänggi, and P. Talkner Colloquium: Quantum fluctuation relations: Foundations and applications Rev. Mod. Phys. 83, 771 791 (2011); Addendum and Erratum: Quantum fluctuation relations: Foundations and applications Rev. Mod. Phys. 83, 1653 (2011). M. Campisi and P. Hänggi Fluctuation, Dissipation and the Arrow of Time Entropy 13, 2024 2035 (2012). G. L. Ingold, P. Hänggi, and P. Talkner Specific heat anomalies of open quantum systems Phys. Rev. E 79, 061105 (2009)

Characteristic function of work G tf,t 0 (u) = dw e iuw p tf,t 0 (w) = Tre iuh H(λ τ ) e iuh(λ 0) ρ(t 0 ) e iuh H(λ τ ) e iuh(λ0) t0 H H (λ τ ) = U t f,t 0 H(λ τ )U tf,t 0, ρ(t 0 ) = n P n (t 0 )ρ(t 0 )P n (t 0 ) Note: G tf,t 0 (u) is a correlation function. If work was an observable, i.e. if a hermitean operator W existed then the characteristic function would be of the form of an expectation value G W (u) = e iuw = Tre iuw ρ(t 0 ) Hence, work is not an observable. P. Talkner, P. Hänggi, M. Morillo, PRE 77, 051131 (2008) P.Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102(R) (2007)

MORE ON GAUGE FREEDOM W phys = dtq t λ t Corresponds to the choice g = 0. Other physical expressions are possible corresponding to different choices of g. The experimental conditions determine uniquely the SPECIFIC gauge one must choose!!!