Self-assembled SiGe single hole transistors

Similar documents
QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES

GeSi Quantum Dot Superlattices

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

SUPPLEMENTARY INFORMATION

Lecture 8, April 12, 2017

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Coulomb Blockade and Kondo Effect in Nanostructures

single-electron electron tunneling (SET)

Electronic transport in low dimensional systems

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Surface Composition Mapping Of Semiconductor Quantum Dots. Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy.

Coherence and Correlations in Transport through Quantum Dots

Few-electron molecular states and their transitions in a single InAs quantum dot molecule

Quantum Confinement in Graphene

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Compositional mapping of semiconductor quantum dots by X-ray photoemission electron microscopy

Electron counting with quantum dots

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Surface compositional gradients of InAs/GaAs quantum dots

Quantum Information Processing with Semiconductor Quantum Dots

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Three-terminal quantum-dot thermoelectrics

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Concepts in Spin Electronics

Spectromicroscopic investigations of semiconductor quantum dots. Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy.

Chapter 8: Coulomb blockade and Kondo physics

Formation of unintentional dots in small Si nanostructures

Chapter 3. Step Structures and Epitaxy on Semiconductor Surfaces

Precise control of size and density of self-assembled Ge dot on Si(1 0 0) by carbon-induced strain-engineering

Manipulation of Majorana fermions via single charge control

SUPPLEMENTARY INFORMATION

Monolithic growth of ultra-thin Ge nanowires on Si(001)

Lecture 2: Double quantum dots

Energy dispersion relations for holes inn silicon quantum wells and quantum wires

Coulomb blockade and single electron tunnelling

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Cotunneling and Kondo effect in quantum dots. Part I/II

Determination of the tunnel rates through a few-electron quantum dot

Electroluminescence from Silicon and Germanium Nanostructures

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Band-edge alignment of SiGe/ Si quantum wells and SiGe/ Si self-assembled islands

Since first discovered in 1990, 1 heteroepitaxially grown selfassembled

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Heavy hole states in Germanium hut wires

Single photon emitters in exfoliated WSe 2 structures

Semiconductor Quantum Dots

g-factors in quantum dots

Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Quantum physics in quantum dots

InAs quantum dots: Predicted electronic structure of free-standing versus GaAs-embedded structures

Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot. D2 V exc I

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

Physics and Material Science of Semiconductor Nanostructures

X-ray Absorption studies of atomic environments in semiconductor nanostructures

Single Electron Transistor (SET)

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Large Storage Window in a-sinx/nc-si/a-sinx Sandwiched Structure

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear

solidi current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates

Morphological evolution of single-crystal ultrathin solid films

ASINGLE-ELECTRON memory is an ultimate device

Defense Technical Information Center Compilation Part Notice

Spectroscopy of self-assembled quantum rings

Quantum Dots: Artificial Atoms & Molecules in the Solid-State

Hole Spin Relaxation in Ge- Si Core-Shell Nanowire Qubits

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Electronic and Optoelectronic Properties of Semiconductor Structures

Coulomb blockade in metallic islands and quantum dots

Chapter 3 Properties of Nanostructures

Pseudopotential Theory of Semiconductor Quantum Dots

SUPPLEMENTARY INFORMATION

Wave function engineering in quantum dot-ring structures

Christian Ratsch, UCLA

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany

Self-Assembled InAs Quantum Dots

tunneling theory of few interacting atoms in a trap

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

How a single defect can affect silicon nano-devices. Ted Thorbeck

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

PACS numbers: La, Dx Keywords: A. Semiconductors; A. Nanostructures; D. Electronic states

Single Electron Tunneling Examples

Nanomaterials and Analytics Semiconductor Nanocrystals and Carbon Nanotubes. - Introduction and Preparation - Characterisation - Applications

Supporting Information

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL,

Ordering of Nanostructures in a Si/Ge 0.3 Si 0.7 /Ge System during Molecular Beam Epitaxy

Final exam. Introduction to Nanotechnology. Name: Student number:

Enhancement-mode quantum transistors for single electron spin

Transcription:

Self-assembled SiGe single hole transistors G. Katsaros 1, P. Spathis 1, M. Stoffel 2, F. Fournel 3, M. Mongillo 1, V. Bouchiat 4, F. Lefloch 1, A. Rastelli 2, O. G. Schmidt 2 and S. De Franceschi 1 1 CEA Grenoble, LaTEQS Laboratory,France 2 IFW-Dresden, Germany 3 CEA Grenoble, LETI, France 4 CNRS-Grenoble, Neél Institute, France Georgios Katsaros Aussois 2010

The Stranski-Krastanow growth mode Si (001) Ge Ge Lattice-mismatched SK-growth. E.g. Ge/Si(001) Wetting layer (WL) formation Spontaneous formation of 3D islands Competition: elastic energy relaxation vs surface energy

The Ge/Si(001) System 50x32x7 nm 3 50x50x7 nm 3 50x50x10 nm 3 110x110x27 nm 3

Why are SiGe self-assembled quantum dots interesting? Nominally pure Ge islands contain Si Ge content bigger close to the apex of the islands Si content increases the higher the growth temperature Strain relaxation towards the apex of the islands T. U. Schülli et al. Phys. Rev. Lett. 90, 066105 (2003) G.K. et al., Phys. Rev. B 72, 195320 (2005) PhD Thesis, Konstanz 2006

Controlling the position of SK quantum dots SK quantum dots localize on nanoscale grooves G. K. et al., Phys. Rev. Lett. 101, 096103 (2008) PhD Thesis Konstanz 2006

Controlling the position of SK quantum dots Growth on patterned substrates O.G. Schmidt Group, IFW Dresden

Hole quantum confinement in a SiGe quantum-dot transistor QUALITATIVE BAND DIAGRAM Metal source contact Si tunnel barrier Ge quantum dot Si tunnel barrier Metal drain contact

State of the art for p-type SiGe nanostructures Lu et al., PNAS 102, 0504581102 (2005) Hu et al., Nat. Nanotechn. 2, 622 (2007) Xiang et al., Nat. Nanotechn. 1, 208 (2006)

State of the art for p-type SiGe nanostructures Roddaro et al., PRL 186802 (2008) Small dots g ~ 2

Single-hole transport in weakly coupled devices C)

Single-hole transport in weakly coupled devices Coulomb blockade conductance peaks C)

Low-temperature single-hole transport Excitation lines (Energy-level spacing of a few mev due to size confinement in the SiGe island)

Zeeman splitting of quantum-dot hole states Direct tunneling spectroscopy G.K. et al., Nature Nanotechnology 5, 458 (2010)

Zeeman: Hz ~ -2kμ B B J Band Structure of SiGe g=6k g=2k g~0 g=4k Haendel et al., PRL 96, 086403 (2006) Composition dependent Luttinger parameter k: Ge: -3.37 Si: 0.42 60% Ge: -0.308 80%Ge -1.153 Fraj et al., Semiconductor Science and Technology 23, 085006 (2008). Fraj et al., J. Appl. Phys. 102, 053703 (2007).

Zeeman: Hz ~ -2kμ B B J Band Structure of SiGe g=6k g=2k g~0 g=4k Haendel et al., PRL 96, 086403 (2006) Composition dependent Luttinger parameter k: Ge: -3.37 Si: 0.42 60% Ge: -0.308 80%Ge -1.153 Fraj et al., Semiconductor Science and Technology 23, 085006 (2008). Fraj et al., J. Appl. Phys. 102, 053703 (2007). Nenashev et al., Phys. Rev. B 67, 205301 (2003)

Sequential Spin filling V sd 8 T 7 T 6 T 5 T N+1 N N-1 V g

Sequential Spin filling V sd 8 T 7 T 6 T 5 T N+1 N N-1 V g 8 T 7 T 6 T 5 T

Inelastic cotunneling (strong coupling) Can be used for spectroscopy [De Franceschi et al, PRL 86, 878 (2001)] Resolution determined by temperature and not by life-time broadening! Flat featurelless differential conductance within coulomb diamond

Inelastic cotunneling (strong coupling) Can be used for spectroscopy [De Franceschi et al, PRL 86, 878 (2001)] Resolution determined by temperature and not by life-time broadening! ev = δ δ V sd N+1 N N-1 V g Step in differential conductance

Zeeman splitting measured by spin flip inelastic cotunneling

Zeeman splitting measured by spin flip inelastic cotunneling

Summary of g-factor results

Measuring the spin-orbit coupling strength

Measuring the spin-orbit coupling strength

Measuring the spin-orbit coupling strength

Measuring the spin-orbit coupling strength N. Roch et al., Nature 453, 633 (2008)

Measuring the spin-orbit coupling strength

Measuring the spin-orbit coupling strength

Measuring the spin-orbit coupling strength G. K. et al., Nature Nanotechnology 5, 458 (2010)

Measuring the spin-orbit coupling strength G. K. et al., Nature Nanotechnology 5, 458 (2010)

Summary First realization of three terminal devices based on SiGe self-assembled nanocrystals Low temperature measurements indicate strongly anisotropic hole g-factors Tunable spin-orbit coupling strength is demonstrated Outlook