Unconventional electron quantum optics in condensed matter systems

Similar documents
Interactions and Charge Fractionalization in an Electronic Hong-Ou-Mandel Interferometer

Réunion erc. Gwendal Fève. Panel PE3 12 mn presentation 12 mn questions

arxiv: v1 [cond-mat.mes-hall] 29 Jan 2013

arxiv: v1 [cond-mat.mes-hall] 28 Feb 2012

Coherence and indistinguishability of single electron wavepackets emitted by independent sources

Detecting and using Majorana fermions in superconductors

InAs/GaSb A New 2D Topological Insulator

Topological insulators

InAs/GaSb A New Quantum Spin Hall Insulator

Hong-Ou-Mandel effect with matter waves

Interferometric and noise signatures of Majorana fermion edge states in transport experiments

Lecture 3. Shot noise correlations: The two-particle Aharonv-Bohm effect. Markus Buttiker University of Geneva

arxiv: v1 [cond-mat.mes-hall] 20 Apr 2016

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

arxiv:quant-ph/ v1 19 Aug 2005

Quantum dots and Majorana Fermions Karsten Flensberg

Electron quantum optics in ballistic chiral conductors

Topological Insulators

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Single Photon Generation & Application

MESOSCOPIC QUANTUM OPTICS

arxiv: v1 [cond-mat.mes-hall] 7 Aug 2013

Andreev transport in 2D topological insulators

arxiv: v3 [cond-mat.mes-hall] 16 Jan 2017

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Superconductivity at nanoscale

Hong Ou Mandel experiment with atoms

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Quantum dynamics in many body systems

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage

Flying qubits in semiconductors

Quantum Memory with Atomic Ensembles

arxiv: v2 [cond-mat.mes-hall] 21 Jan 2014

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Entanglement Enabled Intensity Interferometry

Learning about order from noise

Spin Superfluidity and Graphene in a Strong Magnetic Field

Quantum Hall circuits with variable geometry: study of the inter-channel equilibration by Scanning Gate Microscopy

arxiv: v1 [cond-mat.mes-hall] 12 Sep 2016

Quantum noise studies of ultracold atoms

From optical graphene to topological insulator

Topological Insulators and Ferromagnets: appearance of flat surface bands

5 Topological insulator with time-reversal symmetry

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

arxiv: v2 [cond-mat.mes-hall] 14 Dec 2009

arxiv: v2 [cond-mat.mes-hall] 29 Jan 2013

Manipulation of Majorana fermions via single charge control

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Quantum physics and the beam splitter mystery

Quantum Computing: the Majorana Fermion Solution. By: Ryan Sinclair. Physics 642 4/28/2016

Quantum Photonic Integrated Circuits

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Journal Club Presentation Quantum Information Science: Indistinguishable Photons from Separated Silicon-Vacancy Centers in Diamond [1]

Optimal cloning of photonic quantum states

Bunching-Antibunching of Quantum Particles From Astronomy to AMO. Indu Satija George Mason

Single-photon NV sources. Pauli Kehayias March 16, 2011

Frequency and time... dispersion-cancellation, etc.

Novel topologies in superconducting junctions

Spin orbit interaction in graphene monolayers & carbon nanotubes

Topological insulator (TI)

Multichannel Majorana Wires

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

(Noise) correlations in optical lattices

Splitting of a Cooper pair by a pair of Majorana bound states

Confocal Microscope Imaging of Single emitter fluorescence and Observing Photon Antibunching Using Hanbury Brown and Twiss setup. Lab.

Innovation and Development of Study Field. nano.tul.cz

Physics of Semiconductors

3.14. The model of Haldane on a honeycomb lattice

Local currents in a two-dimensional topological insulator

Separation of molecules by chirality using circularly polarized light

Correlation functions in optics and quantum optics, 4

The Quantum Spin Hall Effect

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Current and noise in chiral and non chiral Luttinger liquids. Thierry Martin Université de la Méditerranée Centre de Physique Théorique, Marseille

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures

Interference and the lossless lossy beam splitter

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Topological insulator with time-reversal symmetry

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Supplementary Figure 1: Determination of the ratio between laser photons and photons from an ensemble of SiV - centres under Resonance Fluorescence.

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid

Exploring new aspects of

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Slow and stored light using Rydberg atoms

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

The Hanbury Brown Twiss effect for matter waves. Chris Westbrook Laboratoire Charles Fabry, Palaiseau Workshop on HBT interferometry 12 may 2014

Quantum correlations and atomic speckle

Wiring Topological Phases

Quantum Hall Effect in Graphene p-n Junctions

FRACTIONAL CHARGE & FRACTIONAL STATISTICS & HANBURY BROWN & TWISS INTERFEROMETRY WITH ANYONS

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

QUANTUM ELECTRON OPTICS AND ITS APPLICATIONS. 1. Introduction

Interference between quantum gases

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel

Topological thermoelectrics

Measuring Entanglement Entropy in Synthetic Matter

Classification of Symmetry Protected Topological Phases in Interacting Systems

Transcription:

Unconventional electron quantum optics in condensed matter systems Dario Ferraro Centre de Physique Théorique, Marseille nanoqt-2016, Kyiv, October 10, 2016 In collaboration with: J. Rech, T. Jonckheere, T. Martin

Outline The rise of electron quantum optics Hanbury-Brown-Twiss and Hong-Ou-Mandel interferometry with individual electrons Two-dimensional topological insulators: when Pauli meets Topology SC/Hall hybrid systems: creation and collision of individual Bogoliubov excitations

Electron quantum optics Revising the tools of quantum optics with photons to describe individual electronic wave-packets in mesoscopic systems E. Bocquillon et al., Ann. Phys. (Berlin) 526, 1 (2014) One-dimensional electron channels as chiral wave-guides (several micrometers of elastic mean free path) Quantum point contacts as beam splitters

Electron injection on-demand Single electron sources based on driven mesoscopic capacitors Theory: Moskalets et al., Phys. Rev. Lett. 100, 086601 (2008); Experiments: G. Fève et al., Science 316, 1169 (2007) Periodic injection of one electron and one hole with exponential wave-packets in time (t) / e 2 t e i! 0t (t) Alternative approach based on Lorentzian voltage pulses in time Theory: L. S. Levitov et al., J. Math. Phys. 37, 4845 (1996), J. Keeling, et al., Phys. Rev. Lett. 97,116403 (2006); Experiments: J. Dubois et al., Nature 502, 659 (2013), T. Jullien et al., Nature 514, 603 (2014)

Individual electrons interferometry Hanbury-Brown-Twiss (HBT) and Hong-Ou-Mandel (HOM) 1.0 0.8 0.6 0.4 0.2 1 S HOM 0.0 100 t q 2 S HBT 0 50 0 0 T0 50 t 100 T. Jonckheere et al., Phys. Rev. B 86, 125425 (2012) E. Bocquillon et al., Science 339, 1054 (2013) Perfect Pauli dip only in the free fermion case, suppression of the contrast due to interaction C. Wahl et al., Phys. Rev. Lett. 112, 046802 (2014); D. F. et al. Phys. Rev. Lett. 113, 166403 (2014).

Quantum spin Hall effect (QSHE) CdTe/HgTe quantum wells Theory: A. B. Bernevig et al., Science 314, 1757 (2006); Experiments: M. König et al., Science 318, 766 (2007) Trivial insulator Topological insulator: counter-propagating edge channels carrying opposite spin at zero magnetic field, robust against backscattering Observed also in InAs/GaSb quantum wells: C. Lui et al., Phys. Rev. Lett. 100, 236601 (2008); I. Knez et al., Phys. Rev. Lett. 107, 136603 (2011)

Pair electron source Driven mesoscopic capacitor coupled to helical edge states A. Inhofer and D. Bercioux, Phys. Rev. B 88, 235412 (2013); P. P. Hofer and M. Buttiker, Phys. Rev. B 88, 241308(R) (2013) Spin-preserving and spin-flipping tunneling at the QPC Injection of electrons pairs with opposite spin and propagating in opposite directions (spin-momentum locking) Same exponential wave-packets as in the IQH case

HOM experiments: two-electrons injection (1) D. F., C. Wahl, J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 89, 075407 (2014) Equal spin injection (analogous to IQH) I q (2) R",L" ( )=1 Ie Loss of contrast without interaction, only due to additional channels Visibility of the dip depends on QPC properties

HOM experiments: two-electrons injection (2) D. F., C. Wahl, J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 89, 075407 (2014) Opposite spin injection (no equivalent in IQH) q (2) ( ) R",L# =1 Ke q (2) ( ) R",R# =1 J e Dip related to the topological structure of the edges J. M. Edge et al., Phys. Rev. Lett. 110, 246601 (2013)

HOM experiments: three-electrons injection D. F., C. Wahl, J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 89, 075407 (2014) Configuration possible only in the QSH case q (3) ( 1, 2) =1 e 1 e 2 (1 )e 1 2 Synchronized case: zero noise due to Pauli principle and topology Not synchronized case: exploring different interference contributions Analogous three-photons HOM experiments proposed in quantum optics: R. A. Campos, Phys. Rev. A 62, 013809 (2000)

Source of individual Bogoliubov quasiparticles SES Hall edge channels at filling factor 2 degenerate in spin (neglect Zeeman and interaction) coupled to a SC contact W SC Electrons emerge as Bogoliubov quasiparticles e, "i ) W e e, "i + W h h, #i = cos e, "i +sin e i( 2 ) h, #i C. W. J. Beenakker, Phys. Rev. Lett. 112, 070604 (2014) l s (W, l s,l m ) induced coherence length l m l m l s magnetic length Optimal condition: high critical field in the SC Experiments with NbN contacts on Graphene: P. Rickhaus et al., Nano Lett. 12, 1942 (2012); G.-H. Lee et al., arxiv:1609.08104

D. F., J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 91, 075406 (2015) Z +1 e, "i = he, " I(t) e, "i = evhe, " : Z Q = Characterization of the source 1 d ' e ( ) Current and charge " ( ) F i (t) z (t) : e, "i = e cos(2 )' e (t )' e(t ) dthe, " I(t) e, "i = / W e 2 W h 2 e cos(2 ) Non conservation of the charge due to Andreev reflections A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964) = 4 Particle and hole contributions compensate: zero outgoing current he, " (t) e, "i = vhe, " : Z N = Particle density and number (t) (t) : e, "i = ' e (t )' e(t ) dthe, " (t) e, "i =1 / W e 2 + W h 2 Conservation of the particle number

HBT noise D. F., J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 91, 075406 (2015) Z +1 S = SES1 1 dtdt 0 he, " I 1 (t)i 2 (t 0 ) e, "i c c 1 M 1 c 1 a 1 I 1 (t) I 2 (t) SC1 a 2 Σ S1 HBT = e 2 R(1 R) cos 2 (2 1 ) / Q 2 Partition noise associated to a non-integer charged wave-packet =0, 2 We recover the standard result for individual electrons or holes E. Bocquillon et al., Phys. Rev. Lett. 108, 196803 (2012) = 4 Zero partition noise associated to a zero emitted charge

HOM noise for two Bogoliubov quasiparticles D. F., J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 91, 075406 (2015) SES1 c 1 M 1 c 1 a 1 I 1 (t) I 2 (t) SC1 a 2 Σ M 2 c 2 c 2 SC2 SES2 S HOM = S HOM + S1 HBT + S2 HBT S HOM / We 1 We 2 WhW 1 h 2 2 Synchronized emission through SC differing only on the order parameter phase S HOM 2SC = e 2 R(1 R)sin 2 (2 )[1 cos( 1 2 )] Non local dependence on the order parameter phase C. W. J. Beenakker, Phys. Rev. Lett. 112, 070604 (2014) No dependence on SC phase in the current (first order coherence), oscillatory modulation in the noise (second order coherence) Similar purely second order correlations discussed in: P. Samuelsson et al., Phys. Rev. Lett. 92, 026805 (2004); I. Neder et al., Nature (London) 448, 333 (2007); J. Splettstoesser et al., Phys. Rev. Lett. 103, 076804 (2009)...

HOM noise as a spectroscopic tool (1) D. F., J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 91, 075406 (2015) SES1 c 1 M 1 c 1 a 1 I 1 (t) I 2 (t) SC1 a 2 Σ c 2 SES2 Interference between one Bogoliubov quasiparticle and one electron Overlap of the wave-packets Ratio usually discussed in experiments E. Bocquillon et al., Science 339, 1054 (2013)

HOM noise as a spectroscopic tool (2) D. F., J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 91, 075406 (2015) Emission by a driven mesoscopic capacitor (exponential wave-packet) Spectroscopy of Bogoliubov quasiparticles In the same spirit as: D. F. et al., Phys. Rev. B 88, 205303 (2013); D. F. et al. Phys. Rev. Lett. 113, 166403 (2014).

Conclusions HBT and HOM interferometers as milestones in electron quantum optics Two and three electron interferometry in quantum spin Hall systems Interferometry and spectroscopy of individual Bogoliubov quasiparticles For a review: D. F., T. Jonckheere, J. Rech, T. Martin, arxiv:1610.01043