Characterization techniques for high brightness laser diodes

Similar documents
Wavelength Stabilized High-Power Quantum Dot Lasers

EE 472 Solutions to some chapter 4 problems

,

Stimulated Emission Devices: LASERS

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

EE485 Introduction to Photonics

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

Emission Spectra of the typical DH laser

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Thermal lensing in high power ridge waveguide lasers. H. Wenzel, M. Dallmer and G. Erbert

High Power Diode Lasers

GaN-based Devices: Physics and Simulation

Characterizing laser beams in general and laser spots for LID experiments on targets - a comparison

Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes

Chapter 17. λ 2 = 1.24 = 6200 Å. λ 2 cutoff at too short a wavelength λ 1 cutoff at to long a wavelength (increases bandwidth for noise reduces S/N).

Chapter 5. Semiconductor Laser

(Al,In)GaN laser diodes in spectral, spatial, and time domain: near-field measurements and basic simulations

Diode laser emission

5 Quantum Wells. 1. Use a Multimeter to test the resistance of your laser; Record the resistance for both polarities.

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

A tutorial on meta-materials and THz technology

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19

S. Blair February 15,

Distributed feedback semiconductor lasers

School of Electrical and Computer Engineering, Cornell University. ECE 5330: Semiconductor Optoelectronics. Fall 2014

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

The Generation of Ultrashort Laser Pulses II

SUPPLEMENTARY INFORMATION

Signal regeneration - optical amplifiers

Segmented 1.55um Laser with 400% Differential Quantum Efficiency J. Getty, E. Skogen, L. Coldren, University of California, Santa Barbara, CA.

Laser Excitation Dynamics of Argon Metastables Generated in Atmospheric Pressure Flows by Microwave Frequency Microplasma Arrays

ECE 484 Semiconductor Lasers

OPTI 511L Fall A. Demonstrate frequency doubling of a YAG laser (1064 nm -> 532 nm).

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

MODELING OF ABOVE-THRESHOLD SINGLE-MODE OPERATION OF EDGE- EMITTING DIODE LASERS

EE 6313 Homework Assignments

ISSN Review. Progress to a Gallium-Arsenide Deep-Center Laser

SUPPLEMENTARY INFORMATION

Advanced techniques Local probes, SNOM

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd

gives rise to multitude of four-wave-mixing phenomena which are of great

Chapter-4 Stimulated emission devices LASERS

Thermal performance investigation of DQW GaInNAs laser diodes

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 14.

Energy transport in metal nanoparticle plasmon waveguides

Practical 1P4 Energy Levels and Band Gaps

Diffuse reflection BBSFG optical layout

Optics.

Optoelectronics ELEC-E3210

Introduction to optical waveguide modes

Status Report: Charge Cloud Explosion

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

ISO/TR TECHNICAL REPORT

Observing the Doppler Absorption of Rubidium Using a Tunable Laser Diode System

MODERN OPTICS. P47 Optics: Unit 9

A few Experimental methods for optical spectroscopy Classical methods Modern methods. Remember class #1 Generating fast LASER pulses

High performance THz quantum cascade lasers

Module Labworks Optics Abbe School of Photonics Contact person Supervisors

Quantum Dot Laser. Johann Peter Reithmaier. Technische Physik Institute of Nanostructure Technologies & Analytics (INA) University of Kassel

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

LASCAD Tutorial No. 4: Dynamic analysis of multimode competition and Q-Switched operation

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Optics, Optoelectronics and Photonics

Practical 1P4 Energy Levels and Band Gaps

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Stimulated Raman scattering of XeCl 70 ns laser pulses in silica fibres

Arbitrary Patterning Techniques for Anisotropic Surfaces, and Line Waves

Semiconductor Quantum Dots: A Multifunctional Gain Material for Advanced Optoelectronics

Optics for Engineers Chapter 9

AN ULTRA-HIGH RESOLUTION PULSED-WIRE MAGNET MEASUREMENT SYSTEM. Alex D Audney Thesis Defense Colorado State University

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

Photoluminescence characterization of quantum dot laser epitaxy

New Concept of DPSSL

Grading Scheme. Measure, tabulate, and plot the J vs. I curve. 1.5 pt. Question A(1)

Administrative details:

APPLICATION NOTE. Supercontinuum Generation in SCG-800 Photonic Crystal Fiber. Technology and Applications Center Newport Corporation

Single-photon and two-photon absorption induced charge model calibration

THz QCL sources based on intracavity difference-frequency mixing

Optical Fiber Signal Degradation

Computational Physics Approaches to Model Solid-State Laser Resonators

PART 2 : BALANCED HOMODYNE DETECTION

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS

Chapter9. Amplification of light. Lasers Part 2

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Excess carriers: extra carriers of values that exist at thermal equilibrium

The Generation of Ultrashort Laser Pulses

Optics for Engineers Chapter 9

Lasers and Electro-optics

Photonic Simulation Software Tools for Education

Quasi-Optical Design and Analysis (MBI) Créidhe O Sullivan, J.Anthony Murphy, Marcin Gradziel, Neil Trappe, Tully Peacocke & graduate students

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

SUPPLEMENTARY INFORMATION

Some Topics in Optics

Supplementary Materials

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier

Introduction to Optoelectronic Device Simulation by Joachim Piprek

6. Light emitting devices

Efficient light emission from LEDs, OLEDs, and nanolasers via surface-plasmon resonance

Transcription:

Characterization techniques for high brightness laser diodes Ignacio Esquivias, José Manuel García Tijero, Helena Odriozola, Luis Borruel E.T.S.I.Telecomunicación, Univ. Politécnica de Madrid, Spain IN COLLABORATION WITH Nicolas Michel, Alcatel-Thales III-V Lab Bernd Sumpf, Ferdinand-Braun-Institut für Höchstfrequenztechnik Acknowledgements Julia Arias (Universidad Miguel Hernández, Elche, Spain ) 1 Scope and Goals of e tutorial 1. Review of basic measurement techniques. Extraction of device and material parameters 3. Analysis of validity of extracted parameters 4. Analysis of physical origin of main parameters

Outline Power-Current-Voltage measurements CW and pulsed measurement set-ups Parameter extraction Cavity leng dependence Temperature dependence Spectral measurements Thermal resistance measurements Beam measurements 3 Power-Current-Voltage OPTICAL POWER (W) 3..5. 1.5 1..5 BA Laser 9 nm mm x 1 µm.. 1 3 4 5 6 CURRENT (A) 3..5. 1.5 1..5 VOLTAGE (V) Parameters Threshold current I Slope efficiency η slope Series resistance R s Diode voltage V Wall-plug efficiency 4

LASER DIODE: simplified equations (I) x z y active region metal contact p- material n- material L W Threshold condition: gain losses g Γ gmat (n ) αin + α m αin + 1 L Ln 1 ( ) R 5 LASER DIODE: simplified equations (II) P η ( I I ) ; I > out I V act slope q R( n ) I carrierdensity n η I V q ( A n + B n + C n slope η in act hν α m q α m + αin Main assumptions: 3 ) output I power Homogeneity of carriers and photons Isoermal conditions No gain saturation Perfect carrier clamping at reshold I 6

CW P-I-V: Experimental set-up Current Source / Voltage meter LD Laser Holder Photodiode + Current meter (or Power meter) Integrating sphere 7 CW P-I-V: Power measurements LD Large Area Photodetector LD Small Area Photodiode Heat-sink I PD Heat-sink I PD Direct coupling Lens coupling LD Small Area Photodiode Heat-sink I PD Integrating Sphere 8

PHOTODIODES Photodetector Types THERMAL (ermopiles, pyroelectric, bolometers) High responsivity and low noise Fast response Waveleng dependent Low saturation power: use attenuators or integrating sphere Flat waveleng response (almost) High saturation power Poor sensitivity Slow response 9 PULSED P-I-V: example experimental set-up Why Pulsed P-I-V? AVOID SELF-HEATING CH1 Current Probe 5 Ω R S bias T CH 5 Ω Pulsed Current Source LD PD V CC OSCILLOSCOPE 1

PULSED P-I-V: Current Waveform Matching Impedance 5 Ω Line Low ImpedanceLine Resistor R S Pulsed Voltage Source 5 Ω 5 Ω { LD Pulsed Current Source LD i(t) PULSED VOLTAGE DRIVE PULSED CURRENT DRIVE R S 4 Ω R S 5 Ω R S 1 Ω 11 PULSED P-I-V: Power measurement Power Time P peak < P > Integrating P(t): P peak <P> T/τ Current Averaging wiin a window Digital Oscilloscope Box car integrator Power Window 1

PULSED P-I-V: Measurement conditions T QW t 1 exp τ P dis R C T HS τ R C 1-1µs Measurement conditions to avoid self-heating: Pulse wid τ ON << τ. (Typical. -.5 µs) Temperature rise Time t exp τ Pulse period T >> τ Duty cycle τ ON / T.1-1% 13 Threshold Current and Slope Efficiency Optical Power (W) dp/di and d P/dI (a.u.) 5.E- 5.E- 4.E- 4.E- 3.E- 3.E-.E-.E- 1.E- 5.E-3.E+.E+.1.15..5.3.35.4 Current (A) d P/dI 5% I dp/di.1.15..5 Current (A).3.35.4 P η slope ( I I ( I < I ( I > I Parameter extraction Linear fit I > I Double Slope Fit First derivative (5% max.) Second derivative (max.) DIFFERENCES NOT IMPORTANT ) ) ) 14

Series Resistance (I) VOLTAGE (W).5. 1.5 1..5 BA Laser 9 nm mm x 1 µm R s 66 mω V 1.55 V EXPERIMENTAL LINEAR FIT LINEAR FIT (I > I ) V V + I R S ALTERNATIVE OPTION: IdV/dI vs I linear fit. 1 3 4 5 6 CURRENT (A) CW: V DECREASES WITH CURRENT!!! (INTERNAL TEMPERATURE) 15 Series Resistance (II) IdV/dI (V).4.35.3.5..15.1.5 R S.95 Ω m 1.6 R S.97 Ω R S.94 Ω...5.1.15..5.3 I CURRENT (A) BA Laser 88 nm 3 x 1 µm. 1.5 1..5. VOLTAGE (V) V DERIVATIVE FIT mkt q Ln I I + I R S dv mkt I + I R ; I < di q dv I I R ; I > di S I S I 16

Wall Plug Efficiency OPTICAL POWER (W) 3..5. 1.5 1..5. 1 3 4 5 6 CURRENT (A) BA Laser 9 nm mm x 1 µm 6 5 4 3 1 WALL PLUG EFF. (%) WPE P IV η WPE out ext E ph / q ( 1 I / I ) ( V + I R ) MAIN LOSSES η ext < 1 V > E ph /q Series resistance Threshold current S 17 Cavity leng dependence of J (I) J I L W Threshold Current Density (A/cm ) 5 45 4 35 3 5 15 EXPERIMENTAL 5 1 15 BA 5 lasers 3 35 4 Inverse Cavity Lenght 88 (cm nm -1 ) How to define W? BA: W Stripe Wid BA: W Stripe Wid + 1 µm? RW: W Ridge Wid + 1 µm? (large error, non-unifomity) Tapered laser: 1 < W > +? L L { W ( z) 1 µ m } dz 18

Threshold Current Density (A/cm ) 3 15 Cavity leng dependence of J (II) Plot in Log. scale 45 EXPERIMENTAL LOG. FIT CHARACTERIZATION OF EPI-LAYER Measure I for different L Plot J vs 1/L J o 148 A/cm Γ G o 8 cm -1 5 1 15 5 3 35 4 Inverse Cavity Lenght (cm -1 ) g mat ( n) G 1 Ln 1 R Ln( J ) Ln( J ) + L Γ G J J ( L ) n Ln( n J trans ) αin + Γ G 19 Cavity leng dependence of J (III) Plot in Lin. scale Threshold Current Density (A/cm ) 5 45 4 35 3 5 15 EXPERIMENTAL LINEAR FIT J o 116 A/cm 5 1 15 5 3 35 4 Inverse Cavity Lenght (cm -1 ) J J J g mat J ( L ) dg ( n) ( n n ) dn o 1 Ln 1 R qdact + L Γ dg / dn τ J trans n αin + Γ dg / dn qd τ act n

Cavity leng dependence of J (IV) Linear or log plot? Threshold Current Density (A/cm ) 5 45 4 35 3 5 15 1 EXPERIMENTAL LINEAR FIT LOG. FIT 5 1 15 5 3 35 4 Inverse Cavity Lenght (cm -1 ) Lin: J o 116 A/cm Log: J o 148 A/cm LOG. scale fit: SQW, low Γ LIN. scale fit: MQW, high Γ DO NOT EXTRACT CONCLUSIONS FROM J, JUST COMPARE EPI- MATERIALS 1 Cavity leng dependence of slope efficiency (I) Measure Slope Efficiency for different L Plot η -1 ext vs L Extract Internal Efficiency η in and Internal Losses α in from linear fit Inverse External Efficiency.4.. 1.8 1.6 η in.95 α in 5.1 cm -1 1.4 EXPERIMENTAL 1. LINEAR FIT 1...5.1.15..5 Cavity Leng (cm) η η ( η + η ) ext slope1 slope 1 1 ext ηin α + in L 1 Ln q hυ ( 1/ R)

Cavity leng dependence of slope efficiency (II) Internal Efficiency and Internal Losses 1 ) Extremely dependent on number of devices and device lengs Inverse External Efficiency.4.. 1.8 1.6 η in.95 α in 5.1 cm -1 31 devices 1.4 EXPERIMENTAL 1. LINEAR FIT 1...5.1.15..5 Cavity Leng (cm) Inverse External Efficiency.4.. 1.8 1.6 Removing devices η in.9 α in 4.4 cm -1 1.4 EXPERIMENTAL 1. LINEAR FIT 1...5.1.15..5 Cavity Leng (cm) 3 Cavity leng dependence of slope efficiency (III) η 1 ext [ η ( n )] 1 in Internal Efficiency and Internal Losses ) Based on many simple assumptions α + in 1 Ln ( n ) L ( ) 1/ R α in α + α α + σ scat fc scat fc n η in and α in depend on carrier density and erefore on L L n α fc L n η in 3) In CW, additional temperature effects DO NOT TRUST α in and η in!!!!, just indicative 4

Temperature dependence: T and T 1 Optical Power (W).1.8.6.4.. 15 ºC 5 ºC 35 ºC 45 ºC 55 ºC 65 ºC 75 ºC..4 Current (A) I EMPIRICAL EXPRESSIONS T exp T ( T ) I T ( T ) η slope exp T η slope 1 5 Temperature dependence: T 14 BA laser 915 nm To (K) 13 1 11 1 9 8 BA lasers 88 nm.5.1.15..5 CAVITY LENGTH (cm) DEPENDENCE ON TEMPERATURE RANGE LARGE DISPERSION 6

T : Physical origin MAIN EFFECTS: T n (gain dependence on T) n R (n ) (increased recombination) Typical: Auger recomb. T o g ( T ) Γ gmat[n ( T )] α ( T ) + α in m I 3 ( T ) V q [ A ( T ) n ( T ) + B( T ) n ( T ) C( T ) n ( T ) ] act + ATENTION : Poor quality laser: high reshold (SRH recomb. or leakage current), but high T o 7 T 1 : Physical origin η slope ( T ) η ( T) in hν q αm α m + α ( T ) in ηext (W/A).55.53.51.49.47.45 BA lasers 88 nm e3 1 3 4 5 6 7 8 T (C) MAIN EFFECTS: T η in (Increased leakage) T α in (Increased freecarrier absorption) 8

SPECTRAL MEASUREMENTS EMISSION SPECTRA OF FP LASERS Gain cavity losses longitudinal modes carrier density Waveleng (µm) lasing mode 3-4 nm kl mπ δλ λ Ln eff λ 1 µm, L 1 mm, δλ.3 nm Poor modal discrimination Many modes excited 9 SPECTRAL PARAMETERS LOG. PLOT LINEAR PLOT OPTICAL POWER (dbm) - -4-6 17 18 19 13 131 13 OPTICAL POWER (a.u.).6.5.4.3..1. 19 13 WAVELENGHT (nm) WAVELENGTH (nm) Peak Waveleng: λ p Spectral wid: σ λ FWHM of spectral envelope 3

SPECTRA OF HIGH POWER LASERS Intensity (au) Intensity (au) I 7 ma 7 ma Intensity (au) 964 965 966 967 968 969 97 967. 967.5 968. Waveleng (nm) Waveleng (nm) I ma I ma ma 4 ma Intensity (au) I 1 1 ma Changes in spectra wi current (lateral modes) Dependence of spectra on lateral position Typical spectral wid: 1-3 nm 965.5 966. 966.5 967. Waveleng (nm) 968 97 97 Waveleng (nm) Index Guided Tapered Laser 975 nm nm 31 INSTRUMENTATION FOR SPECTRAL MEASUREMENTS Microscope Objective LD slit Grating Monochromator PD Grating Monochromator: Difficult coupling Very high spectral resolution (i.e..75 m; 1 lines/mm.3 nm @ 8 nm) LD Heat-sink Integrating Sphere Optical Spectrum Analyzer FO input Very good dynamic range Typical resolution:.1-.5 nm Optical Fiber Optical Spectrum Analizer 3

DEPENDENCE OF LASING PEAK ON TEMPERATURE Peak Waveleng (nm) 85 8 815 81 85 8 795 L.3 mm L.6 mm L.1 mm.9 nm/k.6 nm/k.9 nm/k 4 6 8 Temperature (ºC) Pulsed Measurements BA lasers 88 nm Red shift: band gap vs T Blue shift: band filling Typical: ~.3 nm/k 33 DEPENDENCE OF LASING PEAK ON CURRENT 4 ma 35 ma 3 ma 5 ma PULSED: Negligible dependence CW: Temperature dependence (red shift) I T E g λ p Mode hopping ma 16 ma I 14 ma 34

MEASUREMENT OF THERMAL RESISTANCE I CW Heat-sink T QW R T P dis ( T T ) QW HS ( VI Pout ) T HS MEASUREMENT PROCEDURE 1. Measure λ p vs T HS in pulsed conditions at fixed I. Measure P-I-V and λ p vs I (CW) 3. Calculate T QW from λ p (CW) 4. Calculate R from T QW and P-I-V 35 Electro-optical characterisation - Scheme Temperature Controller 15 C T 75 C Accuracy T < ±.5 K Test Chamber Wi Minibar Calibrated Integrating Sphere Fibre Current Controller Profile LDC 365 I < 65 A Accuracy I < ± 1 ma Det. Power Meter Spectrum Analyser λ.1 nm Data Acquisition Desktop - PC 36

Outline Power-Current-Voltage measurements Spectral measurements Thermal resistance measurements Beam measurements Beam propagation and beam parameters Far-field measurements Near field measurements M measurements 37 Beam Propagation IDEAL GAUSSIAN BEAM Waist d W W(z) θ θ hw z W(z) W λ(z z) 1 π(w ) + beam spot size z W(z) W λz π θ hw W λ π θ d 4λ π DIFRACTION LIMIT 38

Beam Propagation ARBITRARY BEAM How to define e wid? How to characterize e propagation? 39 Beam Propagation ARBITRARY BEAM Waist d w W(z) θ θ hw z W x (z) W x M xλ(z z 1+ π(wx ) x ) ONLY VALID IF W x (z) AND W y (z) ARE DEFINED AS SECOND MOMENT WIDTHS W (z) y W y M yλ(z z 1+ π(wy) y ) W x σ x dσ x 4 σ x W y d y σ y σ 4 σ y 4

Beam Propagation en, in bo x and y directions z W(z) W M λz π π W (z) W λ z M M : - BEAM PROPAGATION FACTOR (Prof. Siegman) - BEAM PROPAGATION RATIO (ISO 11146:5) - TIMES-DIFRACTION-LIMIT-FACTOR (ISO 11146:1999) BUT NOT: BEAM QUALITY FACTOR (Prof. Siegman) θ hw W M λ π θ d σ M 4λ π 41 Second Moment beam wid Intensity distribution: E ( x, y, z) Beam wid: d σx ( z) 4 σ ( z) x First Moment; i.e. Mean Value x x E ( x, y, z) dx dy E ( x, y, z) dx dy Second Moments; i.e. Standard Deviation σ x σ x ( z) ( x x) E ( x, y, z) dx dy E ( x, y, z) dx dy 4

Why M? d θ Beam Product Parameter BPP 4 σ M Invariant in geometrical optics λ π Brightness B P[W] A [cm²] Ω[srad] P λ M M B x y Power and M define e Brightness of a source 43 Gaussian beam: M (1/e ) d (z) d ( z) 4 ( z) 1/e σx σ x wi d e full wid at 1/e 1/e Arbitrary beam: we could define M (1/e ) M (1/ e ) θ d π 1/ e 1/ e BUT THEN THE PROPAGATION DO NOT FOLLOW THE HYPERBOLIC LAW 4λ d 1/e (z) d 1/e M λ(z z 1/e 1+ π(d / ) 1/e ) 44

Spatial emission of laser diodes Fast axis (y) Near Field Laser diode W x θ y Optical cavity θ x Slow axis Far-field Fast axis (y): z oy facet; M y 1; θ y Slow axis (x): z ox ; M x; w x (θ x ) 45 LD Divergent beam FF measurements θ Rotating Photodiode z a n g l e. - -1 1 θ1/e² Power..4.6.8 1. θ 1/ θ ALTERNATIVES Rotating LD Using lenses and measuring beam profile 46

Example of fast axis FF I (u.a.) 1,,5 Depend on vertical waveguide structure Fourier transform of transverse mode profile, -6-3 3 6 Angle ( ) 47 Microscope Objective NF measurements z Laser diode CCD camera Beam analysis software ALTERNATIVES Moving slit Moving pin-hole Near field Scanning (Fiber tip) 48

Example of slow axis FF and NF BA; 1 W RW;.3 W Tapered laser;.6 W 1, 1, 1,,8,8,8 FF I (u.a.),6,4, // I (u.a.),6,4, // Intensité (u.a.),6,4,, -15-1 -5 5 1 15 1,,8 Angle ( ), -5 - -15-1 -5 5 1 15 5 1, // angle ( ), -1-5 5 1 Angle ( ) 1,,8 NF I (u.a.),6,4 // I (u.a.),5 Intensité (u.a.),6,4,,, 4 8 1 16 4 x(µm), 8 3 36 4 44 x (µm), 5 75 1 15 15 175 x (µm) 49 M Measurements: ISO11146:5 The test is based on e measurement of e cross-sectional power density distribution at a number of axial locations along e beam propagation axis The second moment beam wids d σx (z) and d σy (z) are determined Hyperbolic fit of d σ (z) to: d (z) a + bz + cz σ d σ (z) b z a beam waist location z z d 1 c σ 4 ac b beam wid at waist d σ M π 8 λ 4ac b 5

Laser diodes: additional lens M Measurements: ISO11146:5 w' At least 1 different z positions shall be taken (half of em beyond two Rayleigh lengs) Background correction procedures shall be applied to determine e beam wids Alternative meods for beam wid measurements (ISO11146-3: 4): Variable aperture meod Moving knife meod Moving slit meod 51 Measurement principles Knife edge Knife edge moved rough e beam profile Analysis: e.g. beam dimensions from 16 % and 84 % of e intensity integrals σ Gauß knife edge detector 1..8 84.1 % intensity / a.u..6.4.. 15.9 % e -(x/σ Gauß ) 13.5 % edge translation -3 - -1 1 3 position x / σ Gauß 5

Measurement principles Moving slit Moving slit moved rough e beam profile Analysis: e.g. beam dimensions from 13.5 % of e intensity profiles slit detector Moving slit: slit translation 53 Meod of e moving slit FBH set-up f1 Near field wlaser dmess f L1 L Slit LD f 1 f 1 +f f PD resolution: w µm uncertainty: ca. 6 % Far field L1 Θ Laser f f 1 d f mess 3 Slit resolution: LD f 1 f 1 +f f 3 PD θ.8 uncertainty: ca. 9% 54

Meod of e moving slit FBH set-up Set-up x-y-ztranslation stage.3µm LD Slit µm PD Step wid 3 µm 9 µm 3 points I(t) 5 A t Pulse 1 ms L1 Near field: L f f 1 41 Boxcar Integrator Far field: f f 1.4 PC 55 Typical beam profiles (FBH) near field (facet) beam waist far field intensity / a.u. intensity / a.u. intensity / a.u. - -1 1 position x / µm -3 - -1 1 3 position x / µm - -1 1 angle θ / Tapered laser λ 88 nm, wids beam waist / µm far field / M L.75 mm, 1/e 5.9 13.6 1.3 L RW 1 µm, R f.1%, T 5 C, P W. mom. 6.5 16.3 7.3 56

Example of measurement of astigmatism Fast axis ( ) Half-wid at 1/e (µm) 5 4 3 1 Slow axis (//) -5-5 5 5 Position of e lens (µm) Position of e lens for waist at 1/e in e slow axis: x // in e fast axis: x Astigmatim x // - x Waist in e slow axis Waist in e fast axis 57 Some Reference Material Professor Anony E. Siegman Web Pages http://www.stanford.edu/%7esiegman/ Laser beam quality tutorial An annotated bibliography of references on e definition and measurement of "laser beam quality" and e "M-squared" parameter. MELLES GRIOT, tecnical documents (http://www.mellesgriot.com/) LABSPHERE.Technical Document Library. (http://www.labsphere.com/tecdocs.aspx) NEWPORT (http://www.newport.com/)application Notes, Technical Notes ILX Lightwave.Application Notes, Technical Notes, And White Papers. http://www.ilxlightwave.com/navpgs/app-tech-notes-white-papers.html International Engeeniering Consortium. Tutorials. http://www.iec.org/online/tutorials/ AVTECH Application Notes (Pulsed measurements). http://www.avtechpulse.com/appnote/ Encyclopedia of Laser Physics and Technology (VIRTUAL LIBRARY). http://www.rp-photonics.com/encyclopedia.html 58