The arbuscular mycorrhizas of pteridophytes in Yunnan, southwest China: evolutionary interpretations

Similar documents
Ferns. and Allied Plants

North Carolina Ferns and Fern Allies : a survey

small divisions MARATTIACEAE OSMUNDACEAE SCHIZAEACEAE

4 RESULT AND DISCUSSION

(1, 5, 6, 8-10). The reasons for discrepancy among. in apparently different phylogenetic lineages; convergent or

Contribution to the Pteridophyte Flora of Langkawi Archipelago, Peninsular Malaysia

Club Mosses, Ferns & Horsetails: the Seed-free Vascular Plants. Vascular Plants - a quick review. Vascular Plants - a quick review

Taxonomic checklist of the pteridophytes of Rajkandi Reserve Forest, Moulvibazar, Bangladesh

A FIELD SURVEY OF MYCORRHIZAL ASSOCIATIONS IN FERNS OF PAKISTAN

Preliminary Reporton Ferns and Lycophytes at Kampo Uno, Katipunan, Davao- Arakan Valley Road, North Cotabato

Less known ferns and fern-allies of Manipur with ethnobotanic uses

CYTO-TAXONOMIC STUDIES ON NEW ZEALAND PTERIDACEAE

Large scale phylogenomic analysis resolves. a backbone phylogeny in ferns

Phytoliths of pteridophytes

Topic 23. The Ferns and Their Relatives

Pteridophytes (Ferns)

Community assembly of the ferns of Florida

PROVISIONAL CHECKLIST OF VASCULAR PLANTS FOR THE KOREA PENINSULA FLORA (KPF) CHIN-SUNG CHANG, HUI KIM, & KAE SUN CHANG

Distribution patterns of ferns and lycophytes in the Coastal Region of the state of Rio Grande do Sul, Brazil

Endemics and Pseudo-Endemics in Relation to the Distribution Patterns of Indian Pteridophytes

Topic 22. Introduction to Vascular Plants: The Lycophytes

REPORT. A rediscovery of Alfred Russel Wallace s fern collection from Borneo at the Cambridge University Herbarium

SEM Studies on Vessels in Ferns. 16. Pacific Tree Ferns (Blechnaceae, Cyatheaceae, Dicksoniaceae) 1

Rapid report. Andrew A. Meharg

Phenology of 13 fern species in a tropical monsoon forest of southern Taiwan

Chromosome Numbers in Some Pacific Pteridophyta

REVIEW MYCORRHIZAL RELATIONSHIPS IN LYCOPHYTES AND FERNS

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of

Review Article Polyploidy and Speciation in Pteris (Pteridaceae)

Some History: In the life cycle of the kelp Laminaria. One way to separate algae from protozoa is that. Rocks of Cambrian Age (ca.

SEASONAL DIVERSITY OF ARBUSCULAR MYCORRHIZAL FUNGI (AMF) IN MARSILEA QUADRIFOLIA PTERIDOPHYTE FROM NALDURG REGION OF MAHARASHTRA

VI. Ferns I: The Marattiales and the Polypodiales, Vegetative Features

On the widespread capacity for, and functional significance of, extreme inbreeding in ferns

Common wayside plants of Jambi Province (Sumatra, Indonesia)

CONSPECTUS OF SOUTHERN AFRICAN PTERIDOPHYTA

Absorption of Mineral Salts by Higher Plant

FERNS AND FERN ALLIES

CONFOCAL STUDIES OF ARBUSCULAR MYCORRHIZAL FUNGI COLONIZING THE SPOROPHYTE OF BOTRYCHIUM DAUCIFOLIUM Wall., A RARE FERN OF INDIA ABSTRACT

Green Plants are here

Life history, diversity and distribution: a study of Japanese pteridophytes

THE IMPORTANCE OF PTERIDOPHYTES IN THE EPIPHYTIC FLORA OF SOME PHOROPHYTES OF THE CAMEROONIAN SEMI-DECIDUOUS RAIN FOREST

If you are searched for a book by Gisela Cuenca;Alicia Caceres;Giovanny Oirdobro;Zamira Hasmy;Carlos Urdaneta Arbuscular mycorrhizae as an

Diversity and distribution of Gleicheniaceae in Darjiling Hills of West Bengal, India

Identifying a mysterious aquatic fern gametophyte

STUDIES ON THE SHOLA FORESTS OF KERALA

22 3 Seedless Vascular Plants Slide 1 of 33

한반도미기록식물 : 깃주름고사리 ( 개고사리과 )

Comparison of Community Structures and Species Diversity in Natural Forests and Forest Plantation of Pinus yunnanensis

New Report of Vessel Elements in Aleuritopteris and Cheilanthes

Quantitative Evolution XIX The numerical composition of COPELANDs FiHcaie»

Fabulous Ferns. The Monilophyte Lineage. Monilophytes. Seed plants. Lycophytes. Monilophytes. From Pryer et al Leptosporangiate ferns

Structural Botany Laboratory 6 Class Pteropsida

Gametophyte. (n) (2n) Sporangium. Sporophyte. (2n) N N

Diversity of Plants How Plants Colonized the Land

Hainan tree ferns (Cyatheaceae): morphological, ecological and phytogeographical observations

What is the minimum area needed to estimate the biodiversity of pteridophytes in natural and man-made lowland forests in malaysia and singapore?

Chapter 5 An Evolutionary Approach to Teaching about Ferns in a Plant Kingdom Course

EFFECT OF INOCULATION WITH VAM-FUNGI AND BRADYRHIZOBIUM ON GROWTH AND YIELD OF SOYBEAN IN SINDH

Two new species of ferns from Thailand INTRODUCTION

A Summary of the Status of Threatened Pteridophytes of India

한반도미기록식물 : 흰금털고사리 ( 금털고사리과 )

QUANTIFYING VESICULAR-ARBUSCULAR MYCORRHIZAE: A PROPOSED METHOD TOWARDS STANDARDIZATION*

Int.J.Curr.Res.Aca.Rev.2017; 5(6): 81-85

Vesicular-arbuscular mycorrhizal associations of sesamum

MYCORRHIZAL COLONIZATION AS IMPACTED BY CORN HYBRID

Structural Botany Laboratory 6. Class Pteropsida (Filicopsida)

ANATOMICAL AND PALYNOLOGICAL STUDIES ON SOME FILICALES FROM NEELUM VALLEY, MUZAFFARABAD, AZAD KASHMIR.

A Phylogenetic Study of the Ferns of Burma

Structural Botany Laboratory 3 Simplest and Earliest Land Plants

BOTANY M.S.c SYLLABUS

BOTANY 305. Plant Morphology & Evolution

STUDIES OF PALEOZOIC FUNGI IV: WALL ULTRASTRUCTURE OF FOSSIL ENDOGONACEOUS CHLAMYDOSPORES

March, 1906.] Life Cycle 0/ a Homosporous Pteridophyte. 483 THE LIFE CYCLE OF A HOMOSPOROUS PTERIDOPHYTE. JOHN H. SCHAFFNER.

International Journal of Advanced Research in Biological Sciences ISSN: Research Article

Thelypteris beddomei Question number Question Answer Score 1.01 Is the species highly domesticated? n 0

Chapter 29: Plant Diversity I How Plants Colonized Land

Chromosome Numbers of 18 Ferns in Japan: Toward Completion of Chromosome Information in Japanese Ferns

Introduction to the Plant Kingdom - 1

Appalachian Bristle Fern

Casa Flora / Florasource, Ltd 72/tray = 4 trays/box, 40/tray = 3 trays/box

PTERIDOPHYTES FERNS & FERN-ALLIES

Bio94 Discussion Activity week 3: Chapter 27 Phylogenies and the History of Life

Biology Slide 1 of 28

Category Question Data

PLANTS OF UNUSUAL ECONOMIC VALUE ON TAIWAN EUGENE YU FENG SHEN. We all know (hat men can not live without plants. But people today are no

Profile of Dr. B. L. Yadav

Bryophyte Gametophytes. Bryophyte Gametophytes. A spore germinates into a gametophyte. composed of a protonema and gamete producing gametophore

Mixed arbuscular mycorrhizae from the Triassic of Antarctica

Notes on the Pteridophytes on the Dutch West Indies

Influence of Soils and Fertility on Activity and Survival of Vesicular-Arbuscular Mycorrhizal. Fungi

The Petiolar Structure of Christella dentata (Forssk.) Brownsey & Jermy (Thelypteridaceae, Pteridophyta)

GASTONY, G.J. Spore morphology in the Cyatheaceae I. The. Sphaeropteris, Alsophila and Nephelea. Amer. J.

Copyright 2009 Pearson Education, Inc. FUNGI

Name Hour Section 22-1 Introduction to Plants (pages ) Generation Description Haploid or Diploid? Gamete-producing plant Spore-producing plant

seed plants (chapter 30)

Adjustments to Life in Air

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

22 1 Introduction to Plants Slide 2 of 33

Ecology, Diversity and Taxonomy of the Pteridophytes of Pharenda Forest of Maharajganj District, Uttar Pradesh

Transcription:

Mycorrhiza (2000) 10 :145 149 Q Springer-Verlag 2000 ORIGINAL PAPER Zhao Zhi-wei The arbuscular mycorrhizas of pteridophytes in Yunnan, southwest China: evolutionary interpretations Accepted: 21 September 2000 Abstract The percentage of arbuscular mycorrhizal pteridophytes among 256 pteridophyte species distributed in Yunnan (southwest China) was found to be lower than that in angiosperms. In the pteridophytes, the occurrence of arbuscular mycorrhizas was low in sporophytes of fern-allies and leptosporangiates, whereas in the eusporangiates it was relatively high. From the standpoint of mycotrophism, the evolutionary trend in the Filicineae may be from constantly mycorrhizal to facultative mycorrhizal and finally to nonmycorrhizal plants. Keywords Arbuscular mycorrhiza 7 Pteridophyte 7 Evolution Introduction Zhao Zhi-wei Department of Biology, Yunnan University, Kunming, 650091, P. R. China e-mail: zhaozhw6ynu.edu.cn Fax: c86-871-5153832 Pteridophytes are of ancient origin and have special life cycles. They occupy a very important position in the origin and systematic evolution of vascular plants. Mycorrhizas between pteridophytes and fungi have been found in the fossil rhizomes of Rhynia and Asteroxylon, which were common in the Devonian to Carboniferous periods in the Paleozoic era, and these mycorrhizas were considered to be the earliest arbuscular mycorrhizas (Hass et al. 1994; Remy et al. 1994). Although having persisted through evolution for 3 4 hundred million years, the arbuscular mycorrhizal status of extant pteridophytes is still not clear. A systematic investigation of the mycorrhizas of pteridophytes was carried out by Boullard (1957), who surveyed the mycorrhizas of more than 420 species of pteridophytes (mostly sporophytes and a few gametophytes). Boullard concluded that the endophytic symbioses existed in all pteridophytes except the aquatic ferns (Marsileaceae, Salviniaceae and Isoetaceae). It is much to be regretted that 75% of Boullard s material (roots and rhizomes) was taken from dried herbarium specimens and not from fresh plants, and that he did not study further the types of endophytic symbioses and the endophytic fungi. Cooper (1976) studied the vesicular-arbuscular mycorrhizas (VAM) of 101 species of pteridophytes in New Zealand and reached a similar conclusion to Boullard. Berch and Kendrick (1982), studying VAM of southern Ontario ferns and fern-allies, found no VAM in fern-allies sporophytes, but all eusporangiates in the Filicineae were arbuscular mycorrhizal. The occurrence of arbuscular mycorrhizas in the Filicineae was not as high as that reported by Boullard (1957) or Cooper (1976). The mycorrhizas of 89 species of ferns in Hawaii were surveyed by Gemma et al. (1992). They found 66 species to be mycorrhizal, but the highest proportion occurred in the leptosporangiates Dicksoniaceae, Dryopteridaceae and Lindsaeaceae. The occurrence of mycorrhiza in the eusporangiates was very low. It seems that pteridophytes distributed in different areas vary with respect to arbuscular mycorrhizas, and the mycorrhizal status of various species is still not clear. Yunnan is located in tropical and subtropical areas of southwest China. About 1500 species of pteridophytes are to be found there. Here, we report on the occurrence of arbuscular mycorrhizas in these plants. Materials and methods The roots of pteridophytes were collected in different habitats from tropical and subtropical areas of Yunnan. Fresh roots from up-rooted plants were cut into 1- to 3-cm segments and fixed in FAA (formalin 5 ml, acetic acid 5 ml, 70% alcohol 90 ml) diluted to 50% before use. Where possible, at least two individuals of each species were collected in different habitats. The root samples were processed according to the method of Berch and Kendrick (1982) and their mycorrhizal status was determined under a compound microscope.

146 Table 1 The arbuscular mycorrhizal status of sporophytes in different pteridophytes. For, M and N indicate the number of arbuscular mycorrhizal and non-mycorrhizal individuals found, respectively Fern allies Huperziaceae Huperzia serrata f. longipetolata (Spring) Ching 0/3 Phlegmariurus henryi (Bak.) Ching 0/2 Lycopodiaceae Diphasiastrum complanatum (L.) Holub 0/3 Lycopodiastrum casuarinoides (Spring) Holub 0/2 Lycopodium japonicum Thunb. 1/2 Palhinhaea cernua (L.) Frane et Vasc. 0/5 Selaginellaceae Selaginella biformis A. Br. 1/1 S. chrysocaulos (Hook et Grev.) Spring 0/3 S. davidii Fr. 1/1 S. frondosa Warb. 1/3 S. helferi Warb. 0/2 S. involvens (Sw.) Spring 1/2 *S. monospora Spring 0/1 S. picta A. Br. 1/1 S. pulvinata (Hook et Grev.) Maxim 1/1 S. remotifolia Spring 1/3 S. sanguinolenta (L.) Spring 1/1 S. delicatula (Desv.) Alston 1/4 Equisetaceae Equisetum debile Roxb 0/5 E. diffusum Don 0/3 Eusporangiates Ophioglossaceae Ophioglossum petiolatum Hook. 3/0 O. themale Kom. 2/0 O. reticulatum L. 7/0 Angiopteridaceae Angiopteris caudatiformis Hieron 5/0 A. hokouensis Ching 11/0 A. wangii Ching 14/0 A. yunnanensis Hieron 9/0 Archangiopteris bipinnata Ching 7/0 A. henryi Christ et Gies. 12/0 A. hokouensis Ching 8/0 A. subrotundata Ching 7/0 Christenseniaceae Christensenia assamica (Gifl.) Ching 7/0 Leptosporangiates Osmundaceae Osmunda japonica Thunb 2/0 Plagiogyriaceae Plagiogyria distinctissima Ching 1/1 Gleicheniaceae Dicranopteris gigantea Ching 0/3 D. pedata (Houtt.) Nakai 0/2 D. splendida (Hand.-Mazz.) Ching 0/2 Diplopterygium giganteum (Wall ex Hook.) Nakai 0/5 *D. glaucoides (Ching) Ching 0/1 D. glaucum (Houtt.) Nakai 0/2 Sticherus laevigatus Presl. 0/2 Lygodiaceae Lygodium conforme C. Chr. 1/3 L. japonicum (Thunb) Sw. 0/2 Hymenophyllaceae Crepidomanes latealatum Cop. 0/3 Mecodium badium (Hook et Grev.) Cop. 0/2 M. blumeanum (Spring.) B. Nayar 0/3 *Trichomanes auriculatum Bl. 0/1 Dicksoniaceae Cibotium barometze (L.) J. Sm. 0/2 Cyatheaceae Alsophila constularis Bak. 0/2 A. spinulosa (Hook.) Tryon 2/0 Gymnosphaera gigantea (Wall. ex Hook.) J. Sm. 0/2 G. podophylla (Hook.) Cop. 0/2 Sphaeropteris brunoniana (Hook.) Tryon 0/2 Monachosoraceae *Monachosorum henryi Christ 1/0 Dennstaedtiaceae Dennstaedtia melanostipes Ching 2/0 D. scabra (Wall.) Moore 1/1 *Microlepia hookeriana (Wall.) Presl 1/0 M. marginata (Houtt.) C. Chr. 2/0 M. marginata var. calvescens 2/0 M. pilosissima Ching 3/0 M. platyphylla (Don.) J. Sm. 0/2 M. rhomboidea (Wall.) Presl. 0/3 Lindsaeaceae Lindsaea ensifolia Sw. 0/2 L. javanensis Blome 0/2 L. orbiculata (L.) Mett. 3/0 L.odorata Roxb 0/2 Stenolomachusanum (L.) Ching 1/2 Hypolepidaceae Hypolepis punctata (Thunb.) Mett. 0/2 Pteridiaceae Pteridium revolutum (Bl.) Nakai 0/5 Pteridaceae Histiopteris incisa (Thunb.) J. Sm. 1/1 Pteris aspericaulis var. tricolor Moore 0/2 P. cretica var. laeta C. Chr. et Tard.-Blot 0/2 P. cretica var. nervosa(thunb) Ching et S.H. Wu 0/2 P. dissitifolia Bak. 0/3 P. ensiformis Burm 0/2 P. esquirolii Christ 0/5 P. excelsa Gaud 0/4 P. linearis Poir. 0/2 P. semipinnata L. 0/3 P. setulosocostulata Hayata 1/1 P. vittata L. 0/3 *P. wangiana Ching 0/1 Sinopteridaceae Aleuritopteris albomarginatata (Cll.) Ching 2/0 A. argentea (Gmel.) Tee 3/0 *A. duclouxii (Christ) Ching 0/1 A. pseudofarinosa Ching et S.H Wu 0/2 Cheilosoria hancockii (Bak.) Ching et Shing 3/0 Leptolepidium subvillosum Shing et S.H. Wu 0/2 Onychium angustifrons Ching 0/2 O. contigium Hope 2/0 O. japonicum var.lucidum (Don) Christ 0/2 O. lucidum (Don) Spring 2/0 Pellaea mairei Brause 2/0 *Sinopteris grevilleoides (Chr.) C. Chr. et Ching 0/1

147 Adiantaceae *Adiantum bonatianum Brause 1/0 A. edgewothii Hook 4/0 A. flabellulatum L. 1/1 A. malesianum Ghatak 0/2 A. philipense L. 0/2 Hemionitidaceae Coniogramme intermedia Hieron 2/0 C. rosthorni Hieron 0/2 C. simillima Ching 2/0 Gymnopteris bipinnata Christ. var. auriculata (Franch.) 0/2 Ching G. vestita (Presl.) Underw. 1/1 Antrophyaceae Antrophyrum henryi Christ 0/2 Vittariaceae Vittaria flexuosa Fee 0/1 Athyriaceae Acystopteris tenuisecta (Bl.) Tagawa 1/1 Allantodia alata (Christ) Ching 0/2 A. dilatata (Bl.) Ching 1/1 A. doederleinii (Luerss.) Ching 0/3 A. laxifrons (Rosent.) Ching 3/0 A. megaphylla (Bak.) Ching 0/2 A. stenochlamys (C. Chr.) Ching 0/2 A. spectabilis (Wall.ex Mett.)Ching 1/2 Athyriopsis longipes Ching 1/1 A. ptersennii (Kunze) Ching 1/1 Athyrium anisopterum Christ 0/3 A. biserrulatum Christ 2/0 A. delicatulum Ching et S. H. Wu 0/2 A. dissitifolium (Bak.) C. Chr. 1/1 A. mackinnonii (Hopi) C. Chr. 0/2 A. mengtzeense Hieron 2/0 A. niponicum (Mett.) Hance 0/2 A. stigillosum Moore 1/1 Callipteris esculenta (Retz.) J. Sm. 0/2 Diplazium donianum (Mett.) Tard.-Blot. 0/2 D. splendens Ching 1/1 Dryoathyrium boryanum (Willd.) Ching 0/3 D. edentulum (Kunze) Ching 1/1 Lunathyrium dolosum (Christ) Ching 0/2 Monomelangium pullingeri (Bak) Tagawa var. daweishannicolum 1/1 W.M. Chu (ined.) *Pseudocystopteris atkinsonii (Bedd.) Ching 0/1 Hypodematiaceae Hypodematium crenatum (Forsk) Kuhn 1/2 Thelypteridaceae Ampelopteris prolifera (Ketz.) Cop. 0/2 Cyclogramma auriculata (J.Sm.) Ching 1/1 Cyclosorus acuminatus (Houtt.) Nakai 0/2 C. dentatus (Forsk) Ching 0/2 C. hokouensis Ching 1/1 C. mollicesculus (Kuhn.) Ching 0/3 C. parasiticus (L.) Farwell 0/2 C. subnigrescens Ching et W. M. Chu (ined.) 0/3 C. truncatus (Pior.) Farwell 0/2 Dictyocline griffithii Moore 2/0 Thelypteridaceae Glaphylopteridopsis erubescens (Wall.) Ching 1/2 Macrothelypteris toressiana (Gaud.) Ching 1/1 *Metathelypteris flaccida Ching 0/1 Parathelypteris beddomei (Bak.) Ching 0/2 P. hirsutipes (Clarke) Ching 1/1 Pronephrium gymnopteridifrons (Hayata) Holtt. 0/2 P. nudotum (Roxb.) Holtt. 0/2 P. simplex (Hook.) Holtt. 0/3 Pseudocyclosorus esquirolii (Christ) Ching 1/2 P. subochthodes (Ching) Ching 0/2 Pseudophegopteris pyrrhorachis (Kze.) Ching 0/2 P. yunkweiensis (Ching) Ching 0/2 Aspleniaceae *Asplenium cheilosorum Kze. ex Mett. 1/0 A. excisum Presl. 0/3 A. finlaysonianum Hook. 0/2 A. fuscipes Bak. 0/2 A. griffithianum Hook. 0/2 A. lushanense C. Chr. 1/1 A. normale Don. 0/2 A. pekinense Hance 0/4 A. praemosum Sw. 0/3 A. prolongatum Hook. 0/3 *A. tenuicaule Hay. 0/1 A. unilaterale Lam. 0/2 A. varians Wall. ex Hook et Grev. 0/3 A. wrightioides Christ 0/2 A. yunnanense Franch 0/3 *Neottopteris antrophyoides (Christ.) Ching 0/1 *N. simonsiana (Hook.) J. Sm. 0/1 Blechnaceae Blechnum orientale L. 1/1 *Brainea insignis (Hook.) J. Sm. 0/1 Woodwardia japonica (L.f.) Sm. 2/0 *W. unigemmata (Makino) Nakai. 0/1 Peranemaceae Acrophorus stipellatus Moore 0/2 Diacalpe christensenae Ching 0/2 Dryopteridaceae Acrorumohra diffraeta (Bak.) H. Ito 2/0 Arachniodes globisora (Hayata) Chin 2/0 A. sporadosora (Tagawa) Ching 0/2 Cyrtomium caryotideum (Wall. ex Hook et Grev.) Presl. 1/2 f. caryotideum C. fortunei J. Sm. 0/2 Dryopteris basisora Christ 0/2 D. caroli-hopei Fraser-Jenkins 0/2 D. chrysocoma (Christ) C. Chr. 0/3 D. cochleata (Don.) C. Chr. 0/2 D. fructuosa Christ 3/0 D. lepidopoda Hay. 0/3 *D. marginata (Wall. ex Clarke) Christ 1/0 D. odontoloma (Moore) C. Chr. 0/3 D. sparsa (Don.) Ktze. 2/0 D. stenolepis (Bak.) C. Chr. 0/2 D. sublacera Christ 1/1 Polystichum alteruatum Ching 0/2 *P. chingae Ching 0/1 P. dielsii Christ 0/2 P. eximium (Mett. ex Kuhn) C. Chr. 0/2 P. jizhushanense Ching 1/1 P. pycnopterum (Christ) Ching 0/2 P. tsus-simense (Hook.) J. Sm. 1/2 Nothoperanema hendersonii (Bedd.) Ching 0/2 Aspidiaceae *Ctenitis membranifolia Ching et C.H. Wang 0/1 Ctenitopsis devexa (Kze.) Ching et C. H. Wang 0/2 C. glabra Ching et C. H. Wang 0/3 C. sagenioides (Mett.) Ching 0/3 C. setulaosa (Bak.) C. Chr. et Tardieu 0/2 C. subsageriacea (Christ) Ching 0/2 Pleocnemia winitei Holtt. 0/5

148 Quercifilix zeylanica (Houtt.) Cop. 0/2 Tectaria coadunata C. Chr. 0/3 T. decurrens (Presl.) Cop. 0/4 T. dubia (Clarke et Bak.) Ching 0/2 T. hainanensis C. Chr. 0/2 T. hokouensis Ching 0/2 T. simonii (Bak.) Ching 0/2 T. variolosa (Wall) C. Chr. 0/2 T. yunnanensis (Bak.) Ching 0/2 Bolbitidaceae Egenolfia tokinensis C. Chr. in Ching 2/0 E. sinensis Maxon 2/0 Bolbitis heteroclita (Presl.) Ching 0/2 B. hokouensis Ching 0/2 Lomariopsidaceae *Lomariopsis spectabilis Mett. 0/1 Nephrolepidaceae Arthropteris palisotii (Desv.) Alston 0/4 *Nephrolepis faleata (Cav.) C. Chr. 0/1 Davalliaceae Araiostegia perdurans (Christ) Cop. 0/2 Dipteridaceae *Dipteris conjugata (Kaulf.) Reinw. 0/1 Polypodiaceae Arthromeris mairei (Brause) Ching 0/2 Colysis diversifolia W. M. Chu 0/2 C. hokouensis Ching 0/2 C. pentaphylla (Baker.) Ching 0/2 Lepidogrammitis rostrama (Bedd.) Ching 0/3 Lepisorus contortus (Christ) Ching 0/3 L. macrosphaerus (Bak.) Ching 0/2 L. scolopendrium (Ham. ex Don) Mehra et Bir. 0/2 Microsorium carinatum W. M. Chu (ined.) 0/2 M. henryi (Christ) Kuo 0/2 *M. membranaceum (Don) Ching 0/1 Polypodiaceae *M. punctatum (L.) Cop. 0/1 *Neocheiropteris palmatopedata (Bak.) Christ 0/1 Neolepisorus ovatus (Bedd.) Ching 0/2 N. sinensis Ching 0/2 Phymatopsis crenatopinnata (Clarke) Ching 0/3 P. nigrovenia (Christ) Ching 0/2 P. trisecta (Bak.) Ching 0/3 *Polypodiodes amoena (Wall.) Ching 0/1 P. amoenum Wall.var. pilosa Clarke 0/2 Pyrrosia adnaseens (Sw.) Ching 0/2 P. gralla (Gies) Ching 0/2 P. lingua (Thunb.) Farwell 0/2 P. mollis (Kz.) Ching 0/2 P. subfurfuracea (Hook.) Ching 0/3 P. tonkinensis (Christ) Ching 0/2 *Tricholepidium maculosum (Christ) Ching 0/1 Drynariaceae Drynaria propinqua (Wall.) J. Sm. 0/2 Loxogrammaceae Loxogramme ensiformis Ching 0/2 More than 50 root segments (0.5-1 cm) were examined for each root sample; if at least one segment contained arbuscules, then the plant was considered to be arbuscular mycorrhizal. Species found to be mycorrhizal in more than two places were considered to be constantly mycorrhizal. Species mycorrhizal in one ecological habitat but not in others were scored as facultative mycorrhizal. Species lacking arbuscules in root cortical cells were classified as non-mycorrhizal. Results and discussion Arbuscular mycorrhizal status of sporophytes in various taxa of pteridophytes Of the 256 species surveyed, 20 species were fern-allies, 12 species were eusporangiates and 224 were leptosporangiates. These species and their mycorrhizal status are listed in Table 1. The arbuscular mycorrhizal status of the three groups is summarized in Table 2. The occurrence of arbuscular mycorrhizas in the pteridophytes of Yunnan largely agrees with the report of Berch and Kendrick (1982) on the pteridophytes of Ontario, Canada. The thick, fleshy, infrequently branched and almost hair-free roots were usually arbuscular mycorrhizal, especially in the case of the eusporangiates (Table 1). In contrast, woody roots with dense clusters of root hairs and heavy pigmentation were rarely arbuscular mycorrhizal. More than two individuals were examined for the majority of the species. However, only one sample was examined in the case of 28 species (marked with * in Table 1) which were rare or difficult to collect from, e.g. crevices of cliffs or tall trees. This prevented any assessment of the variability in their mycorrhizal status. The data in Table 2 reveal the much lower percentage (17%) of arbuscular mycorrhizal plants in the pteridophytes than in angiosperms (62%) (Trappe 1987). The results in Tables 1 and 2 also show the presence equally of facultative arbuscular mycorrhizal and nonmycorrhizal types but no constantly arbuscular mycorrhizal types among the sporophytes of fern-allies. In the Filicineae, all eusporangiates were heavily arbuscular mycorrhizal. In comparison, 71% of the leptosporangiates were non-mycorrhizal. From the point of view of arbuscular mycotrophism, there is probably no evolutionary trend between facultative mycorrhizal and non- Table 2 The arbuscular mycorrhizal status of sporophytes in different taxa of pteridophytes. Percent of total species surveyed is given in parentheses (CM number of species constantly mycorrhizal, FM facultatively mycorrhizal, NM non-mycorrhizal, SN number of species surveyed) Taxa SN CM FM NM Fern allies 20 0 (0) 9 (45) 11 (55) Eusporangiates 12 12 (100) 0 (0) 0 (0) Leptosporangiates 224 32 (15) 31 (14) 161 (71) Total 256 44 (17) 40 (16) 172 (67)

149 mycorrhizal types in the fern-allies. In contrast, there appears to be a trend in the Filicineae from constantly arbuscular mycorrhizal (eusporangiates) to non-mycorrhizal (leptosporangiates). This trend was especially obvious when the arbuscular mycorrhizal status of pteridophytes was considered in the context of different evolutionary stages. Arbuscular mycorrhizal status of pteridophytes in different evolutionary stages In the extant pteridophytes, the numbers of species, their frequency and the distribution of the Filicineae (eusporangiates and leptosporangiates) all exceed the fern-allies. Comparing the anatomy of Filicineae with the geological records (fossils) of pteridophytes, Bower (1959) found that ferns with simultaneous formation and maturation of sporangia in the sorus (Simplices) were predominant in the Palaeozoic Period. The dominant ferns of the Mesozoic Period, in addition to the Simplices, included many whose sporangia mature gradually from the center to the base of the sorus (Gradatae). Sporangia development in more recent ferns (Mixtae) is of the mixed type with formation and maturation in the sorus neither simultaneous nor gradual but mixed from the center to the base. Classifying the pteridophyte families listed by Ching (1978) into these three groups, Helminthostachyaceae to Lygodiaceae can be placed in the Simplices, Hymenophyllaceae to Hypolepidaceae in the Gradatae, and the families after Pteridiaceae in the Mixtae. Using the Simplices, Gradatae and Mixtae to indicate three stages in the vertical evolution process of the Filicineae, the arbuscular mycorrhizal status of the pteridophytes surveyed in this research can be grouped as in Table 3. The occurrence of the arbuscular mycorrhizas in the three different evolutionary groups decreased progressively from Simplices to Mixtae. Constantly arbuscular mycorrhizal plants were 56% Simplices, 36% Gradatae and 12% Mixtae, whereas the proportion of non-mycorrhizal species increased gradually in these three groups (35%, 56% and 74%, respectively). The proportion of the interim facultative arbuscular mycorrhizal type varied little between the three classes. This apparent evolutionary process in the Filiniceae from mycorrhizal through facultative to nonmycorrhizal strongly supports the hypothesis of the mycotrophic origin of land plants (Pirozynski and Malloch 1975). This evolutionary progression has been of use in the further phylogenetic study of plants (Trappe 1987; Table 3 The arbuscular mycorrhizal status of pteridophytes at different evolutionary stages. Percent of total species surveyed is given in parentheses (CM number of species constantly mycorrhizal, FM facultatively mycorrhizal, NM non-mycorrhizal, SN number of species surveyed) Stage SN CM FM NM Simplices 23 13 (56) 2 (9) 8 (35) Gradatae 25 9 (36) 2 (8) 14 (56) Mixtae 188 22 (12) 27 (14) 139 (74) Total 236 43 (18) 32 (14) 161 (68) Gemma et al. 1992). In addition, this evolutionary trend could explain the lower incidence of arbuscular mycorrhiza in pteridophytes than in angiosperms: pteridophytes originated earlier than angiosperms and have evolved further in the direction of non-mycorrhizal. Acknowledgements This research was supported by the Key Laboratory for microbial Resources of Ministry of Education, P.R. China. The author thanks Professor Chu Weiming, Mr. Zhang Guangfei, He Zhaorong and Su Wenhua (The Institute of Geobotany and Ecology, Yunnan University) for help in sample collection, and thanks Professor Chu in particular for identifying the pteridophyte specimens. This research was supported financially by the Natural Science Foundation of Yunnan Province (98C003G; 1999C0008M). References Berch SM, Kendrick B (1982) Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia 74:769 776 Boullard B (1957) La mycotrophie chez les Pteridophyte. Sa frequence. Ses caracteres. Sa signification. Botaniste 41:5 15 Bower FO (1959) The origin of a land flora a theory based upon the facts of alteration. Hafner, New York, pp 653 657 Ching Ren-Chang (1978) The Chinese fern families and genera: systematic arrangement and historical origin. Acta Phytotax Sin 16:1 19 Cooper KM (1976) A field survey of VA mycorrhizas in New Zealand ferns. N Z J Bot 14:169 181 Gemma JN, Koske RE, Flynn T (1992) Mycorrhizae in Hawaiian pteridophytes: occurrence and evolutionary significance. Am J Bot 79 :843 852 Hass H, Taylor TN, Remy W (1994) Fungi from the lower Devonian Rhynie chert: mycoparasitism. Am J Bot 81:29 37 Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153 164 Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91 :11841 11843 Trappe JM (1987) Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, Fla, pp 5 26