STRUCTURAL BOTANY LABORATORY 3. Simplest and Earliest Land Plants. Fig. 1. Generalized relationships of Vascular Plants (Rothwell, 1994)

Similar documents
Structural Botany Laboratory 3 Simplest and Earliest Land Plants

Some History: In the life cycle of the kelp Laminaria. One way to separate algae from protozoa is that. Rocks of Cambrian Age (ca.

I. Lycopodiales: The Vegetative Features of the Sporophyte Phase

Downloaded from

Gametophyte. (n) (2n) Sporangium. Sporophyte. (2n) N N

Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of

Topic 23. The Ferns and Their Relatives

Introduction to the Plant Kingdom - 1

Topic 22. Introduction to Vascular Plants: The Lycophytes

BIODIVERSITY OF PLANTS 12 FEBRUARY 2014

Name Hour Section 22-1 Introduction to Plants (pages ) Generation Description Haploid or Diploid? Gamete-producing plant Spore-producing plant

Botany: Part I Overview of Plants & Plant Structure

TEXT The name stele has been derived from Greek word meaning pillar or column. Sachs in 1875 proposed that the vascular system of the plant body is a

Unit 2B- The Plants. Plants can be classified according to the presence or absence of vascular tissue.

Kingdom Plantae. A Brief Survey of Plants

The Green Machine. Understanding the Seedless Vascular Plants. To the Instructor. Topics for Discussion

AP Biology. Evolution of Land Plants. Kingdom: Plants. Plant Diversity. Animal vs. Plant life cycle. Bryophytes: mosses & liverworts

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM

LYCOPODIUM Sub- Division- Lycopsida Order- Lycopodiales Family- Lycopodiaceae

Bryophyte Gametophytes. Bryophyte Gametophytes. A spore germinates into a gametophyte. composed of a protonema and gamete producing gametophore

Plant Evolution & Diversity

What is a Plant? Plant Life Cycle. What did they evolve from? Original Habitat 1/15/2018. Plant Life Cycle Alternation of Generations

Plant Anatomy Lab 7 - Stems II

Diversity of Plants How Plants Colonized the Land

STUDY QUESTIONS TEST 2 ANTHOCEROPHYTA, TRACHEOPHYTES AND PLANT STRUCTURE

Reproductive Morphology

Kingdom: Plantae. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor

CHAPTER 29 PLANT DIVERSITY I: HOW PLANTS COLONIZED LAND. Section A: An Overview of Land Plant Evolution

Plants. Tissues, Organs, and Systems

Chapter 29: Plant Diversity I How Plants Colonized Land

1 Mosses and other bryophytes are like ferns in that both bryophytes and ferns exhibit each of the following traits EXCEPT

-plant bodies composed of tissues produced by an apical meristem. -spores with tough walls. -life history of alternation of generations

Chapter 29 Plant Diversity I: How Plants Colonized Land

Plants Review 1. List the 6 general characteristics of plants. 2. What did plants probably evolve from? 3. What are some advantages for life on land

Announcements. Lab Quiz #1 on Monday: (30pts) conifers + cones, vegetative morphology. Study: Display case outside HCK 132 with labeled conifers

Introduction to Plants

Plant Organization. Learning Objectives. Angiosperm Tissues. Angiosperm Body Plan

Domain Eukarya: Kingdom Plantae non-vascular plants

Types of Plants. Unit 6 Review 5/2/2011. Plants. A. pine B. moss C. corn plant D. bean plant E. liverwort

Plants I - Water and Nutrient Management: Plant Adaptations to Life on Land

Topic 2: Plants Ch. 16,28

Bring Your Text to Lab!!!

Comparing Plants & Animals

VI. Ferns I: The Marattiales and the Polypodiales, Vegetative Features

3. Diagram a cladogram showing the evolutionary relationships among the four main groups of living plants.

Problems of adaptation to a terrestrial environment

Introduction to Bryophyta

Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter in class follow along lecture notes

Biology Lab: The Diversity of the Plant Kingdom

Chapter 35~ Plant Structure and Growth

Int.J.Curr.Res.Aca.Rev.2017; 5(6): 81-85

Plant Diversity I: How Plants Colonized Land

Root cross-section (Ranunculus)

Worksheet for Morgan/Carter Laboratory #16 Plant Diversity II: Seed Plants

Plant Diversity I: How Plants Colonized Land

BIOLOGY. Nonvascular and Seedless Vascular Plants CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

Biology. Chapter 21. Plant Evolution. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Table 9.1.: Potometer Readings. Calculation of leaf Surface Area

Biology 2 Chapter 21 Review

Biology 11 Kingdom Plantae: Algae and Bryophyta

Nonvascular Plants. Believed to have evolved from green-algae. Major adaptations in going from water to land. Chlorophylls a & b and cartenoids

Unit 7: Plant Evolution, Structure and Function

Plants I. Introduction

Structural Botany Laboratory 6. Class Pteropsida (Filicopsida)

Autotrophs/producers- make own energy through

Structural Botany Laboratory 6 Class Pteropsida

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

PLANT KINGDOM ICA & WORKSHEET CHAPTERS 22-25

29 Plants without Seeds: From Sea to Land

March, 1906.] Life Cycle 0/ a Homosporous Pteridophyte. 483 THE LIFE CYCLE OF A HOMOSPOROUS PTERIDOPHYTE. JOHN H. SCHAFFNER.

Primitive Vascular Plants. Luscious Lycophytes. Primitive Vascular Plants. Early Life Cycles

PLANT EVOLUTION. Absence of evidence is not evidence of absence.

Stelar evolution. B. Sc. III Botany

Early-bird Special The following terms refer to alternation of generation:

(Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, )

The Petiolar Structure of Christella dentata (Forssk.) Brownsey & Jermy (Thelypteridaceae, Pteridophyta)

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-03 PLANT KINGDOM

Chapter 28 Active Reading Guide Plant Structure and Growth

IX. PRIMARY STEM STRUCTURE AND DEVELOPMENT Bot 404 Fall 2004

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , ,

(A) Buds (B) Lateral meristem (C) Apical meristem (D) Stem (E) Trichomes

Plant Diversity & Evolution (Outline)

Q. No.1. Write down the habit and habitat of genus Lycopodium.

UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCES BSC(HONS) BIOLOGY SEMESTER ONE EXAMINATION 2015/2016 DIVERSITY OF LIFE MODULE NO: BIO4003

The Producers: The Plant Kingdom An Introduction to Plants and the Mosses

SYLLABUS THEME B PLANT CLASSIFICATION & DIVERSITY INTRODUCTION TO TAXONOMY HISTORICAL DEVELOPMENT

Fabulous Ferns. The Monilophyte Lineage. Monilophytes. Seed plants. Lycophytes. Monilophytes. From Pryer et al Leptosporangiate ferns

1. What are the main characteristics of plants p.502? (Uni or Multi)

Mock Exam I (BY 124) 8. Sori can be found on which of the following? A. Pterophytes B. Mosses C. Liverworts D. Hornworts E.

Plant Structure and Function

Adjustments to Life in Air

Downloaded from

Biology 211 (1) Exam 3 Review! Chapter 31!

Homeostasis of Plants

NOTES: CH 35 - Plant Structure & Growth

2 sentences. Why your first answer was wrong Why your new answer is correct

MODEL ANSWER SEMESTER - V

Chapter 20 Nonvascular Plants: Mosses, Liverworts, and Hornworts

4/30/2014. The lives of modern plants and fungi are intertwined We depend on plants and indirectly, fungi for much of our food.

Plant Structure. Objectives At the end of this sub section students should be able to:

Transcription:

STRUCTURAL BOTANY LABORATORY 3 Simplest and Earliest Land Plants At one time all of the most ancient (i.e., fossils of the Silurian and Devonian) and simple vascular plants were placed in the class Psilopsida. The modern concept of Psilopsida (or Psilotopsida) is much more restricted, and now has two living genera; Psilotum and Tmesipteris. Three additional classes, the Rhyniopsida, the Zosterophyllopsida and the Trimerophytopsida have been segregated from the old concept of the class. These were proposed by Banks in the 1960s to include most of the ancient (Silurian and early Devonian) vascular plants see Fig. 1, below). Many people regard the Psiltopsida as having descended from the Rhyniopsida, however, no connection occurs in the fossil record, and some botanists think this order represents highly modified and reduced ferns. According to the latter interpretation the similarities between the fossil and living groups result of convergent evolution. More recent cladistic studies have demonstrated that none of Banks classes of ancient fossil plants is monophyletic (see Fig. 2, below). Nevertheless, these paraphyletic assemblages continue to serve as a convenient framework for presenting an introduction to the material. Fig. 1. Generalized relationships of Vascular Plants (Rothwell, 1994) 1

Included within these four classes are homosporous plants with no true stems, leaves or roots. The sporophyte plant body shows little organ differentiation and is generally considered to be made up of structures that are given the noncommittal name axes. There is some debate regarding the homologies of axes (Kato and Akiyama, 2005; Ligrone et al., 2012a, 2012b), but as explained in lecture, they are most confidently regarded as having been derived from the sporophyte of a moss-like plant, and are therefore a system of branched setas. Superficial flaps of tissue termed enations occur on the aerial parts of some species. The axes usually branch dichotomously, and the resulting axes may be equal, unequal, or form a pseudomonopodial system. The sporangia are either clearly terminal on branches, or in an apparently lateral position. In the latter case, some sporangia appear to be actually terminal on much reduced lateral branches. The axes of the plants usually form two systems, a horizontal (sometimes underground) and an aerial one. The horizontal system serves for anchorage and absorption of materials via unicellular rhizoids. The aerial system serves in photosynthesis, in support of the reproductive structures, and in conduction of materials (via the stele). The Simplest Living Pteridophytes Class Psilopsida Genus Psilotum *Examine a potted plant of P. nudum to familiarize yourself with the overall habit of this sporophyte phase. Obtain a piece of the plant having an aerial branching system arising from a portion of the underground system of axes. Note the dichotomous branching of both systems. Are the aerial axes completely naked? Why are the scale-like structures on these axes not considered to be leaves by most people? Note synangia and below these, forked enations. Examine the underground system. How does it branch? Are roots present? Sketch a portion of the plant to show these basic external features of the sporophyte. Cut free-hand sections of the underground axes and examine with the microscope. Note that the vascular tissue is in an extremely simple arrangement. Xylem is in the very center, surrounded by phloem and endodermis. Note the rhizoids arising from the epidermis and the parenchymatous cortex. As is characteristic of vascular plants, these rhizoids are unicellular. Diagram this axis cross-section. Now examine prepared slides of the aerial axis in transverse section. Locate the xylem and phloem. The xylem has arm-like projections, and the center of the vascular cylinder may have parenchyma present. Note the various regions of the cortex. Do these zones appear to have different functions on the basis of their cellular makeup? The epidermis contains numerous stomata. Locate a stoma and note its basic features. Note also the thick layer of cutin (the cuticle) on the surface of the aerial axis. What type of functions does 2

this axis appear to carry out in the life of the plant? Diagram a cross-section of the aerial axis. Draw a stoma as it appears in cross-section. Examine the synangia on the living plant of Psilotum. Are any external indications present that this apparently single structure may consist of more than one part? How many parts? Is the synangium sessile or is it stalked? Examine prepared slides of transverse sections of the synangium. Determine the internal organization from these planes of section. How many spore-producing areas (sporangia) are present? What is their arrangement? Does this fertile structure have a vascular system? Draw a spore. Is it trilete or monolete? Draw a synangium of Psilotum as it appears in transverse section. Genus Tmesipteris The only other genus of the Psiltopsida is Tmesipteris, a plant of the southern hemisphere. This plant may often be found epiphytic upon other vascular plants such as tree ferns. Examine the photographs of Tmesipteris in Gifford and Foster, p. 96 & 97, and the preserved specimen on demonstration. Note the leaf-like appendages (enations?) that are vascularized in this genus. Unlike Psilotum, where the synangia are borne on stalks just above a bifid enation, the synangia of Tmesipteris are attached at the base of the bifid enation. Also, there are only two sporangia per synangium in Tmesipteris, rather than three as in Psilotum. Draw a small portion of the Tmesipteris plant. Examine transverse sections of the aerial axis of Tmesipteris. Note its similarities to that of Psilotum. Draw a section of Tmesipteris axis. Examine the synangium of Tmesipteris as it appears in section view (prepared slide). How does it compare to the synangium of Psilotum? Draw the synangium of Tmesipteris. Review the life history of Psilotum and Tmesipteris, being sure that you understand the nature of both sexual and asexual phases of the life cycle, the place where meiosis and spore formation occur, and the place where fertilization occurs. Where does the embryonic sporophyte develop? Is water necessary for fertilization? 3

Evolution and Fossil Pteridophytes The fossil record provides the only conclusive evidence for the origin and early evolution of vascular plants, but developmental biology provides insights to the changes in development that led to the earliest polysporangiophytes, and to the homologies of the sporophytic organs that characterized those plants. The following diagram illustrates how an extension of the period of apical meristematic development (i.e., an apical cell) could lead to elongation and branching of a moss-like bryphytic seta, thus producing the first polysporangiophytes. Fig. 2. Apical Growth hypothesis for the origin of polysporangiophytes (from Figs. 20-25 of Rothwell, et al., 2014). The earliest evidence for tracheophytes occurs in mid Silurian sediments (consult the geological time scale from the course web site if you don't remember the age of the Silurian), and several groups of primitive vascular plants were present by Lower Devonian time. Rhyniopsida is the oldest and simplest group, and the group that gave rise to both Zosterophyllopsida and Trimerophytopsida. Zosterophyllopsida probably gave rise to Lycopsida early in the Late Silurian, and Trimerophytopsida is thought to have given rise to all of the other groups of living vascular plants during the mid-devonian. 4

The laboratory that follows is designed to give you some familiarity with the earliest vascular plants and also to familiarize you with the types of evidence we use to interpret major systematic relationships among vascular plants. See Kenrick and Crane (1997) for the most up to date systematic analysis of the most primitive land plants. Throughout the laboratory keep in mind the structural and reproductive similarities of each group to the others. Class Rhyniopsida The earliest known tracheophytes are assignable to the Rhyniopsida. They first appear in the Upper Silurian, but are most common in the Lower Devonian. They are characterized by naked, (equally) dichotomously branched axes with terminal sporangia. Internally they have a tiny haplostele with no differentiation between protoxylem and metaxylem tracheids. Genus Aglaophyton (segregated from Rhynia) Examine a slide of a cross section of Aglaophyton major, the larger of the two species previously included in the genus Rhynia. Note the central xylem cylinder and surrounding zone of phloem (the stele), the broad cortex, and the epidermis. Stomata are present in the epidermis and you may be able to locate one. What kind of stele is this? Do you find protoxylem? Why or why not? Diagram this cross section of Aglaophyton major. Examine a demonstration slide illustrating the water conducting cells of Aglaophyton. Are these tracheids? Why or why not? Genus Rhynia A demonstration slide of Rhynia Gwynne-vaughani shows numerous axes in cross section. Apparently the plants were buried and preserved in situ. These are smaller than Aglaophyton, but otherwise look similar. What major difference is there between these two genera? The sporangia of Rhynia were borne terminally on the aerial axes. These are extremely rare. Examine the spores from a broken sporangium; on demonstration. Draw a spore. Examine the illustrations A. major and R. gwynne-vaughani. Class Zosterophyllopsida This subdivision consists mainly of Lower Devonian representatives. Plants have equal or unequal branching, and are clothed by small, unvascularized leaf-like processes called enations. 5

The sporangia occur on the sides of the axes and may be subtended by an enation. Internally they exhibit an exarch actinostele. These plants may have evolved from among the Rhyniopsida, and are thought to have given rise to the Lycopsida. *Examine a specimen of Sawdonia and note the spiny axes. These spines are non-vascularized enations. Sketch a branch of Sawdonia. Where would you expect to find the sporangia if they were present? *Examine the compressed axes, and a slide of Renalia fertile axes. This plant is intermediate between Rhyniopsida and Zosterophyllopsida in that it has sporangia like Zosterophyllopsida, but they are terminal on axes like those of the Rhyniopsida. Are there enations on Renalia? Draw a sporangium. Be sure to note its shape and mode of dehiscence. This distinctive type of sporangium also is characteristic of the zosterophylls figured on page 110 of Gifford and Foster. What does this plant imply about the relationships of Rhyniopsida, Zosterophyllopsida and Lycopsida? Class Trimerophytopsida Members of the Trimerophytopsida were most abundant during the Lower and Middle Devonian. They are larger and have more specialized branching than plants of the Rhyniopsida, but like the later group have terminal sporangia. Some representatives have enations like those of the Zosterophyllopsida, but others have naked axes. Internally, they exhibit a centrarch or mesarch protostele that is much more prominent than that found in the Rhyniophytopsida. Examine a fertile specimen of Psilophyton. How are the sporangia arranged? Draw the specimen. Gametophytes of the Most Ancient Vascular Plants In the past few years we have discovered the gametophyte phase of the life cycle for several of the most ancient vascular plants. Contrary to expectations, these gametophytes are relatively large, much branches and complex plants. They are assigned to several genera that are known from both compressions that show plant morphology, and from anatomically presrved specimens that show vascularization of the axes and anatomical features of both archetonia and antheredia. Even immature sperm are preserved in some specimens. The following life cycle of Aglaophyton major is from Taylor, et al., (2005), and it is named for the sporophyte phase of the life cycle. The gametophyte phase (when found detached) is named Lyanohyton. Similar gametophytes are known as compression fossils, and are usually named Sciadophyton. Examine photographs of anatomically preserved plant parts from all aspects of the Aglaophyton/Lyanophyton life cycle. Be sure to identify germinating spores, sporangia, archegonia with eggs, antheridia with sperm, and young embryos. Now relate 6

what you see in he photographs to the life cycle presented below. Fig. 3. Life Cycle of Aglaophyton major (From Fig. 1 of Taylor et al., 2005) Examine compression specimens that are assignable to the genus Sciadophyton to see the overall morphology of these primitive gametophytes. Note that the plant consists of axes that branch from a central disk. As is demonstrated by the specimens figured by Remy,Gensel and Hass, 1993, some axes branch and others terminate in gametangiophores. Some gametangiophores bear archegonia, while others produce antheridia. Note the outstanding preservation of immature sperm in some. Review the features of the plants found in Psilopsida, Rhyniopsida, Zosterophyllopsida and Trimerophytopsida. What are the relationships of each of the groups to one another? Review the life cycle of Psilotum and Tmesipteris. Compare it to the life cycle of an ancient land plant, to that of a filicalean fern, and to that of a moss. Compare the structure of the conducting tissue in Aglaophyton to that of a moss and to that of a typical vascular plant. What do these comparisons reveal about our traditional conception of differences between bryophytes 7

and vascular plants? References Crane, P.R. 1990. The Phylogenetic context of microsporogenesis. In, Microspores: Evolution and ontogeny. Academic Press, London. Graham, L.E. 1993. Origin of land plants. J. Wiley & Sons, Inc., New York. 287 pp. Kenrick, P. and P.D. Crane. 1991. Water-conducting cells in early fossil land plants: Implications for the early evolution of tracheophytes. Bot. Gaz. 152: 335-356. Kenrick, P. and P.D. Crane. 1997. The origin and early diversification of land plants, a cladistic study. Smithsonian Institution Press, Washington, 441 pp. Remy, W., P.G. Gensel and H. Hass. 1993. The gametophyte generation of some early Devonian land plants. International Journal of Plant Science 154: 35-58. Rothwell, G.W. 1994. Phylogenetic relationships among ferns and gymnosperms; an overview. Journal of Plant Research, 107: 411-416. Rothwell, G.W., S.E. Wyatt and A.M.F. Tomescu. 2014. Plant evolution at the interface of paleontology and developmental biology: An organism-centered paradigm. American Journal of Botany 101: 899-913. Taylor, T.N., H. Kerp and H. Hass. 2005. Life history biology of early land plants: Deciphering the gametophyte phase. PNAS 102: 5893-5897. Tomescu, A.M.F. 2009. Megaphylls, microphylls, and the evolution of leaf development. Trends in Plant Science 14: 5-12. Tomescu, A.M.F., S.E. Wyatt, M. Hasebe and G.W. Rothwell. 2014. Early evolution of the vascular plant body plan the missing mechanisms. Current Opinion in Plant Biology 17: 126-136. 8