THE USE OF XPS TO INVESTIGATE THE AGEING MECHANISM OF THE PHENOL-UREA-FORMALDEHYDE (PUF) BINDER COATED MINERAL FIBERS

Similar documents
Supporting Information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

New Curing System of Urea-Formaldehyde Resins with Polyhydrazides III.

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Interfacial Chemistry and Adhesion Phenomena: How to Analyse and How to Optimise

Aromatic Hydrocarbons

Effects of Assembly Time on Wet Shear Strength and Formaldehyde Emission of Plywood Bonded by Urea Formaldehyde Resin

XPS Surface Characterization of Disposable Laboratory Gloves and the Transfer of Glove Components to Other Surfaces

Fri 6 Nov 09. More IR Mass spectroscopy. Hour exam 3 Fri Covers Chaps 9-12 Wednesday: Review

New Curing System of Urea-Formaldehyde Resins with Polyhydrazides I.

18.8 Oxidation. Oxidation by silver ion requires an alkaline medium

Application of Surface Analysis for Root Cause Failure Analysis

Case Study of Electronic Materials Packaging with Poor Metal Adhesion and the Process for Performing Root Cause Failure Analysis

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced

The Effects of Organotin Catalysts on Hydrolytic Condensation of

Dr. Mohamed El-Newehy

Supplementary information

ToF-SIMS or XPS? Xinqi Chen Keck-II

A Technical Whitepaper Polymer Technology in the Coating Industry. By Donald J. Keehan Advanced Polymer Coatings Avon, Ohio, USA

Melamine-Bridged Alkyl Resorcinol Modified Urea Formaldehyde Resin for Bonding Hardwood Plywood

Experiment 11: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Infrared Spectroscopy

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group.

Fast, Effective XPS Point Analysis of Metal Components

Attachment No. B.10. Consent of copyright owner required for any other use. For inspection purposes only. EPA Export :20:10:01

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition

Secondary Ion Mass Spectroscopy (SIMS)

Infrared Spectroscopy: How to use the 5 zone approach to identify functional groups

CHAPTER 3 QUESTIONS. Multiple-Choice Questions

Scalable Production of Graphene-Based Wearable

CH 3. mirror plane. CH c d

Chemical Oxidation Oxidizing agents

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Introduction. A1.1 (a) Shell number and number of subshells 1. A1.1 (b) Orbitals 2. A1.1 (c ) Orbital shapes (s, p & d) 2

Effect of curing time on phenolic resins using latent acid catalyst

Chem 1075 Chapter 19 Organic Chemistry Lecture Outline

Characterization and Performance of Melamine Enhanced Urea Formaldehyde Resin for Bonding Southern Pine Particleboard

Chemistry Section Review 7.3

2A - Amines. 2 H atoms replaced: 2 attached C's to N. 3 H atom replaced: 3 attached C's to N Ammonia, NH3 Primary amine Secondary amine Tertiary amine

Carboxylic Acids and Nitriles

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Paper 12: Organic Spectroscopy

CHAPTER IV HOFMANN REARRANGEMENT IN CROSSLINKED POLYMERIC MATRICES

Chapter 9. Organic Chemistry: The Infinite Variety of Carbon Compounds. Organic Chemistry

Chapter 5 Chemical Calculations

Melamine-modified urea formaldehyde resin for bonding particleboards

Liquid Polybutadienes and Derivatives

Sugarcane molasses as pseudocapacitive materials for supercapacitors

1 P a g e h t t p s : / / w w w. c i e n o t e s. c o m / Chemistry (A-level)

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone.

Chemistry 14C Winter 2017 Exam 2 Solutions Page 1

CHANGES OF SURFACES OF SOLAR BATTERIES ELEMENTS OF ORBITAL STATION MIR AS A RESULT OF THEIR PROLONGED EXPOSITION ON LOW- EARTH ORBIT (LEO)

Condensation reactions of phenolic resins VII: catalytic effect of sodium bicarbonate for the condensation of hydroxymethylphenols

Learning Guide for Chapter 11 - Alkenes I

raw materials C V Mn Mg S Al Ca Ti Cr Si G H Nb Na Zn Ni K Co A B C D E F

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

Surface and Interface Characterization of Polymer Films

Surface modification of polyethylene terephthalate (PET) and oxide coated PET for adhesion improvement

Lecture notes in EI-Mass spectrometry. By Torben Lund

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D

EXPT. 7 CHARACTERISATION OF FUNCTIONAL GROUPS USING IR SPECTROSCOPY

Applications of XPS, AES, and TOF-SIMS

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry

Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies

CHM 292 Final Exam Answer Key

The electronic structure of solids. Charge transport in solids

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding.

Adsorption at the solid/liquid interface

Supplementary Information for. Silver Nanoparticles Embedded Anti-microbial Paints Based on Vegetable Oil

Xps Study of the Oxidation State of Uranium Dioxide

X-Ray Photoelectron Spectroscopy (XPS)-2

EXPT. 9 DETERMINATION OF THE STRUCTURE OF AN ORGANIC COMPOUND USING UV, IR, NMR AND MASS SPECTRA

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Evolved gas analysis by simultaneous thermogravimetric differential thermal analysis-fourier transformation infrared spectroscopy (TG-DTA-FTIR)

SUPPORTING INFORMATION. Si wire growth. Si wires were grown from Si(111) substrate that had a low miscut angle

Supporting Information

Critical role of surface hydration on the dynamics of serum adsorption studied with monoethylene glycol adlayers on gold

Organic Chemistry of Drug Degradation

CHEMISTRY ELEMENTS, COMPOUNDS & MIXTURES

Surface Chemistry of Alanine on Ni{111} Supporting Information

Chapter 10: Carboxylic Acids and Their Derivatives

Infrared Spectroscopy

Chapter 12 Alcohols from Carbonyl Compounds: Oxidation-Reduction and Organometallic Compounds

Nuclear Magnetic Resonance Spectroscopy (NMR)

Chlorine Resistant Membrane and The Mechanism of Membrane Degradation by Chlorine

Application of surface analysis for root cause failure analysis

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

Air Products and Chemicals, Inc., 7201 Hamilton Blvd., Allentown, PA 18195

Formation of Halogen Bond-Based 2D Supramolecular Assemblies by Electric Manipulation

Photoemission Spectroscopy

Thermo Scientific K-Alpha + XPS Spectrometer. Fast, powerful and accessible chemical analysis for surface and thin film characterization

How to Interpret an Infrared (IR) Spectrum

ADVANCED CHEMISTRY 2

Synthesis of condensed polynuclear aromatic resin from furfural extract oil of reduced-pressure route II

. To whom all conespondence should be addres8ed. Cocondensation of Urea with Methylolphenols in Acidic Conditions INTRODUCTION

CHEMISTRY (SALTERS) 2849

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Transcription:

THE USE OF XPS TO INVESTIGATE THE AGEING MECHANISM OF THE PHENOL-UREA-FORMALDEHYDE (PUF) BINDER COATED MINERAL FIBERS A. Zafar 1*, J. Schjødt-Thomsen 1, R. Sodhi 2, D. de Kubber 3 1 Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg, Denmark, 2 Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada, 3 Rockwool International, R&D department, Hedehusene, Denmark * Corresponding author (aza@m-tech.aau.dk) Keywords: Ageing, Interfaces, XPS, Phenol-urea-formaldehyde, mineral fibres 1. Introduction In the production of mineral wool insulation products, Phenol-Urea-Formaldehyde (PUF) has been used for many years to bind mineral fibres together and to give desired mechanical strength to the material. The mechanical properties of the are found to decrease during long term ageing. The goal of this investigation is to identify the chemical changes occurring in the material during ageing that causes decrease in its mechanical properties. X-ray Photoelectron Spectroscopy (XPS) has been used widely for the characterization of adhesion of s, coupling agents, coatings and polymer matrices with different kind of fibres and substrates [1-3]. XPS was used in this study to observe chemical changes occurring due to ageing in the mineral wool products. 2. Experimental Methods 2.1 Material The samples were taken from the original mineral wool products consisting of mineral fibres coated with PUF assisted by Amino Propyl Silane (APS) coupling agent. Pure PUF and uncoated mineral fibre samples were used in the investigation to identify the peaks belonging to these components in the mineral wool samples. Uncoated mineral fibres were obtained by heating original mineral wool samples at 590 0 C for 4 hours to remove all the organic material from the fibres. Pure PUF was cured on a glass plate at 200 0 C for 1 hour. In PUF, the molar ratio of formaldehyde to phenol is in the range of 3.2-4. Urea is added to the and the molar ratio of urea to phenol is in the range of 1.5-2.5. The main reactions between phenol, formaldehyde and urea groups can be found in [4-6]. The chemical structure of PUF is shown in Scheme 1. 2.2 Ageing condition The accelerated ageing was carried out by placing the samples in a climate chamber at a temperature of 70 o C and 95% relative humidity for seven days. 2.3 XPS All measurements were made with a Thermo Scientific K-Alpha XPS. The samples were analyzed with a monochromatic Al K-alpha X-ray source. The survey spectra were obtained at 90 o angle with a pass energy of 150 ev. The compositions were taken from the spectra of each element collected in a snapshot mode with a pass energy of 150 ev. High resolution spectra of elements of interest were obtained in a scanned mode with a pass energy of 25 ev. Charge compensation was done using a low energy flood gun. The deconvolution of the peaks was performed by using the manufacture s software Avantage. The binding energy scale was calibrated to the C1s peak at 285 ev for charge correction. The peak shape is a combination of Lorentzian and Guassian in a ratio of 70 to 30 %. 3. Results and Discussion 3.1. Uncoated Mineral Fibres The surface composition of the uncoated mineral fibres is given in Table 1. The main elements in the uncoated fibres are carbon, oxygen, silicon, aluminum, calcium, magnesium and sodium. Carbon concentration is 32 % attributed to adventitious

organic contamination. The high concentration of oxygen (44 %) arises from the oxides of aluminum, silicon, calcium, sodium, iron and magnesium. N1s signal is not detected in the spectrum, which indicates the complete removal of the organic material during heating since the nitrogen atom is present in urea groups of the PUF and present in APS as amino group. Furthermore, the absence of nitrogen peak also indicates that the silicon signal only originates from the fibre surface and not from the APS coupling agent. 3.2. Pure PUF Pure PUF sample was characterized to get information about the contribution of the PUF in the XPS spectra of mineral wool products. The survey spectrum of the sample only detects carbon, oxygen and nitrogen elements and the atomic composition of these elements are not very different from the estimated values calculated from molar ratios given in Table 2. Five peaks associated with carbon were fitted to the C1s high resolution spectra in the pure PUF sample. First peak at 285 ev is due to hydrocarbon groups (C-C/C-H), which is partly aromatic due to phenol groups and partly aliphatic due to present of urea groups. The second peak at 285.9 ev is due to group attached with benzene ring, i.e. phenol. This peak also includes contribution of carbon atom attached to nitrogen (C-N) due to presence of urea group attached to methyl bridge as shown in scheme 1. Third peak at 286.5 ev is due to aliphatic carbon attached with oxygen (C-), which is present due to the reaction of formaldehyde group with urea or phenol. Fourth peak at 287.8 ev is due to presence of carbonyl or amide group (CO/NCO) and fifth peak at 289.1 ev is due to urea group (NCON), both peaks are due to presence of urea in the PUF. The fitting of the C1s spectrum is consistent with the chemical structure of the as shown in Scheme 1. 3.3. Unaged and aged mineral wool products Atomic composition of surface of the unaged and aged samples evaluated from XPS survey spectra is shown in Table 1. In case of the unaged samples, carbon, oxygen, nitrogen, silicon, aluminum and calcium are main elements. The atomic composition of carbon, oxygen and nitrogen in the unaged mineral wool sample was compared to pure PUF samples as shown in Table 2. It shows that the atomic composition of the mineral wool products is different from the atomic composition of the pure PUF sample. Although mineral wool products also contain contribution from the coupling agent and fibres, the concentration of nitrogen in mineral wool products (2.12%) is still very low as compared to pure (13%) or estimated value (18%). During curing of mineral wool product, it was expected that 20 % of urea was disappeared. It appears that evaporation of urea from the surface of the mineral wool products could be much more than expected. The atomic composition of the unaged and aged mineral wool products was compared as shown in Table 1. It shows that oxygen, aluminum, silicon, calcium and nitrogen composition decreases and carbon composition increases after ageing when compared to the unaged mineral wool products. The changes in atomic composition show that chemical changes occurred during ageing of mineral wool products. The decrease in the composition of aluminum, silicon, calcium and oxygen is due to lower signals of these metal oxides on the fibres surface of the aged samples. The cause of the decrease is not fully understood yet and should be further investigated. The decrease in the atomic composition of nitrogen in the aged samples is due to decrease in the concentration of urea groups in the, which is also observed by C1s high resolution spectra. C1s high-resolution spectra were peak fitted to identify the differences in functionalities present at the surface of the unaged and aged samples. The results are presented for carbon high resolution spectra in Fig. 1. It can be clearly seen that the C1s spectrum of the aged sample is much narrower than unaged sample, which indicates the removal of some groups of carbon attached with oxygen and nitrogen in aged samples. In case of the unaged sample, five peaks associated with carbon were fitted to the C1s spectra as shown in Fig. 1. The binding energy states at 285 ev is due to hydrocarbon groups (C-C/C-H) present in aromatic ring structure, propyl groups in APS coupling agent, methylene bridge between urea groups or phenol groups and also due to adventitious

hydrocarbon contamination. In literature, the peaks for aromatic and aliphatic hydrocarbon are also fitted separately but they lie very close to each other, making it impossible to fit both peaks accurately. The peak for C-Si group normally exists at 284.7 ev, but it lies so close to hydrocarbon peak at 285 ev that it overlaps with it. So, there is also contribution of the C-Si group to the peak at 285 ev. The peak at 285.8 ev is due to carbon attached with nitrogen (C-N) in the urea group of the or amino group of the APS coupling agent. This peak also has contribution of the bond between aromatic carbon and alcohol groups (C-). The peak at 286.7 ev is due to aliphatic carbon attached with oxygen as alcohol group or ether group (C-/C-O- C). The peak at 287.8 ev is due to carbonyl group (C=O) or amide group (N-C=O), which come from urea groups present in the. The peak at 289 ev is also due to a fragment of urea group (NCON). In case of the aged sample, fitting of C1s spectra is only done with four components as shown in Fig. 1. It was not possible to include a peak due to urea group at 289 ev (NCON) and a significant decrease from 1.90% to 0.40% was also observed for the peak at 288 ev (C=O/N-C=O), which indicates the significant decrease in urea group concentration after ageing. The concentration of the peak at 286.7 ev (aliphatic C-/C-O-C) was decreased from 7.16 % to 4.02 % after ageing as shown in Table 3. This decrease is also linked with hydrolyzation of urea because the decrease in urea group concentration can lead to a decrease in aliphatic carbon attached to oxygen. The urea group, present in the, can hydrolyze in the presence of moisture since the hydrolytic stability of the ureaformaldehyde bond is low. This results into hydrolytic degradation of the under humid environment. The susceptibility to hydrolysis of a cured resin depends on its chemical nature and the degree of cross linking. Furthermore, the hydrolytic reactions occurred in the presence of moisture and are accelerated by heat and acids [7]. Many of the reactions that form Urea-Formaldehyde products are reversible condensation processes that eliminate water in the forward direction and therefore, involve hydrolysis in the reverse direction [8]. The reversibility of the ether bridge and methylene bridge explains the low resistance of UF resins against the influence of water and moisture. Hydrolysis of the cured resin will cause splitting of ether bridges into urea methylol groups, which can further split into urea and formaldehyde as shown in Eq. 1 and Eq. 3 [9-12]. Although methylene bridge is relatively stable, this reaction will be visible under the conditions used for the ageing. Slonim et al. [13] studied the acid catalyzed hydrolysis of carefully characterized methylene-diurea (UFU) and they found that the initial hydrolysis products are urea and monomethylol; the later degrade further into urea and formaldehyde as shown in Eq. 2 and Eq. 3. Allan et al. [14] also observed the hydrolytic cleavage of methylene bridge between two nitrogen atoms. These reactions contribute to the subsequent formaldehyde emission from the cured resin [7-15]. NH O NHCO + H 2 O NH + HO NHCO (1) NH NHCO + H 2 O NH + NH 2 CO (2) NHCONH + H 2 O NHCONH 2 + O (3) Some evidences also exist for acid catalyzed hydrolysis of the amide bond, in which the products are amines and carbon dioxide [8, 14-16]. Allan et al. [14] showed that the amide linkage between two nitrogen atoms can also be cleaved in the presence of moisture. Dutkiewicz [15] also observed by using infrared analysis that the acid catalyzed hydrolysis of urea formaldehyde polymer leads to a decrease in the concentration of carbonyl groups. The reaction of carbonyl group with water leads to the formation of amino and cerbamic acid. The cerbamic acid groups are unstable and can lead to the evolution of carbon dioxide as shown in Eq. 4. NHCN + H2O NHCO + NH2 NH2 + CO2 + NH2 (4) The decrease in the concentration of urea group at 289 ev along with the decrease in the concentration of carbonyl or amide group (C=O/N-C=O) at 287.8 ev is due to occurrence of these reactions in the. The splitting of ether bridges between the urea groups and terminal methylol groups results in a decrease in the concentration of aliphatic alcohol and ether groups at 286.7 ev.

4. Conclusion The chemical changes occurring in the mineral wool products due to ageing were investigated by XPS. XPS survey spectra of the surface of the aged samples showed some significant changes in atomic composition compared to the unaged samples. C1s high resolution spectra showed a significant decrease in the urea and carbonyl group concentration during ageing. This decrease attributes to the hydrolyzation of urea present in the Phenol- Urea-Formaldehyde (PUF). This study provides a better understanding of the ageing mechanism of the mineral wool products. 5. Acknowledgements The author (AZA) wishes to acknowledge financial support from Rockwool International A/S. 6. References [1] C.E.Moffitt, Q.S. Yu, C.M. Reddy, D.M. Wieliczka and H.K. Yasuda, XPS analysis of aging of thin adhesion promoting, fluorocarbon treatments of DC plasma polymers, Plasmas and Polymers, Vol. 6, 193-209, 2001. [2] D. Wang and F. R. Jones, ToF-SIMS and XPS Studies of the Interaction of Silanes and Matrix Resins with Glass Surfaces, Surface and Interface Analysis, Vol. 20, 457-467, 1993. [3] C.L. Weitzsacker, M.X. and L.T. Drzal, Using XPS to Investigate Fiber/Matrix Chemical Interactions in Carbonfiber-reinforced Composites, Surface and Interface Analysis, Vol. 25, 53-63, 1997. [4] A. Gardziella, L.A. Pilato, A. Knop, Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology, 2 nd edition, 2000. [5] Guangbo He, Ning Yan, 13C NMR study on structure, composition and curing behavior of phenol urea formaldehyde resole resins, Polymer 45 (2004) 6813 6822. [6] Bunichiro Tomita, Chung-Yun Hse, Phenol-ureaformaldehyde (PUF) co-condensed wood adhesives, International Journal of Adhesion & Adhesives 18 (1998) 69-79. [7] P. K. Kavvouras, D. Koniclitsiotis and J. Pctinarukis, Resistance of Cured Urea-Formaldehyde Resins to Hydrolysis: A Method of Evaluation, American Chemical Society, Vol. 14, (1980) 1235-1240. [8] G. E. Myers, Resin Hydrolysis and Mechanisms of Formaldehyde Release from Bonded Wood Products, Forests Products Research Society (1986) 119-156. [9] Z.A. Abdullah, B.D. Park, Hydrolytic Stability of Cured Urea-Formaldehyde Resins modified by additives, Journal of Applied Polymer Science, Vol. 114, 1011 1017, 2009. [10] M. Dunky, Urea-formaldehyde (UF) adhesive resins for wood, International Journal of Adhesion & Adhesives 18 (1998) 95-107. [11] P. K. Kavvouras, D. Koniclitsiotis and J. Pctinarukis, Resistance of Cured Urea-Formaldehyde Resins to Hydrolysis: A Method of Evaluation, American Chemical Society, Vol. 14, (1980) 1235-1240. [12] I. Chung, G. E. Maciel, NMR study of the stabilities of urea formaldehyde resin components toward hydrolytic treatments, Journal of Applied polymer Science, Vol. 52 (1994) 1637-1651. [13] I.I. Slonim, S.G. Alekseeva, I.G. Urman, B.M. Arshava, B.I Akselrod, A study of equilibria in the UF system using C-13 NMR, Vysokomol. Soed. 29 (1978) 1477-1485. [14] G.G. Allan, J. Dutkiewicz, E.J. Gilmartin, Long- Term Stability of Urea-Formaldehyde Foam Insulation, American Chemical Society, Vol. 14, 1980. [15] J. Dutkiewicz, Hydrolytic degradation of cured urea formaldehyde resin, Journal of Applied Polymer Science, Vol. 28 (1983) 3313-3320. [16] G. Camino, L. Operti, L. Trossarelli, Mechanism of Thermal Degradation Urea-Formaldehyde Polycondensates, Polymer Degradation and Stability 5 (1983) 161-172. Table 1: Surface composition (at %) for the unaged and aged Rockwool samples with PUF Elements Uncoated Mineral fibres Pure PUF Unaged PUF Aged PUF C 32.38 72.97 80.55 95.59 N - 13.24 1.97 0.62 O 44.37 13.64 10.2 2.58 Si 7.65-4.04 0.56 Al 3.70-2.12 0.25 Ca 8.04-1.12 - S 0.69 - - 0.39 Na 2.01 - - - Mg 1.04 - - - Fe 0.13 - - -

Table 2: Comparison of estimated value of atomic composition of C, O and N with actual atomic composition of PUF, mineral wool products Atom Pure % Mineral wool % Estimated % C 72.97 86.87 66.12 O 13.64 11.00 15.19 N 13.24 2.12 18.69 Table 3: Peak fitting data from the C 1s spectra of unaged and aged mineral wool products and pure PUF Sample C-C/C-H/ C-Si Surface concentration of C1s peak fitting (at. %) (The binding energies of peak fitting (ev)) C-N / Aliphatic C- Aromatic C- C=O/N-C=O /C-O-C / C-O-C NCON Unaged PUF coated fibres 74.0 15.3 7.2 1.9 1.6 (285) (285.8) (286.7) (287.8) (289) Aged PUF coated fibres 83.8 11.8 4.0 0.40 - (285) (285.8) (286.7) (288) - Pure PUF sample 55.2 20.00 17.2 2.4 5.2 (285) (285.9) (286.5) (287.8) (289.1) -NHCONH- -NHCONH- -NHCONH- -O-CH2-NHCONH HO -NCONH- Scheme 1: The chemical structure of the cured PUF 5

8000 7000 (a) 6000 Counts / s 5000 4000 3000 2000 1000 0 298 296 294 292 290 288 286 284 282 280 1. 4 0 E + 0 4 1. 2 0 E + 0 4 (b) Counts / s 1. 0 0 E + 0 4 8. 0 0 E + 0 3 6. 0 0 E + 0 3 4. 0 0 E + 0 3 2. 0 0 E + 0 3 0. 0 0 E + 0 0 298 296 294 292 290 288 286 284 282 280 7000 6000 (c) 5000 Counts / s 4000 3000 2000 1000 0 298 296 294 292 290 288 Binding Energy (ev) 286 284 282 280 Fig. 1: The high resolution C 1s spectra of the (a) Unaged mineral wool product (b) Aged mineral wool Product (c) Pure PUF sample 6